
Non-Strict Semantics with Abstract Machines

Andrea Laretto

Università di Pisa
Dipartimento di Informatica

17 febbraio 2021

Andrea Laretto (Università di Pisa) Languages, Compilers and Interpreters 17 febbraio 2021 1 / 32



What is Non-Strictness?

An evaluation strategy where calculations are delayed until needed.
Laziness: if their results are saved and computed only once (sharing)

(* Let's try to reimplement a ternary operator in OCaml: *)
let ternary c a b = if c then a else b
(* But does this program terminate? *)
let res = 42
let loop () = loop ()
let result = ternary true res (loop ()) in
print result (* In a lazy language, yes! *)

• Fully implemented in pure languages like Lazy ML (1984), Miranda
(1985), and Haskell (1990)

• Can be found nowadays in many languages, albeit in different forms:
Scheme (delay and force), OCaml (lazy and Lazy.force)
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Why Laziness?

nats :: [Integer]
nats = 0 : map succ nats

fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

• Advantages:
• Infinite data structures (streams, sequences)
• Can be more efficient, avoids unneeded calculations
• Short-circuiting operations (&&, ?:) can be implemented as

abstractions within the language itself
• Disadvantages:

• Clashes with mutability and side-effects
• Non-trivial to implement, poor hardware support
• Inefficient in many practical cases (overhead)
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General Approaches to Laziness

• Closure-based implementations
• Simple, easy to implement and embed with macros
• Enables laziness to be explicitly used on-demand
• The user must explicitly handle delaying and forcing laziness
• Requires keeping (a part of) activation records on the heap

• Abstract machines
• Very simple to implement
• Directly relate to the operational semantics of the language
• Extensive literature, complexity studied in depth
• Sometimes inefficient, introduce execution overhead
• Need to be mapped back into real hardware

• Graph reduction
• Similar to abstract machines, operate on expression graphs
• Used in Haskell: Spineless Tagless G-machine
• Easily parallelizable with multiple reductions
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What are Closures?

A closure is a pair (f, e) where f is a function, and e is the
environment storing the free variables required to evaluate f.

• A classic example:

(* The value of "a" gets captured in the closure: *)
let incrementer a = fun x -> a + x
let incrementer' a x = a + x (* Equivalently, with currying *)
let inc_by_six = incrementer 6
let inc_by_two = incrementer 2

• Closures are essential in lexically scoped languages that can define
and return first-class functions (upwards funarg problem).
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Non-Strictness with Closures: An Example

We can use closures to delay evaluation and implement a form of laziness!

(* Delayed/wrapped values *)
type 'a delayed = unit -> 'a
(* Unwrap the delayed values by calling the thunk: *)
let ternary c a b = if c () then a () else b ()
let res = 42
let _ = (* Wrap each function argument inside a function *)
ternary (fun () -> true) (* Pass the arguments as thunks *)

(fun () -> res) (* Value of "res" is captured *)
(fun () -> loop ())

In order to delay the computation of the arguments, wrap each of them
inside a closure to create a so-called ”thunk”. The evaluation thunks will
be unwrapped by the callee to perform the actual calculation, if needed.
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Implementing Closures

• However, a closure might live longer than the function that creates it:

(* Both "x" and "y" get captured in the final closure: *)
let pair = fun x -> fun y -> fun p -> p x y
let first p = p (fun x y -> x)
let second p = p (fun x y -> y)
(* Each closure must store and remember its own values: *)
let example1 = pair 3 "hello"
let example2 = pair 7 "world"

• The variables captured by the closure might have to be moved from
the AR, following the closure around (possibly, from the stack to the
heap).

• The definition of closure points to a way on how to treat them:
1 At compile-time, identify the variables captured in the closure
2 At run-time, return a record with the entry-point of the function

and the values of the variables captured (or a reference to access them)
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Compiling Closures

• This definition opens up to at least two techniques to compile
closures:

• Shared closures: access to variables gets chained through outer
environments (traverses the lexical chain in O(n), slow but it saves
space), similar to Access Links

• Flat closures: the environment keeps a copy/reference of every free
variable (fast and requires only O(1) in access, but space expensive)

• Note: allocating closures on the heap might require using GC!
• After calling a closure, we can memoize its result and return it when

called again (→ laziness/sharing)
• Peter J. Landin first introduced the term in 1964, later used in his

abstract machine SECD
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A Formal Treatment of Laziness

• If everything is lazy, sequencing statements gets complex to manage,
the evaluation order of programs is difficult to reconstruct at runtime

• Sequencing techniques to impose an evaluation order are required
(e.g.: IO monad in Haskell)

• Memoizing/sharing is impossible if re-evaluating the same expression
can give a different result!

• In order to formally treat laziness we need a pure calculus free from
side-effects, along with a formal setting to treat evaluation orders and
non-strictness: λ-calculus
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λ-calculus

• Foundation of functional programming languages (Haskell, OCaml)
• Core of the FUN language described in the laboratory course
• Extremely simple and easy to define:

<variable> = x, y, z, …
<term> = <variable> (variables)

| <term> <term> (function application)
| λ <var> → <term> (anonymous functions)

• Semantics is defined by β-reduction (i.e.: applying functions)

(λx → b) v =⇒β b[x/v]
”Substitute each occurrence of x inside b with v”

• This is sufficient for a Turing-complete language free from side-effects
• Establishes a formal setting to describe strict and non-strict

evaluation orders
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Some Evaluation Strategies in λ-Calculus

(λx y → x) z ((λx → x x) k)

What are some possible ways of evaluating this term?
(i.e.: for each function call, perform β-reduction and substitution)
• Call-by-value: arguments are first fully evaluated (innermost reduction)

(λx y → x) z ((λx → x x) • k)
=⇒β (λx y → x) • z (k k)
=⇒β (λy → z) • (k k)
=⇒β z

• Call-by-name: arguments are left unevaluated, substituted as-is (outermost)
(λx y → x) • z ((λx → x x) k)

=⇒β (λy → z) • ((λx → x x) k)
=⇒β z (what if we had k = (λx → x x)?)

• Call-by-need: functions are evaluated first, arguments are memoized
Non-strictness can be implemented with call-by-name or call-by-need.
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Abstract Machines

”An abstract machine is a theoretical step-by-step computer
used to define a model of computation.”

• Provide an intermediate language stage for compilation
• Explicitly expose evaluation orders and reduction strategies

Sufficiently abstract that we do
not get tangled up in the very

low-level details

Sufficiently concrete that we
can be sure we are not hiding a
lot of complexity in definitions

• A well-studied concept in the early study of functional languages
• Usually defined by the following elements:

• A minimal instruction set
• State representation (stack, heap, garbage collection, etc.)
• An initial state
• Small-step operational semantics/a state transition relation
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Strict Abstract Machines

Most influential strict functional abstract machines:
• 1964, Landin: SECD machine (Stack, Environment, Control, Dump)

for implementing call-by-value
• 1983, Cardelli: Functional Abstract Machine (FAM), formed the

basis of the first native-code implementation of ML
• 1985, Curien et al.: Categorical Abstract Machine (CAM), derived

from Category Theory, used in the CAML implementation of ML
• 1990, Leroy: Zinc Abstract Machine (ZAM), optimized, strict

version of the Krivine machine; foundation for bytecode versions of
Leroy’s Caml Light and OCaml implementations
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Lazy Abstract Machines

Most influential lazy functional abstract machines:
• 1979, Turner: SK-machine for SASL language, based on SK

combinatory logic with two instructions
• 1984, Augustsson et al.: G-machine for call-by-need evaluation

with supercombinators, compiles to sequential code for graph
manipulation; became basis of Lazy ML

• 1985, Krivine: Krivine machine, call-by-name evaluation with three
instructions corresponding to the three λ-constructs

• 1986, Fairbairn et al.: Three Instruction Machine (TIM), evaluation
of call-by-name supercombinators

• 1989, Peyton Jones et al.: Spineless-Tagless G-machine, a
refinement of the G-machine, used in the GHC Haskell compiler
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The Krivine Machine

• Designed by Jean-Louis Krivine at the beginning of 1980s
• Can be used as a compilation target for λ-terms
• Can also be used as an interpreter to evaluate λ-terms directly
• Extensible and modular foundation for many other abstract machines
• Implements a weak head normal form reduction order

(i.e.: call-by-name, but we do not reduce in unapplied λ-abstractions)
• Semantics is defined operationally with a transition relation =⇒:

(T,E,S ) =⇒ (T ′,E ′,S ′ )
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Operational Semantics of Krivine Machines

• The state of the machine is formalized with these types:

State = Term × Env × Stack
T ∈ Term = λ-terms
E ∈ Env = associations from variables to closure pairs (Term,Env)
S ∈ Stack = lists of closure pairs (Term,Env)

• The evaluation of a term t starts with the state (t, { }, [ ]),
using the empty environment { } and the empty stack [ ].

• The transitions of a Krivine machine are defined as follows:

(m n, E, S) =⇒ (m, E, (n,E) :: S)
(λx → b, E, (a,C) :: S) =⇒ (b, E [x 7→ (a,C)], S)
(x, E, S) =⇒ (t ′, E ′, S)

where (t ′,E ′) = lookup E x
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An Intuition for Krivine Machines
• The stack corresponds to a list of unevaluated arguments: when we

find an application, push it in the stack, saving both the argument
and the current environment (i.e.: create a closure).

(m n,E,S) =⇒ (m,E, (n,E) :: S)
• The environment is a map from variables to closures: when we find

an abstraction and the stack is not empty, pop the last value from it
and associate it to the variable indicated by the abstraction.

(λx → b,E, (a,C) :: S) =⇒ (b,E [x 7→ (a,C)],S)
• When we encounter variables, we lookup the corresponding closure in

the environment and start evaluating it: the stack remains unchanged.
(x,E,S) =⇒ (t ′,E ′,S), where (t ′,E ′) = lookup E x

• Krivine machines implement a push/enter evaluation model:
arguments are pushed on the stack, and the callee retrieves them

(callee performs β-reduction)
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A Concrete Example of Evaluation

(λx y → x) z ((λx → x x) k)

((λx y → x) z ((λx → x x) k), { }, [ ])
=⇒ ((λx y → x) z, { }, [ (((λx → x x) k), { }) ])
=⇒ (λx y → x, { }, [ (z, { }), (((λx → x x) k), { }) ])
=⇒ (λy → x, { x 7→ (z, { }) }, [ (((λx → x x) k), { }) ])
=⇒ (x, { x 7→ (z, { }), y 7→ (((λx → x x) k), { })}, [ ])
=⇒ (z, { }, [ ])

The stack is empty and no more transitions can be applied.
The result is the final term z.
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A Krivine Machine-Based λ-Interpreter in OCaml

type lam
= Abs of lam
| App of lam * lam
| Var of int (* de Bruijn encoding *)

type stack = S of (lam * stack) list

let rec km =
function
| (App(a,b), S e, S s ) -> km (a, S e, S ((b, S e)::s))
| (Abs(t), S e, S (c::s)) -> km (t, S (c::e), S s)
| (Var(n), S e, S s ) -> let (t', e') = List.nth e n in

km (t', e', S s)
| (t, S e, S [] ) -> t

let eval t = km (t, S [], S [])
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Compilation for the Krivine Machine

• We can define a serialized representation of λ-terms and treat them
as a sequence of executable instructions

• The machine instructions for the Krivine machine are as follows:
• Push(t): save and push a closure on the stack for the term t
• Grab(x): extract the first closure with a stack pop and pair it with the

variable x in the environment
• Access(v): perform a lookup ”jump” to the closure indicated by the

variable v, and restart evaluation
• Define a compilation function J · K : Term → [Instr], as follows:

Jm nK = Push(JnK) ; JmKJλx → bK = Grab(x) ; JbKJxK = Access(x)

• Inside machine instructions we use lightweight code pointers that
refer to the beginning of other serialized terms
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A Concrete Example of Compilation

J(λx y → x) z ((λx → x x) k)K
= Push(J(λx → x x) kK) ; J(λx y → x) zK
= Push(J(λx → x x) kK) ; Push(JzK) ; Jλx y → xK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Jλy → xK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Grab(y) ; JxK
= Push(J(λx → x x) kK) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x)
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; J(λx → x x) kK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Jλx → x xK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ; Jx xK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ;

Push(JxK) ; JxK
= Push(5) ; Push(JzK) ; Grab(x) ; Grab(y) ; Access(x) ; Push(JkK) ; Grab(x) ;

Push(JxK) ; Access(x)
= Push(5) ; Push(9) ; Grab(x) ; Grab(y) ; Access(x) ; Push(10) ; Grab(x) ;

Push(11) ; Access(x) ; Access(z) ; Access(k) ; Access(x)
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Call-by-need vs. Call-by-value
• As they have been defined, Krivine machines are somewhat inefficient:

they might still recalculate the same variable many times
• This is the intrinsic difference between call-by-name and call-by-need:

let square x = x * x in (* In an hypothetical . *)
square (3 + 4) (* call-by-need language: *)

=> (3 + 4) * (3 + 4)
=> 7 * (3 + 4)
=> 7 * 7
=> 49

• In λ-calculus, we have the same setting:
(λx → f (x x)) (… complex …)

=⇒β f (… complex …) (… complex …)
=⇒∗

β f result (… complex …)
=⇒∗

β f result result
• Ideally, each argument should be evaluated once, if at all, and then

reused later if required again (sharing/memoization)
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An Extension: Lazy Krivine Machines

• Add a new element to the State: a heap to memoize computed values
• The idea is to use heap Locations to add an extra level of indirection

for terms in the environment
• When a term finishes its evaluation, we can physically replace its

variable on the heap with the final result
• We can use a mark on the stack to indicate when (and where on the

heap) we can update the variable with the same value
• The definition of the lazy Krivine machine is as follows:

State = Term × Env × Stack × Heap
Loc = abstract heap locations
T ∈ Term = λ-terms
E ∈ Env = associations from variables to heap locations Loc
S ∈ Stack = lists of either locations Mark(Loc) or pairs Arg(Term,Env)
H ∈ Heap = associations from locations Loc to closures (Term,Env)
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Operational Semantics of Lazy Krivine Machines

( m n, E, S, H )
=⇒ ( m, E, Arg(n,E) :: S, H )

( λx → b, E, Arg(a,C) :: S, H )
=⇒ ( b, E [x 7→ ℓ], S, H [ℓ 7→ (a,C)] )

( λx → b, E, Mark(ℓ) :: S, H )
=⇒ ( λx → b, E, S, H [ℓ 7→ (λx → b,E)] )

( x, E, S, H )
=⇒ ( t ′, E ′, Mark(ℓ) :: S, H )

where ℓ = lookup E x
(t ′,E ′) = deref H ℓ
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Compilation for Lazy Krivine Machines

• Extend the compilation function J · K : Term → [Instr] as follows:

Jm nK = Push(JnK) ; JmKJλx → bK = PopMark ; Grab(x) ; JbKJxK = PushMark ; Access(x)

1 PushMark adds a new mark to the stack using a fresh heap location
2 PopMark updates the heap at the location given on the stack, when

the given term is in weak head normal form
• This compilation schema, however, updates the closure everytime

that a variable is accessed (caller-update)
• Ideally, we would like closures to update themselves with their value

on the stack after evaluation only once
• However, we have to push the mark many times because we cannot

tell if a term has already been evaluated: introduce a flag!
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Lazy Krivine Machines with Callee-Update

• Slightly more complicated definitions on the machine state:

State = Term × Env × Stack × Heap
T ∈ Term = λ-terms
E ∈ Env = associations from variables to heap locations Loc
S ∈ Stack = lists of either Mark(Loc) or Arg(Loc) locations
H ∈ Heap = associations from locations Loc to either

Delayed(Term,Env) or Computed(Term,Env) closures

• The heap now keeps track of whether arguments have already been
evaluated or not, avoiding useless updates

• The stack does not keep closures, marks are still required to know
when updates have to be performed (i.e.: arguments not yet
evaluated)
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Callee-Update Operational Semantics

( m n, E, S, H )
=⇒ ( m, E, Arg(ℓ,E) :: S, H [ℓ 7→ Delayed(n,E)] )

( λx → b, E, Arg(ℓ) :: S, H )
=⇒ ( b, E [x 7→ ℓ], S, H )

( λx → b, E, Mark(ℓ) :: S, H )
=⇒ ( λx → b, E, S, H [ℓ 7→ Computed(λx → b,E)] )

if Delayed(t ′,E ′) = deref E ℓ , with ℓ = lookup E x
( x, E, S, H ) =⇒ ( t ′, E ′, Mark(ℓ) :: S, H )

if Computed(v,E ′) = deref E ℓ , with ℓ = lookup E x
( x, E, S, H ) =⇒ ( v, E ′, S, H )
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Graph Reduction

• Another approach to laziness: represent the expression tree as a
graph, moving pointers to implement sharing of unevaluated
expressions

• Can be implemented using abstract machines, the first being the
G-machine (Johnsson and Augustsson, 1984)

• Most relevant variation: the Spineless Tagless G-machine (Peyton
Jones, 1989), used in GHC Haskell

• The main non-strictness idea: only operate on the leftmost outermost
possible reducible expression (i.e.: the function closest to the root of
the graph)
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Graph Reduction: An Example

let square x = x * x in
square (square 3)
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Graph Reduction: An Example

let square x = x * x in
square (square 3)

• Graph reduction steps are, in concrete, expressed as instructions for a
suitable abstract machine!
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Compiling Graph Reduction with Abstract Machines

• A simplified version of the G-machine (Augustsson et al. 1984)
• The idea: use a stack to point to the left-branching chain of

application nodes (so-called spine) in order to find the leftmost
outermost reducible expression.

• Instructions operate on the stack, building the expression graph and
performing reductions using pointers:

• Push(n): put a copy of the n-th element on the top of the stack
• Mkap: pop two elements and create an application node
• Slide(n): pop n + 1 elements from the stack, except for the top-most
• Pushglobal(t): simply push a built-in operator
• Unwind: end the execution of the current function, find again the

outermost reducible expression
• The G-machine uses pointers to move the code graph, thus avoiding

unneeded evaluation and implement sharing
• (Technical details: the program must be a list of top-level closed

definitions, called supercombinators; another stack used for Unwind)
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Graph Reduction with the G-Machine: An Example

let f a b = K (a b) in f g x

Compiled G-machine code for f :

Push 2
Push 2
Mkap
Pushglobal K
Mkap
Slide 3
Unwind
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Conclusion and Related Topics

• Non-strict and lazy semantics open up to many implementation and
analysis possibilities: demand analysis, strictness analysis using
abstract interpretation, etc.

• Many practical and theoretical approaches: how and when to
efficiently compile closures, when avoiding laziness can be convenient,
parallelization, etc.

• Abstract machines allow for both theoretical and concrete
explorations of implementation techniques

• Abstract machines more recently: mechanically deriving and
synthesizing abstract machines, proving their correctness and other
useful properties
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Thank you for your attention!
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