
Non-Strict Semantics with Abstract Machines

Andrea Laretto

Università di Pisa
Dipartimento di Informatica

17 febbraio 2021

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 1 / 32

What is Non-Strictness?

An evaluation strategy where calculations are delayed until needed.
Laziness: if their results are saved and computed only once (sharing)

(* Let's try to reimplement a ternary operator in OCaml: *)
let ternary c a b = if c then a else b
(* But does this program terminate? *)
let res = 42
let loop () = loop ()
let result = ternary true res (loop ()) in
print result (* In a lazy language, yes! *)

• Fully implemented in pure languages like Lazy ML (1984), Miranda
(1985), and Haskell (1990)

• Can be found nowadays in many languages, albeit in different forms:
Scheme (delay and force), OCaml (lazy and Lazy.force)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 2 / 32

Why Laziness?

nats :: [Integer]
nats = 0 : map succ nats

fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

• Advantages:
• Infinite data structures (streams, sequences)
• Can be more efficient, avoids unneeded calculations
• Short-circuiting operations (&&, ?:) can be implemented as

abstractions within the language itself
• Disadvantages:

• Clashes with mutability and side-effects
• Non-trivial to implement, poor hardware support
• Inefficient in many practical cases (overhead)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 3 / 32

General Approaches to Laziness

• Closure-based implementations
• Simple, easy to implement and embed with macros
• Enables laziness to be explicitly used on-demand
• The user must explicitly handle delaying and forcing laziness
• Requires keeping (a part of) activation records on the heap

• Abstract machines
• Very simple to implement
• Directly relate to the operational semantics of the language
• Extensive literature, complexity studied in depth
• Sometimes inefficient, introduce execution overhead
• Need to be mapped back into real hardware

• Graph reduction
• Similar to abstract machines, operate on expression graphs
• Used in Haskell: Spineless Tagless G-machine
• Easily parallelizable with multiple reductions

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 4 / 32

What are Closures?

A closure is a pair (f, e) where f is a function, and e is the
environment storing the free variables required to evaluate f.

• A classic example:

(* The value of "a" gets captured in the closure: *)
let incrementer a = fun x -> a + x
let incrementer' a x = a + x (* Equivalently, with currying *)
let inc_by_six = incrementer 6
let inc_by_two = incrementer 2

• Closures are essential in lexically scoped languages that can define
and return first-class functions (upwards funarg problem).

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 5 / 32

Non-Strictness with Closures: An Example

We can use closures to delay evaluation and implement a form of laziness!

(* Delayed/wrapped values *)
type 'a delayed = unit -> 'a
(* Unwrap the delayed values by calling the thunk: *)
let ternary c a b = if c () then a () else b ()
let res = 42
let _ = (* Wrap each function argument inside a function *)
ternary (fun () -> true) (* Pass the arguments as thunks *)

(fun () -> res) (* Value of "res" is captured *)
(fun () -> loop ())

In order to delay the computation of the arguments, wrap each of them
inside a closure to create a so-called ”thunk”. The evaluation thunks will
be unwrapped by the callee to perform the actual calculation, if needed.

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 6 / 32

Implementing Closures

• However, a closure might live longer than the function that creates it:

(* Both "x" and "y" get captured in the final closure: *)
let pair = fun x -> fun y -> fun p -> p x y
let first p = p (fun x y -> x)
let second p = p (fun x y -> y)
(* Each closure must store and remember its own values: *)
let example1 = pair 3 "hello"
let example2 = pair 7 "world"

• The variables captured by the closure might have to be moved from
the AR, following the closure around (possibly, from the stack to the
heap).

• The definition of closure points to a way on how to treat them:
1 At compile-time, identify the variables captured in the closure
2 At run-time, return a record with the entry-point of the function

and the values of the variables captured (or a reference to access them)
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 7 / 32

Compiling Closures

• This definition opens up to at least two techniques to compile
closures:

• Shared closures: access to variables gets chained through outer
environments (traverses the lexical chain in O(n), slow but it saves
space), similar to Access Links

• Flat closures: the environment keeps a copy/reference of every free
variable (fast and requires only O(1) in access, but space expensive)

• Note: allocating closures on the heap might require using GC!
• After calling a closure, we can memoize its result and return it when

called again (→ laziness/sharing)
• Peter J. Landin first introduced the term in 1964, later used in his

abstract machine SECD

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 8 / 32

A Formal Treatment of Laziness

• If everything is lazy, sequencing statements gets complex to manage,
the evaluation order of programs is difficult to reconstruct at runtime

• Sequencing techniques to impose an evaluation order are required
(e.g.: IO monad in Haskell)

• Memoizing/sharing is impossible if re-evaluating the same expression
can give a different result!

• In order to formally treat laziness we need a pure calculus free from
side-effects, along with a formal setting to treat evaluation orders and
non-strictness: λ-calculus

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 9 / 32

λ-calculus

• Foundation of functional programming languages (Haskell, OCaml)
• Core of the FUN language described in the laboratory course
• Extremely simple and easy to define:

<variable> = x, y, z, …
<term> = <variable> (variables)

| <term> <term> (function application)
| λ <var> → <term> (anonymous functions)

• Semantics is defined by β-reduction (i.e.: applying functions)

(λx → b) v =⇒β b[x/v]
”Substitute each occurrence of x inside b with v”

• This is sufficient for a Turing-complete language free from side-effects
• Establishes a formal setting to describe strict and non-strict

evaluation orders
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 10 / 32

Some Evaluation Strategies in λ-Calculus

(λx y → x) z ((λx → x x) k)

What are some possible ways of evaluating this term?
(i.e.: for each function call, perform β-reduction and substitution)
• Call-by-value: arguments are first fully evaluated (innermost reduction)

(λx y → x) z ((λx → x x) • k)
=⇒β (λx y → x) • z (k k)
=⇒β (λy → z) • (k k)
=⇒β z

• Call-by-name: arguments are left unevaluated, substituted as-is (outermost)
(λx y → x) • z ((λx → x x) k)

=⇒β (λy → z) • ((λx → x x) k)
=⇒β z (what if we had k = (λx → x x)?)

• Call-by-need: functions are evaluated first, arguments are memoized
Non-strictness can be implemented with call-by-name or call-by-need.
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 11 / 32

Abstract Machines

”An abstract machine is a theoretical step-by-step computer
used to define a model of computation.”

• Provide an intermediate language stage for compilation
• Explicitly expose evaluation orders and reduction strategies

Sufficiently abstract that we do
not get tangled up in the very

low-level details

Sufficiently concrete that we
can be sure we are not hiding a
lot of complexity in definitions

• A well-studied concept in the early study of functional languages
• Usually defined by the following elements:

• A minimal instruction set
• State representation (stack, heap, garbage collection, etc.)
• An initial state
• Small-step operational semantics/a state transition relation

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 12 / 32

Strict Abstract Machines

Most influential strict functional abstract machines:
• 1964, Landin: SECD machine (Stack, Environment, Control, Dump)

for implementing call-by-value
• 1983, Cardelli: Functional Abstract Machine (FAM), formed the

basis of the first native-code implementation of ML
• 1985, Curien et al.: Categorical Abstract Machine (CAM), derived

from Category Theory, used in the CAML implementation of ML
• 1990, Leroy: Zinc Abstract Machine (ZAM), optimized, strict

version of the Krivine machine; foundation for bytecode versions of
Leroy’s Caml Light and OCaml implementations

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 13 / 32

Lazy Abstract Machines

Most influential lazy functional abstract machines:
• 1979, Turner: SK-machine for SASL language, based on SK

combinatory logic with two instructions
• 1984, Augustsson et al.: G-machine for call-by-need evaluation

with supercombinators, compiles to sequential code for graph
manipulation; became basis of Lazy ML

• 1985, Krivine: Krivine machine, call-by-name evaluation with three
instructions corresponding to the three λ-constructs

• 1986, Fairbairn et al.: Three Instruction Machine (TIM), evaluation
of call-by-name supercombinators

• 1989, Peyton Jones et al.: Spineless-Tagless G-machine, a
refinement of the G-machine, used in the GHC Haskell compiler

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 14 / 32

The Krivine Machine

• Designed by Jean-Louis Krivine at the beginning of 1980s
• Can be used as a compilation target for λ-terms
• Can also be used as an interpreter to evaluate λ-terms directly
• Extensible and modular foundation for many other abstract machines
• Implements a weak head normal form reduction order

(i.e.: call-by-name, but we do not reduce in unapplied λ-abstractions)
• Semantics is defined operationally with a transition relation =⇒:

(T,E,S) =⇒ (T ′,E ′,S ′)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 15 / 32

Operational Semantics of Krivine Machines

• The state of the machine is formalized with these types:

State = Term × Env × Stack
T ∈ Term = λ-terms
E ∈ Env = associations from variables to closure pairs (Term,Env)
S ∈ Stack = lists of closure pairs (Term,Env)

• The evaluation of a term t starts with the state (t, { }, []),
using the empty environment { } and the empty stack [].

• The transitions of a Krivine machine are defined as follows:

(m n, E, S) =⇒ (m, E, (n,E) :: S)
(λx → b, E, (a,C) :: S) =⇒ (b, E [x 7→ (a,C)], S)
(x, E, S) =⇒ (t ′, E ′, S)

where (t ′,E ′) = lookup E x

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 16 / 32

An Intuition for Krivine Machines
• The stack corresponds to a list of unevaluated arguments: when we

find an application, push it in the stack, saving both the argument
and the current environment (i.e.: create a closure).

(m n,E,S) =⇒ (m,E, (n,E) :: S)
• The environment is a map from variables to closures: when we find

an abstraction and the stack is not empty, pop the last value from it
and associate it to the variable indicated by the abstraction.

(λx → b,E, (a,C) :: S) =⇒ (b,E [x 7→ (a,C)],S)
• When we encounter variables, we lookup the corresponding closure in

the environment and start evaluating it: the stack remains unchanged.
(x,E,S) =⇒ (t ′,E ′,S), where (t ′,E ′) = lookup E x

• Krivine machines implement a push/enter evaluation model:
arguments are pushed on the stack, and the callee retrieves them

(callee performs β-reduction)
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 17 / 32

A Concrete Example of Evaluation

(λx y → x) z ((λx → x x) k)

((λx y → x) z ((λx → x x) k), { }, [])
=⇒ ((λx y → x) z, { }, [(((λx → x x) k), { })])
=⇒ (λx y → x, { }, [(z, { }), (((λx → x x) k), { })])
=⇒ (λy → x, { x 7→ (z, { }) }, [(((λx → x x) k), { })])
=⇒ (x, { x 7→ (z, { }), y 7→ (((λx → x x) k), { })}, [])
=⇒ (z, { }, [])

The stack is empty and no more transitions can be applied.
The result is the final term z.

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 18 / 32

A Krivine Machine-Based λ-Interpreter in OCaml

type lam
= Abs of lam
| App of lam * lam
| Var of int (* de Bruijn encoding *)

type stack = S of (lam * stack) list

let rec km =
function
| (App(a,b), S e, S s) -> km (a, S e, S ((b, S e)::s))
| (Abs(t), S e, S (c::s)) -> km (t, S (c::e), S s)
| (Var(n), S e, S s) -> let (t', e') = List.nth e n in

km (t', e', S s)
| (t, S e, S []) -> t

let eval t = km (t, S [], S [])

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 19 / 32

Compilation for the Krivine Machine

• We can define a serialized representation of λ-terms and treat them
as a sequence of executable instructions

• The machine instructions for the Krivine machine are as follows:
• Push(t): save and push a closure on the stack for the term t
• Grab(x): extract the first closure with a stack pop and pair it with the

variable x in the environment
• Access(v): perform a lookup ”jump” to the closure indicated by the

variable v, and restart evaluation
• Define a compilation function J · K : Term → [Instr], as follows:

Jm nK = Push(JnK) ; JmKJλx → bK = Grab(x) ; JbKJxK = Access(x)

• Inside machine instructions we use lightweight code pointers that
refer to the beginning of other serialized terms

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 20 / 32

A Concrete Example of Compilation

J(λx y → x) z ((λx → x x) k)K
= Push(J(λx → x x) kK) ; J(λx y → x) zK
= Push(J(λx → x x) kK) ; Push(JzK) ; Jλx y → xK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Jλy → xK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Grab(y) ; JxK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x)
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; J(λx → x x) kK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Jλx → x xK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ; Jx xK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ;

Push(JxK) ; JxK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ;

Push(JxK) ; Access(x)
= Push(5) ; Push(9) ; Grab(x) ; Grab(y) ; Access(x) ; Push(10) ; Grab(x) ;

Push(11) ; Access(x) ; Access(z) ; Access(k) ; Access(x)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 21 / 32

Call-by-need vs. Call-by-value
• As they have been defined, Krivine machines are somewhat inefficient:

they might still recalculate the same variable many times
• This is the intrinsic difference between call-by-name and call-by-need:

let square x = x * x in (* In an hypothetical . *)
square (3 + 4) (* call-by-need language: *)

=> (3 + 4) * (3 + 4)
=> 7 * (3 + 4)
=> 7 * 7
=> 49

• In λ-calculus, we have the same setting:
(λx → f (x x)) (… complex …)

=⇒β f (… complex …) (… complex …)
=⇒∗

β f result (… complex …)
=⇒∗

β f result result
• Ideally, each argument should be evaluated once, if at all, and then

reused later if required again (sharing/memoization)
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 22 / 32

An Extension: Lazy Krivine Machines

• Add a new element to the State: a heap to memoize computed values
• The idea is to use heap Locations to add an extra level of indirection

for terms in the environment
• When a term finishes its evaluation, we can physically replace its

variable on the heap with the final result
• We can use a mark on the stack to indicate when (and where on the

heap) we can update the variable with the same value
• The definition of the lazy Krivine machine is as follows:

State = Term × Env × Stack × Heap
Loc = abstract heap locations
T ∈ Term = λ-terms
E ∈ Env = associations from variables to heap locations Loc
S ∈ Stack = lists of either locations Mark(Loc) or pairs Arg(Term,Env)
H ∈ Heap = associations from locations Loc to closures (Term,Env)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 23 / 32

Operational Semantics of Lazy Krivine Machines

(m n, E, S, H)
=⇒ (m, E, Arg(n,E) :: S, H)

(λx → b, E, Arg(a,C) :: S, H)
=⇒ (b, E [x 7→ ℓ], S, H [ℓ 7→ (a,C)])

(λx → b, E, Mark(ℓ) :: S, H)
=⇒ (λx → b, E, S, H [ℓ 7→ (λx → b,E)])

(x, E, S, H)
=⇒ (t ′, E ′, Mark(ℓ) :: S, H)

where ℓ = lookup E x
(t ′,E ′) = deref H ℓ

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 24 / 32

Compilation for Lazy Krivine Machines

• Extend the compilation function J · K : Term → [Instr] as follows:

Jm nK = Push(JnK) ; JmKJλx → bK = PopMark ; Grab(x) ; JbKJxK = PushMark ; Access(x)

1 PushMark adds a new mark to the stack using a fresh heap location
2 PopMark updates the heap at the location given on the stack, when

the given term is in weak head normal form
• This compilation schema, however, updates the closure everytime

that a variable is accessed (caller-update)
• Ideally, we would like closures to update themselves with their value

on the stack after evaluation only once
• However, we have to push the mark many times because we cannot

tell if a term has already been evaluated: introduce a flag!

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 25 / 32

Lazy Krivine Machines with Callee-Update

• Slightly more complicated definitions on the machine state:

State = Term × Env × Stack × Heap
T ∈ Term = λ-terms
E ∈ Env = associations from variables to heap locations Loc
S ∈ Stack = lists of either Mark(Loc) or Arg(Loc) locations
H ∈ Heap = associations from locations Loc to either

Delayed(Term,Env) or Computed(Term,Env) closures

• The heap now keeps track of whether arguments have already been
evaluated or not, avoiding useless updates

• The stack does not keep closures, marks are still required to know
when updates have to be performed (i.e.: arguments not yet
evaluated)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 26 / 32

Callee-Update Operational Semantics

(m n, E, S, H)
=⇒ (m, E, Arg(ℓ,E) :: S, H [ℓ 7→ Delayed(n,E)])

(λx → b, E, Arg(ℓ) :: S, H)
=⇒ (b, E [x 7→ ℓ], S, H)

(λx → b, E, Mark(ℓ) :: S, H)
=⇒ (λx → b, E, S, H [ℓ 7→ Computed(λx → b,E)])

if Delayed(t ′,E ′) = deref E ℓ , with ℓ = lookup E x
(x, E, S, H) =⇒ (t ′, E ′, Mark(ℓ) :: S, H)

if Computed(v,E ′) = deref E ℓ , with ℓ = lookup E x
(x, E, S, H) =⇒ (v, E ′, S, H)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 27 / 32

Graph Reduction

• Another approach to laziness: represent the expression tree as a
graph, moving pointers to implement sharing of unevaluated
expressions

• Can be implemented using abstract machines, the first being the
G-machine (Johnsson and Augustsson, 1984)

• Most relevant variation: the Spineless Tagless G-machine (Peyton
Jones, 1989), used in GHC Haskell

• The main non-strictness idea: only operate on the leftmost outermost
possible reducible expression (i.e.: the function closest to the root of
the graph)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 28 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Graph Reduction: An Example

let square x = x * x in
square (square 3)

• Graph reduction steps are, in concrete, expressed as instructions for a
suitable abstract machine!

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 29 / 32

Compiling Graph Reduction with Abstract Machines

• A simplified version of the G-machine (Augustsson et al. 1984)
• The idea: use a stack to point to the left-branching chain of

application nodes (so-called spine) in order to find the leftmost
outermost reducible expression.

• Instructions operate on the stack, building the expression graph and
performing reductions using pointers:

• Push(n): put a copy of the n-th element on the top of the stack
• Mkap: pop two elements and create an application node
• Slide(n): pop n + 1 elements from the stack, except for the top-most
• Pushglobal(t): simply push a built-in operator
• Unwind: end the execution of the current function, find again the

outermost reducible expression
• The G-machine uses pointers to move the code graph, thus avoiding

unneeded evaluation and implement sharing
• (Technical details: the program must be a list of top-level closed

definitions, called supercombinators; another stack used for Unwind)
Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 30 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 31 / 32

Conclusion and Related Topics

• Non-strict and lazy semantics open up to many implementation and
analysis possibilities: demand analysis, strictness analysis using
abstract interpretation, etc.

• Many practical and theoretical approaches: how and when to
efficiently compile closures, when avoiding laziness can be convenient,
parallelization, etc.

• Abstract machines allow for both theoretical and concrete
explorations of implementation techniques

• Abstract machines more recently: mechanically deriving and
synthesizing abstract machines, proving their correctness and other
useful properties

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 32 / 32

Thank you for your attention!

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 32 / 32

Bibliography I

Jean-Louis Krivine.
A call-by-name lambda-calculus machine.
High. Order Symb. Comput., 20(3):199–207, 2007.

Stephan Diehl, Pieter H. Hartel, and Peter Sestoft.
Abstract machines for programming language implementation.
Future Gener. Comput. Syst., 16(7):739–751, 2000.

Simon L. Peyton Jones.
Implementing lazy functional languages on stock hardware: The
spineless tagless G-machine.
J. Funct. Program., 2(2):127–202, 1992.

Rémi Douence and Pascal Fradet.
The next 700 krivine machines.
High. Order Symb. Comput., 20(3):237–255, 2007.

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 32 / 32

Bibliography II

Rémi Douence and Pascal Fradet.
A systematic study of functional language implementations.
ACM Trans. Program. Lang. Syst., 20(2):344–387, 1998.

Peter Sestoft.
Deriving a lazy abstract machine.
J. Funct. Program., 7(3):231–264, 1997.

Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and
Onnie Lynn Winebarger.
Improving the lazy krivine machine.
High. Order Symb. Comput., 20(3):271–293, 2007.

Simon L. Peyton Jones.
The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 32 / 32

