Shape Analysis



* Pointers and heap-allocated storage are features of all modern imperative programming
languages.
* They are ignored by most semantic descriptions of imperative programming languages, because
they complicate it.
e Using pointers often causes errors. Two common errors:
e Dereferencing NULL pointers
» Accessing previously deallocated storage.

* The Shape Analysis is useful for:
* Debugging and optimization of the code.
* Program verification

INTRODUCTION ON SHAPE ANALYSIS



Concrete questions:
: Do two pointer expressions reference the same heap cell?

* Yes (for every state): Trigger a prefetch or predict a cache hit

. 1s a heap cell shared?
* Yes (for some state): explicit deallocation may run into an inconsistent state

. 1s a heap cell reachable from a specific variable or from any pointer variable?
Do two data structures pointed to by two distinct pointer variables ever have common
elements?

* No (for every state): Distribute data structures to different processors

. 1s a heap cell part of a cycle?
* No (for every state): Perform garbage collection by reference counting

: What will be the «shape» of (some part of) the heap contents?

Formally:

e Goal: for each program point, for each variable, obtain a finite description of the heap-
allocated data structures resulting from any execution.

* Problem: mapping a heap of potentially unbounded size to a graph of bounded size.

INTRODUCTION ON SHAPE ANALYSIS



Definition. A (concrete) heap configuration is given by (Loc, Sel,Var,o,H), where:

e Loc is an infinite set of locations (or addresses) for the heap cells ¢ € Loc
e Sel is a finite set of selector names

e /ar is a finite set of program variables

eg € State =Var - (Z + Loc + {0}) is a variable valuation

*J € Heap = (Loc X Sel) — ;,(Z + Loc + {0}) is a (concrete) heap

& &
cdr
0y —> ¢ 10y —»@—» 0

o
o

[y:=nil];;
while [not 1s-nil(x)], do 2 2
[z: =y];;

[y: =X, ‘ S OaOnd
[XZ =x.cdr]5; 2.y Cdr o % 3- e cdr -::dr o w

[y.cdr: =z];
[z:=nil],

=

cdr
— ¢ S

_ cdr cdr cdr cdr cdr cdr cdr cdr cdr
4-%'—*””’.—' é 5;-—'*5—'.—'.—'.—' ﬂ‘
Z Z

-

]

STRUCTURAL OPERATIONAL SEMANTICS



* We have to explicitly abstract from a concrete heap to the form of a bounded graph: a shape graph.
* Ashape graph is defined from the concept of abstract location, the representative for one (or more)
heap cells of the program heap.

ALoc = {ny |X S Var} abstract locations
* ldea:if x € Var points to &, then it belongs to the set X of n,
* We introduce the abstract summary location nyg that will represent all the heap cells that are not
directly pointed by a state variable.

Definition. A shape graph (S,H,is) consists of

e An abstract state S - maps variables to abstract locations.
S € AState = P(Var X ALoc)

e Abstract heap H - maps abstract locations to abstract locations via selectors.
H € AHeap = P(ALoc X Sel X ALoc)

l
Idea: ( §1S—e>§2 AN (¢, —nyandé&,—ny)) = (n,sel,n,) €H.

e An IsShared set js - abstract locations that represents locations that are shared due to pointers in the heap.

SHAPE GRAPHS



Nodes — Abstract locations
Labelled Edges — defined by H
Unlabelled Edges — defined by S

Variables x, y and z point to diffent locations, so:
* $3ro Ny,

S = {(x,ng ), n, D (z,ng )]
= {(n{ L cdr nm) (ng, cdr, Ng), (n{ , cdr, n; D}
No abstract locations are shared

D= S

cdr cdr
¥ &
] ¥ nh.-} cdr n{z}
il

SHAPE GRAPHS

cdr



SHAPE GRAPHS

* An abstract location ny will be included in is if it does represent a
VBaetion the i seietsaitbre that one pointer in the heap.
* Inthe first row abstract location n, representing location écis not

shared, son{y} €& is.

* Inthe second case, ¢: is shared, song ; € is.
y

cdr cdr
X

Nra

ey

dr

S odr
.,

0



* Tosummerise, a shape graphis a triple (S,H,is) € AState X AHeap X IsShared, with:
S € AState = P(Var X ALoc)

H € AHeap = P(ALoc X Sel X ALoc)
is € IsShared = P(ALoc)

* Given the CFG of the program, determine for all nodes € all the possible shape graphs entering and
leaving the program nodes that summarize the possible heap configurations for that node.

* Basically: We have to find a fixpoint solution for Shape(¥) = < Shape,,,..(¥), Shape,,, (£) > for
every £.

Shape(¥) will operate over sets of shape graphs, i.e. elements of P(5G).

Domain: (D,E) :== (2%¢, C (Var, ALoc, Sel finite = SG finite = 25¢ finite = ACC)

power set = complete lattice

SHAPE GRAPHS



(1, if £ =init(S)
Shape,,,,.(£) = 4 U{Shapeexit@') | ¢’ € pre[f]}, otherwise
\

Shapeexit(‘g) — ffSA (Shapeenter (f))
Where:
» prelf] is the set of predecessors of the node #.
* (nit(S) computes the initial label for the statement S.
* (isaninitial set of shape graph for possible initial values of
variables. In the case of our reverse program:
* “xpoints to a (finite) acyclic list of at least 3 elements”

* Forward analysis
* Possible analysis
* Some aspects of a must analysis

cdr
L={ « -3

e “Xx points to any (finite) acyclic list”

cdr
L=1{(0,0,0), - -, - ), {5

THE ANALYSIS



Consider again the list reversal program:

[y:=nil];;
while [not is-nil(x)], do
([z: =yl3; [y: =x]g [x: =x.cdr]s; [y.cdr: =z]);
[z:=nil],
Assume that x initially points to an unshared list with at least two elements and that y and z are
initially undefined.

Shape,,; (1) = 1SA (Shapeenter(l)) — 1SA (1)
Shapeexit(z) = ZSA (Shapeenter(z)) = ZSA (Shapeexit(l) U Shapeexit(6))
Shapeexit(3) = f3SA (Shapeenter(3)) — fBSA (Shapeexit(z))

Shape,,.,(4) = f* (Shapeenter(4)) = fp*(Shape,,;,(3))
Shape,,;,(5) = fSSA(Shapeenter(S)) = fo4(Shape,,;;(4))
Shape,,;(6) = f6SA(Shapeenter(6)) = f&*(Shape,,;,(5))
Shape,,;,(7) = f7SA(Shapeenter(7)) = f4 (Shape,,;(2))

THE ANALYSIS



An SG is modified by evaluation of assignments.

Transfer function f;“: P(SG) — P(SG) defines how to modify input shape graphs’ components (S, H, is) to
represent all possible shape graph that can be generated by effects of the elementary block labelled £.

[ ] These commands does not modify heap’s content.
The effects will be to remove the binding to x, and

|x := nil] to rename all abstract locations so that they do
not include x in their name.

Y i=nil

sell x = nl =el2

: n{x} = @ nw

THE ANALYSIS (3,H,is} (5 H,is")




[ ] If x + y:
* First visible effect: remove the old bindings to x.
» Second visible effect: the new bindings to x is recorded.
All abstract locations are renamed to include x in their name if they already havey.

— ?
_ [X T y] NX\{x}
X ny

S —

sell

(8,H,is) My (5",H"is"™)

Assume that x # .

* First visible effect: remove the old binding for x.

* Second visible effect: rename abstract location corresponding to y.sel to include x in its
name and to establish binding of x to that abstract location.
Who is y.sel pointed to? We have 3 possibilities...

| S

THE ANALYSIS



1. (y,n,) & S’ or (y,n,) €', but there is no n, such that (ny, sel,n,) € H'.
|. In the first case, we have no effect.
Il. In the second case, only remove the old bindings to x.
2. (y,ny) € S and there is an abstract location n;, # ng such that (ny, sel,n,) € H'.
The abstract location n; will be renamed to include the variable x.

(S s (577 387)

THE ANALYSIS



3. There is an abstract location n, such that (y,n,) € S" and (ny, sel,ns) € H'.
The location ny describes location for y.sel as well as a set of other locations.

Intuitively, the statement [x := y. sel]£ in this case outputs a new abstract location n . from ny that describes the

location for y.sel and ny will continue to represent remaining locations. As it is introduced a new abstract |location. the

abstract heap must be modified consistently.

.
o sell
L 4 )
Iy
sell
.
v
y :h-[ M ] sel :ll-[ Mig ]
_selﬁ._
)
©34353) [ my  fses[ ng  Jsez { o )

THE ANALYSIS

(S1,H1,is1)

(54, H4 i=4)

(52 H2,is2)

(S5 H5,is5)

(56,HE,is6)

My

3

v
g3
v
seld 7
v
seld

sel2,

mn W

“zel3,

SEl? | J |'|'|LI||.|I

sel2,

“zeld, l

mn WA



Assume that x # y. As usual,if (x,nX) & S, x will not point to a cell in the heap, so the
[ ] statement will have no effect on the shape of the heap.

Let’s assume that (x,ny) € S. We need to remove from H all triples (ny, sel,n,,) € H.

Let’s assume that (x,n,) € S and (y,n,) € S. It this case, we must establish the new
binding given by the assignment.

}I
(§,H,is)

(5",H",is")

THE ANALYSIS



Fixpoint solution yields SG, € SG, for each £ € Lab.

Solving shape analysis’s equations for our reverse program requires too much time (and generates a lot of shape graphs...
approx 50). Let’s show only the potential of this analysis with this particular result:
[y:=nil];
while [not 1s-nil(x)], do
([z: =yls; [y: =x]4 [x: =x.cdr]s; [y.cdr: =z]);

[Z::nil]7 cdr cdr
For example, we could have the * [ Jeor{ g | * [ Jeor{ g | * car
following shape graphs, given by ! Y
Shape,,;,(3): : :
cdr.
* The description of the lists . (T e np | . (o ) -e>(2) x

occurring during execution is y y y

finite: there are 9 shape graphs a
s s “ e o)l

describing all x- and y-lists
arising after 3.

&

[ -
=
] H
[x]
=9
-
=
=]
[
=
L
=)
=9
-
=
B
=
E]

THE ANALYSIS



Ao,

~cdr,
f :.
o ) ()

e T e D R 0 pt K™
v v
Aodr,
e L e I I ) B ) I iy D
. C'i' _.cl:il

2 ) N SIS

o ]

Yoo cdr, y T cdr, t:dlI

o em] R )
Some conclusions we can draw after 3: Other (correct) conclusions we can’t draw
* No heap cell is shared after 3:
* xandy point to acyclic data structure * The lists to which x and y point are
* zandy are alias or both point to nil. disjoint.

* X never points to nil.

THE ANALYSIS



