
Shape Analysis



• The Shape Analysis is useful for:
• Debugging and optimization of the code.
• Program verification

INTRODUCTION ON SHAPE ANALYSIS

• Pointers and heap-allocated storage are features of all modern imperative programming 
languages.

• They are ignored by most semantic descriptions of imperative programming languages, because
they complicate it.

• Using pointers often causes errors. Two common errors:
• Dereferencing NULL pointers
• Accessing previously deallocated storage.

The Shape Analysis Approach



INTRODUCTION ON SHAPE ANALYSIS

Formally:
• Goal: for each program point, for each variable, obtain a finite description of the heap-

allocated data structures resulting from any execution.
• Problem: mapping a heap of potentially unbounded size to a graph of bounded size.

Concrete questions:
• Alias: Do two pointer expressions reference the same heap cell?

• Yes (for every state): Trigger a prefetch or predict a cache hit
• Sharing: Is a heap cell shared?

• Yes (for some state): explicit deallocation may run into an inconsistent state
• Reachability: Is a heap cell reachable from a specific variable or from any pointer variable?
• Disjointness: Do two data structures pointed to by two distinct pointer variables ever have common 

elements?
• No (for every state): Distribute data structures to different processors

• Ciclicity: Is a heap cell part of a cycle?
• No (for every state): Perform garbage collection by reference counting

• Shape: What will be the «shape» of (some part of) the heap contents?



[y:=nil]l;

while [not is-nil(x)]2 do

[z: =y]3; 

[y: =x]4;

[x: =x.cdr]5;

[y.cdr: =z]6;

[z:=nil]7

STRUCTURAL OPERATIONAL SEMANTICS

Definition. A (concrete) heap configuration is given by (𝐿𝑜𝑐, 𝑆𝑒𝑙, 𝑉𝑎𝑟, 𝜎,ℋ), where:

• 𝐿𝑜𝑐 is an infinite set of locations (or addresses) for the heap cells 𝜉 ∈ 𝐿𝑜𝑐

• 𝑆𝑒𝑙 is a finite set of selector names

•𝑉𝑎𝑟 is a finite set of program variables

• 𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒 = 𝑉𝑎𝑟 → (𝑍 + 𝐿𝑜𝑐 + ◊ ) is a variable valuation

•ℋ ∈ 𝐻𝑒𝑎𝑝 = 𝐿𝑜𝑐 × 𝑆𝑒𝑙 → 𝑓𝑖𝑛(𝑍 + 𝐿𝑜𝑐 + ◊ ) is a (concrete) heap



Shape graphs
• We have to explicitly abstract from a concrete heap to the form of a bounded graph: a shape graph. 
• A shape graph is defined from the concept of abstract location, the representative for one (or more) 

heap cells of the program heap.

𝐴𝐿𝑜𝑐 = 𝑛𝑋 𝑋 ⊆ 𝑉𝑎𝑟} 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
• Idea: if 𝑥 ∈ 𝑉𝑎𝑟 points to 𝜉I, then it belongs to the set 𝑋 of 𝑛𝑋
• We introduce the abstract summary location n∅ that will represent all the heap cells that are not 

directly pointed by a state variable.

SHAPE GRAPHS

Definition. A shape graph (S,H,is) consists of
• An abstract state S - maps variables to abstract locations.

𝑆 ∈ 𝐴𝑆𝑡𝑎𝑡𝑒 = 𝒫(𝑉𝑎𝑟 × 𝐴𝐿𝑜𝑐)

• Abstract heap H - maps abstract locations to abstract locations via selectors.
𝐻 ∈ 𝐴𝐻𝑒𝑎𝑝 = 𝒫 𝐴𝐿𝑜𝑐 × 𝑆𝑒𝑙 × 𝐴𝐿𝑜𝑐

Idea: ( 𝜉1
𝑠𝑒𝑙

𝜉2 ∧ (𝜉1 ⟼ n𝑉 and 𝜉2 ⟼ n𝑊)) ⇒ 𝑛𝑉, 𝑠𝑒𝑙, 𝑛𝑊 ∈ 𝐻. 

• An IsShared set is - abstract locations that represents locations that are shared due to pointers in the heap.



SHAPE GRAPHS

• Variables x, y and z point to diffent locations, so: 
• 𝜉3 ⟼ n{x}

• 𝜉2 ⟼ n{y}

• 𝜉1 ⟼ n{z}

• 𝜉4,𝜉5⟼ 𝑛∅ . 
• S = 𝑥, 𝑛

𝑥
, 𝑦, 𝑛

𝑦
, 𝑧, 𝑛

𝑧
• 𝐻 = 𝑛

𝑥
, 𝑐𝑑𝑟, 𝑛∅ , 𝑛∅, 𝑐𝑑𝑟, 𝑛∅ , 𝑛

𝑦
, 𝑐𝑑𝑟, 𝑛

𝑧
• No abstract locations are shared

Nodes → Abstract locations
Labelled Edges → defined by H
Unlabelled Edges → defined by S



SHAPE GRAPHS

When is the is set useful?
• An abstract location nX will be included in is if it does represent a 

location that targets more that one pointer in the heap.
• In the first row abstract location n{y} representing location 𝜉5 is not

shared, so 𝑛 𝑦 ∉ 𝑖𝑠.
• In the second case, 𝜉5 is shared, so 𝑛

𝑦
𝜖 𝑖𝑠.



SHAPE GRAPHS

• To summerise, a shape graph is a triple S, H, is ∈ 𝐴𝑆𝑡𝑎𝑡𝑒 × 𝐴𝐻𝑒𝑎𝑝 × 𝐼𝑠𝑆ℎ𝑎𝑟𝑒𝑑, with:
𝑆 ∈ 𝐴𝑆𝑡𝑎𝑡𝑒 = 𝒫 𝑉𝑎𝑟 × 𝐴𝐿𝑜𝑐

𝐻 ∈ 𝐴𝐻𝑒𝑎𝑝 = 𝒫 𝐴𝐿𝑜𝑐 × 𝑆𝑒𝑙 × 𝐴𝐿𝑜𝑐

𝑖𝑠 ∈ 𝐼𝑠𝑆ℎ𝑎𝑟𝑒𝑑 = 𝒫 𝐴𝐿𝑜𝑐

• Given the CFG of the program, determine for all nodes ℓ all the possible shape graphs entering and 
leaving the program nodes that summarize the possible heap configurations for that node.

• Basically: We have to find a fixpoint solution for 𝑆ℎ𝑎𝑝𝑒(ℓ) = < 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟(ℓ), 𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 ℓ > for 
every ℓ.

𝑆ℎ𝑎𝑝𝑒 ℓ will operate over sets of shape graphs, i.e. elements of 𝒫(𝑆𝐺).

Domain: 𝐷,⊑ ≔ (2𝑆𝐺, ⊆) (𝑉𝑎𝑟, 𝐴𝐿𝑜𝑐, 𝑆𝑒𝑙 finite ⇒ 𝑆𝐺 finite ⇒ 2𝑆𝐺 finite ⇒ 𝐴𝐶𝐶)

𝑝𝑜𝑤𝑒𝑟 𝑠𝑒𝑡 ⟹ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑎𝑡𝑡𝑖𝑐𝑒



The Analysis

THE ANALYSIS

𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 ℓ = ൞

𝜄, 𝑖𝑓 ℓ = 𝑖𝑛𝑖𝑡(𝑆)

ራ 𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 ℓ
′ ℓ′ ∈ 𝑝𝑟𝑒[ℓ]} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 ℓ = 𝑓ℓ
𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 ℓ )

Where: 
• 𝑝𝑟𝑒[ℓ] is the set of predecessors of the node ℓ. 
• 𝑖𝑛𝑖𝑡(𝑆) computes the initial label for the statement 𝑆.
• 𝜄 is an initial set of shape graph for possible initial values of 

variables. In the case of our reverse program:
• “x points to a (finite) acyclic list of at least 3 elements”

• Forward analysis
• Possible analysis
• Some aspects of a must analysis

𝜄 = { }
• “x points to any (finite) acyclic list”

𝜄 = { }(∅, ∅, ∅), , ,



THE ANALYSIS

Consider again the list reversal program:

[y:=nil]l;

while [not is-nil(x)]2 do

([z: =y]3; [y: =x]4; [x: =x.cdr]5; [y.cdr: =z]6);

[z:=nil]7

Assume that x initially points to an unshared list with at least two elements and that y and z are 
initially undefined.

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 1 = 𝑓1
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 1 = 𝑓1

𝑆𝐴(𝜄)

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 2 = 𝑓2
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 2 = 𝑓2

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 1 ∪ 𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 6 )

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 3 = 𝑓3
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 3 = 𝑓3

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 2 )

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 4 = 𝑓4
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 4 = 𝑓4

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 3 )

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 5 = 𝑓5
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 5 = 𝑓5

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 4 )

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 6 = 𝑓6
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 6 = 𝑓6

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 5 )

𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 7 = 𝑓7
𝑆𝐴 𝑆ℎ𝑎𝑝𝑒𝑒𝑛𝑡𝑒𝑟 7 = 𝑓7

𝑆𝐴(𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡 2 )



THE ANALYSIS

𝑏 ℓ𝑎𝑛𝑑 [𝑠𝑘𝑖𝑝]ℓ These commands does not modify heap’s content.

The effects will be to remove the binding to x, and 
to rename all abstract locations so that they do 
not include x in their name.

𝑥 ≔ 𝑛𝑖𝑙 ℓ

Transfer function 𝑓ℓ
𝑆𝐴: 𝑃(𝑆𝐺) → 𝑃 𝑆𝐺 defines how to modify input shape graphs’ components 𝑆, 𝐻, 𝑖𝑠 to 

represent all possible shape graph that can be generated by effects of the elementary block labelled ℓ.

An SG is modified by evaluation of assignments.

𝑥 ≔ 𝑛𝑖𝑙 ℓ

𝑦 ≔ 𝑛𝑖𝑙 ℓ



THE ANALYSIS

If 𝑥 ≠ 𝑦: 
• First visible effect: remove the old bindings to x. 
• Second visible effect: the new bindings to x is recorded.

All abstract locations are renamed to include x in their name if they already have y.

𝑥 ≔ 𝑦 ℓ

Assume that 𝑥 ≠ 𝑦. 
• First visible effect: remove the old binding for x.
• Second visible effect: rename abstract location corresponding to y.sel to include x in its 

name and to establish binding of x to that abstract location.
Who is y.sel pointed to? We have 3 possibilities…

𝑥 ≔ 𝑦.𝑠𝑒𝑙 ℓ

𝑥 ≔ 𝑦 ℓ



THE ANALYSIS

1. (𝑦, 𝑛𝑌) ∉ 𝑆′ or (𝑦, 𝑛𝑌) ∈ 𝑆′, but there is no 𝑛𝑍 such that (𝑛𝑌, 𝑠𝑒𝑙, 𝑛𝑍) ∈ 𝐻′.
I. In the first case, we have no effect.
II. In the second case, only remove the old bindings to x.

2. (𝑦, 𝑛𝑌) ∈ 𝑆′ and there is an abstract location 𝑛𝑈 ≠ 𝑛∅ such that (𝑛𝑌, 𝑠𝑒𝑙, 𝑛𝑈) ∈ 𝐻′.
The abstract location 𝑛𝑈 will be renamed to include the variable x.

𝑥 ≔ 𝑦. 𝑠𝑒𝑙 ℓ



3. There is an abstract location 𝑛𝑌 such that (𝑦, 𝑛𝑌) ∈ 𝑆′ and (𝑛𝑌, 𝑠𝑒𝑙, 𝑛∅) ∈ 𝐻′.
The location 𝑛∅ describes location for y.sel as well as a set of other locations.
• Intuitively, the statement [𝑥 ≔ 𝑦. 𝑠𝑒𝑙]ℓ in this case outputs a new abstract location 𝑛

{x}
from 𝑛∅ that describes the 

location for y.sel and 𝑛∅ will continue to represent remaining locations. As it is introduced a new abstract location, the 
abstract heap must be modified consistently.



THE ANALYSIS

𝑥.𝑠𝑒𝑙 ≔ 𝑦 ℓ
• Assume that 𝑥 ≠ 𝑦. As usual,if (𝑥, 𝑛𝑋) ∉ 𝑆, x will not point to a cell in the heap, so the 

statement will have no effect on the shape of the heap.
• Let’s assume that (𝑥, 𝑛𝑋) ∈ 𝑆. We need to remove from H all triples 𝑛𝑋, 𝑠𝑒𝑙, 𝑛𝑊 ∈ 𝐻.
• Let’s assume that (𝑥, 𝑛𝑋) ∈ 𝑆 and (𝑦, 𝑛𝑌) ∈ 𝑆. It this case, we must establish the new 

binding given by the assignment.

𝑥. 𝑠𝑒𝑙 ≔ 𝑦 ℓ



THE ANALYSIS

Fixpoint solution yields 𝑆𝐺ℓ ⊆ 𝑆𝐺, for each ℓ ∈ 𝐿𝑎𝑏.

Solving shape analysis’s equations for our reverse program requires too much time (and generates a lot of shape graphs… 
approx 50). Let’s show only the potential of this analysis with this particular result:

[y:=nil]l;

while [not is-nil(x)]2 do

([z: =y]3; [y: =x]4; [x: =x.cdr]5; [y.cdr: =z]6);

[z:=nil]7

For example, we could have the 
following shape graphs, given by 
𝑆ℎ𝑎𝑝𝑒𝑒𝑥𝑖𝑡(3):

• The description of the lists 
occurring during execution is 
finite: there are 9 shape graphs
describing all x- and y-lists 
arising after 3.



THE ANALYSIS

Some conclusions we can draw after 3:
• No heap cell is shared
• x and y point to acyclic data structure
• z and y are alias or both point to nil.

Other (correct) conclusions we can’t draw
after 3:
• The lists to which x and y point are 

disjoint.
• x never points to nil.


