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Source 
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Parser 
• Checks the stream of words and their parts of speech (produced 

by the scanner) for grammatical correctness 
• Determines if the input is syntactically well formed 
• Guides checking at deeper levels than syntax 
• Builds an IR representation of the code

The Front End



The Study of Parsing

The process of discovering a derivation  for some sentence 
• Need a mathematical model of syntax — a grammar G 
• Need an algorithm for testing membership in L(G)  

Roadmap for our study of parsing 
1 Context-free grammars and derivations 
2 Top-down parsing 

— Generated LL(1) parsers & hand-coded recursive descent 
parsers 

3 Bottom-up parsing 
— Generated LR(1) parsers



Why Not Use Regular Languages & DFAs?
Not all languages are regular            (RL’s ⊂ CFL’s  ⊂ CSL’s) 

You cannot construct DFA’s to recognize these languages 
• L =  { pkqk }                                           (parenthesis languages) 

• L =  { wcwr | w ∈ Σ*} 
Neither of these is a regular language                      

To recognize these features requires an arbitrary amount of context (left 
or right …) 

But, this issue is somewhat subtle.  You can construct DFA’s for 
• Strings with alternating 0’s and 1’s                

( ε | 1 ) ( 01 )* ( ε | 0 )  

• Strings with an even number of 0’s and 1’s                       

RE’s can count bounded sets and bounded differences 

⇒ Cannot add parenthesis, brackets, begin-end pairs, …



A More Useful Grammar Than Sheep Noise
To explore the uses of CFGs, we need a more complex grammar 

• Such a sequence of rewrites is called a derivation 
• Process of discovering a derivation is called parsing

We denote this derivation:  Expr ⇒  id – num * id

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>

0 Expr → Expr Op Expr

1 | num

2 | id

3 Op → +

4 | -

5 | *

6 | /



Derivations
The point of parsing is to construct a derivation 

• At each step, we choose a nonterminal to replace 
• Different choices can lead to different derivations 

Two derivations are of interest 
• Leftmost derivation  — replace leftmost NT at each step 
• Rightmost derivation — replace rightmost NT at each step 

These are the two systematic derivations 
(We don’t care about randomly-ordered derivations!) 

The example on the preceding slide was a leftmost derivation 
• Of course, there is also a rightmost derivation 
• Interestingly, it turns out to be different



Derivations
The point of parsing is to construct a derivation 

A derivation consists of a series of rewrite steps 
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence 

• Each γi is a sentential form  
— If γ contains only terminal symbols, γ is a sentence in L(G)  
— If γ contains 1 or more non-terminals, γ is a sentential form 

• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β

— Replace the occurrence of A ∈ γi–1 with β to get γi  

— In a leftmost derivation, it would be the first NT A ∈ γi–1  

A left-sentential form occurs in a leftmost derivation 
A right-sentential form occurs in a rightmost derivation



The Two Derivations for  x – 2 * y 

In both cases, Expr ⇒id – num * id 
• The two derivations produce different parse trees 
• The parse trees imply different evaluation orders! 

Leftmost 
derivation

Rule Sentential Form

— Expr

0 Expr Op Expr

2 Expr Op <id,y>

5 Expr * <id,y>

0 Expr Op Expr * <id,y>

1 Expr Op <num,2> * <id,y>

4 Expr - <num,2> * <id,y>

2 <id,x> - <num,2> * <id,y>

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>

Rightmost 
derivation



Derivations and Parse Trees

Leftmost derivation
G

x

E

E Op

–

2

E

E

E

y

Op

*

This evaluates as   x  – ( 2 * y )

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>



Derivations and Parse Trees

Rightmost derivation

x 2

G

E

Op EE

E Op E y

–

*

This evaluates as   ( x – 2 ) * y
This ambiguity is NOT good

Rule Sentential Form

— Expr

0 Expr Op Expr

2 Expr Op <id,y>

5 Expr * <id,y>

0 Expr Op Expr * <id,y>

1 Expr Op <num,2> * <id,y>

4 Expr - <num,2> * <id,y>

2 <id,x> - <num,2> * <id,y>



Derivations and Precedence

These two derivations point out a problem with the grammar: 
It has no notion of  precedence, or implied order of evaluation 

To add precedence 
• Create a nonterminal for each level of precedence 
• Isolate the corresponding part of the grammar 
• Force the parser to recognize high precedence subexpressions first 

For algebraic expressions  
• Parentheses first                          (level 1 ) 
• Multiplication and division, next                                   (level 2) 
• Subtraction and addition, last                                      (level 3) 



Adding the standard algebraic precedence produces:

0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → ( Expr )

8 | number

9 | id

Derivations and Precedence

This grammar is slightly larger 

•Takes more rewriting to reach 
some of the terminal symbols 

•Encodes expected precedence 

•Produces same parse tree under 
leftmost & rightmost derivations 
•Correctness trumps the speed of 
the parser 

Let’s see how it parses  x - 2 * y

level 
2

level 
3

Cannot handle precedence 
in an RE for expressions

Introduced parentheses, too 
(beyond power of an RE)

level 
1



Derivations and Precedence

The rightmost derivation

It derives x – ( 2 * y ), along with an appropriate parse tree. 
Both the leftmost and rightmost derivations give the parse tree, because the 
grammar directly and explicitly encodes the desired precedence.

G

E

–E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

Rule Sentential Form

— Goal

0 Expr

2 Expr - Term

4 Expr - Term * Factor

9 Expr - Term * <id,y>

6 Expr - Factor * <id,y>

8 Expr - <num,2> * <id,y>

3 Term - <num,2> * <id,y>

6 Factor - <num,2> * <id,y>

9 <id,x> - <num,2> * <id,y>



Let’s leap back to our original expression grammar. 
It had other problems. 

• This grammar allows multiple leftmost derivations for x - 2 * y  
• Hard to automate derivation if > 1 choice  
• The grammar is ambiguous

Ambiguous Grammars

0 Expr → Expr Op Expr

1 | number

2 | id

3 Op → +

4 | -

5 | *

6 | /

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>

we have 
alternatives here   



The Difference:  
• Different productions chosen on the second step 

• Both derivations succeed in producing x - 2 * y

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

1 <id,x> - <num,2> * <id,y>

Two Leftmost Derivations for x – 2 * y

Original choice New choice

Rule Sentential Form

— Expr

0 Expr Op Expr

0 Expr Op Expr Op Expr

2 <id,x> Op Expr Op Expr

4 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>



The Difference:  
• Different productions chosen on the second step

Rule Sentential Form

— Expr

0 Expr Op Expr

2 <id,x> Op Expr

4 <id,x> - Expr

0 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>

Two Leftmost Derivations for x – 2 * y

New choice

Rule Sentential Form

— Expr

0 Expr Op Expr

0 Expr Op Expr Op Expr

2 <id,x> Op Expr Op Expr

4 <id,x> - Expr Op Expr

1 <id,x> - <num,2> Op Expr

5 <id,x> - <num,2> * Expr

2 <id,x> - <num,2> * <id,y>

Different choice is possible, we are in the same situation 



Ambiguous Grammars
Definitions 
• If a grammar has more than one leftmost derivation for a single 

sentential form, the grammar is ambiguous 

• If a grammar has more than one rightmost derivation for a single 
sentential form, the grammar is ambiguous 

• The leftmost and rightmost derivations for a sentential form may 
differ, even in an unambiguous grammar 

— However, they must have the same parse tree! 

Classic example — the if-then-else problem 
Stmt →   if  Expr  then Stmt 
           |   if  Expr  then Stmt  else  Stmt 

           |   … other stmts … 

This ambiguity is inherent in the grammar



Ambiguity                          

This sentential form has two derivations 
if Expr1 then if Expr2 then Stmt1  else Stmt2

then

else

if

then

if

E1

E2

S2

S1

production 2, then 
production 1

then

if

then

if

E1

E2

S1

else

S2

production 1, then 
production 2

Part of the problem is 
that the structure 
built by the parser 
will determine the 
interpretation of the 
code, and these two 
forms have different 
meanings!

Stmt →   if  Expr  then Stmt 
           |   if  Expr  then Stmt  else  Stmt 
           |   … other stmts … 



Ambiguity
Removing the ambiguity 
• Must rewrite the grammar to avoid generating the problem 
• Match each else to innermost unmatched if  (common sense rule) 

With this grammar, example has only one rightmost derivation

0 Stmt → if Expr then Stmt 

1 ⏐ if Expr then WithElse else Stmt

2 ⏐ Other Statements

3 WithElse → if Expr then WithElse else WithElse

4 ⏐ Other Statements

Intuition: once into WithElse, we cannot generate an unmatched else 
    … a final if without an else can only come through rule 2 …

The grammar forces the structure 
to match the desired meaning.



Ambiguity 

 if Expr1 then if Expr2 then Stmt1  else Stmt2  

This grammar has only one rightmost derivation for the example

Rule Sentential Form

— Stmt

0 if Expr then Stmt

1 if Expr then if Expr then WithElse else Stmt

2 if Expr then if Expr then WithElse else S2

4 if Expr then if Expr then       S1        else S2

? if Expr then if   E2    then       S1        else S2

? if   E1    then if   E2    then       S1        else S2

Other productions to derive Expr s



Deeper Ambiguity

Ambiguity usually  refers to confusion in the CFG 

Overloading can create deeper ambiguity 
a = f(17) 

In many Algol-like languages, f could be either a function or a 
subscripted variable 

Disambiguating this one requires context 
• Need values of declarations 
• Really an issue of type, not context-free syntax 
• Requires an extra-grammatical solution (not in CFG) 
• Must handle these with a different mechanism 

— Step outside grammar rather than use a more complex grammar



Ambiguity - the Final Word
Ambiguity arises from two distinct sources 
• Confusion in the context-free syntax                (if-then-else) 

• Confusion that requires context to resolve        (overloading) 

Resolving ambiguity 
• To remove context-free ambiguity, rewrite the grammar 
• To handle context-sensitive ambiguity takes cooperation 

— Knowledge of declarations, types, … 
— Accept a superset of L(G) & check it by other means (Context Sensitive 

analysis) 

— This is a language design problem 

Sometimes, the compiler writer accepts an ambiguous grammar 
— Parsing techniques that “do the right thing” 
— i.e., always select the same derivation



Parsing Techniques

Top-down parsers     (LL(1), recursive descent) 
• Start at the root of the parse tree and grow toward leaves 
• Pick a production & try to match the input 
• Bad “pick” ⇒ may need to backtrack 
• Some grammars are backtrack-free           (predictive parsing) 

Bottom-up parsers     (LR(1), operator precedence) 
• Start at the leaves and grow toward root 
• As input is consumed, encode possibilities in an internal state 
• Start in a state valid for legal first tokens 
• Bottom-up parsers handle a large class of grammars



A top-down parser starts with the root of the parse tree 
The root node is labeled with the goal symbol of the grammar 

Top-down parsing algorithm: 

Construct the root node of the parse tree  
Repeat until lower fringe of the parse tree matches the input string 
1 At a node labeled A, select a production with A on its lhs and, for 

each symbol on its rhs, construct the appropriate child 
2 When a terminal symbol is added to the border and it doesn’t 

match the border, backtrack 
3 Find the next node to be expanded                              (label ∈ NT) 

The key is picking the right production in step 1 
— That choice should be guided by the input string

Top-down Parsing



Remember the expression grammar?

And the input x – 2 * y 

We will call this version “the classic expression grammar” 

0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → ( Expr )

8 | number

9 | id



Let’s try x – 2 * y :

Rule Sentential Form Input

— Goal ↑x - 2 * y

Example

Goal

↑ is the position in the input buffer



Let’s try x – 2 * y :

Rule Sentential Form Input

— Goal ↑x - 2 * y

0 Expr ↑x - 2 * y

1 Expr +Term ↑x - 2 * y

3 Term +Term ↑x - 2 * y

6 Factor +Term ↑x - 2 * y

9 <id,x> +Term ↑x - 2 * y
→ <id,x> +Term x ↑- 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+” 
The parser must backtrack to here

↑ is the position in the input buffer



Example
Continuing with x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Rule Sentential Form Input

— Goal ↑x - 2 * y

0 Expr ↑x - 2 * y

2 Expr -Term ↑x - 2 * y

3 Term -Term ↑x - 2 * y

6 Factor -Term ↑x - 2 * y

9 <id,x> - Term ↑x - 2 * y
→ <id,x> -Term x ↑- 2 * y
→ <id,x> -Term x - ↑2 * y

Now, “-” and “-” match Now we can expand Term to match “2”



Where are we? 
• “2” matches “2” 
• We have more input, but no NTs left to expand 
• The expansion terminated too soon 
⇒ Need to backtrack 

Example

Trying to match the “2” in  x – 2 * y :
Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y

6 <id,x> - Factor x - ↑2 * y

8 <id,x> - <num,2> x - ↑2 * y
→ <id,x> - <num,2> x - 2 ↑* y



Example

Trying again with “2” in x – 2 * y :
Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input 
⇒Success! 

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y

4 <id,x> - Term * Factor x - ↑2 * y

6 <id,x> - Factor * Factor x - ↑2 * y

8 <id,x> - <num,2> * Factor x - ↑2 * y
→ <id,x> - <num,2> * Factor x - 2 ↑* y
→ <id,x> - <num,2> * Factor x - 2 * ↑y

9 <id,x> - <num,2> * <id,y> x - 2 * ↑y
→ <id,x> - <num,2> * <id,y> x - 2 * y↑

The Point:The parser must make the right choice when it 
expands a NT.  Wrong choices lead to wasted effort.



Other choices for expansion are possible 

This expansion doesn’t terminate                             

• Wrong choice of expansion leads to non-termination 
• Non-termination is a bad property for a parser to have 
• Parser must make the right choice

Another possible parse

Rule Sentential Form Input

— Goal ↑x - 2 * y

0 Expr ↑x - 2 * y

1 Expr +Term ↑x - 2 * y

1 Expr + Term +Term ↑x - 2 * y

1 Expr + Term +Term + Term ↑x - 2 * y

1 And so on ….   ↑x - 2 * y

Consumes no input!



Left Recursion

Top-down parsers cannot handle left-recursive 
grammars 

Formally, 
A grammar is left recursive if ∃ A ∈ NT such that   
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 

Our classic expression grammar is left recursive 

• This can lead to non-termination in a top-down parser 
• In a top-down parser, any recursion must be right 

recursion 
• We would like to convert the left recursion to right 

recursion 

Non-termination is always a bad property in a compiler

0 Goal →Expr

1 Expr →Expr + Term

2 | Expr - Term

3 | Term

4 Term →Term * Factor

5 | Term / Factor

6 | Factor

7 Factor →( Expr )

8 | number

9 | id



Eliminating Left Recursion

To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
Fee → Fee  α     
         |   β 

where neither α nor β start with Fee 

We can rewrite this fragment as  
Fee → β Fie 
Fie  → α Fie 
         |  ε 

where Fie is a new non-terminal

The new grammar defines 
the same language as the 
old grammar, using only 
right recursion.

Added a reference 
to the empty string
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Eliminating Left Recursion

Expr → Expr + Term

| Expr - Term

| Term

Term → Term * Factor

| Term * Factor

| Factor

Expr → Term Expr’

Expr’ → + Term Expr’

| - Term Expr’

| ε

Term → Factor Term’

Term’ → * Factor Term’

| / Factor Term’

| ε

The expression grammar contains two cases of left recursion 

Applying the transformation yields 

These fragments use only right recursion  
Right recursion often means right associativity.  In this case, the 

grammar does not display any particular associative bias.



Eliminating Left Recursion

Substituting them back into the grammar yields

• This grammar is correct,  if 
somewhat non-intuitive. 

• It is left associative, as was 
the original 
⇒ The naïve transformation 

yields a right recursive 
grammar, which changes the 
implicit associativity 

• A top-down parser will 
terminate using it. 

• A top-down parser may need 
to backtrack with it.

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → ( Expr )

10 | number

11 | id



Eliminating Left Recursion
The transformation eliminates immediate left recursion 
What about more general, indirect left recursion ? 

The general algorithm: 
arrange the NTs into some order A1, A2, …, An 
for i ← 1 to n 
 for s ← 1 to i – 1  

replace each production Ai → Asγ with Ai → δ1γ ⏐δ2γ⏐…⏐δkγ,   
 where As → δ1⏐δ2⏐…⏐δk are all the current productions for As 

 eliminate any immediate left recursion on Ai  
  using the direct transformation 

This assumes that the initial grammar has no cycles (Ai ⇒+ Ai ),   

 and no epsilon productions  



Eliminating Left Recursion
How does this algorithm work? 
1.  Impose arbitrary order on the non-terminals 
2.  Outer loop cycles through NT in order 
3.  Inner loop ensures that a production expanding Ai has no non-

terminal As in its rhs, for s < i 

4.  Last step in outer loop converts any direct recursion on Ai  to 
right recursion using the transformation showed earlier 

5.  New non-terminals are added at the end of the order & have no 
left recursion 

 At the start of the ith  outer loop iteration 
For all k < i, no production that expands Ak contains a non-terminal  
As in its rhs, for s < k



• Order of symbols: G, E, T

Example

1. Ai  = G 

G → E 

E →  E + T  

E →  T  

T →  E  * T 

T →  id 

2. Ai  = E 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   E  * T 

T →  id 

3. Ai  = T, As = E 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   T E'  * T 

T →  id 

Go to 
Algorithm

4. Ai  = T 

G → E 

E →  T E'  

E' → + T E'  

E' → ε 

T →   id T' 

T' → E ' * T T' 

T' → ε



Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack  

Alternative is to look ahead in input & use context to pick correctly 

How much lookahead is needed? 
• In general, an arbitrarily large amount 
• Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm 

Fortunately, 
• Large subclasses of CFGs can be parsed with limited lookahead 
• Most programming language constructs fall in those subclasses 

Among the interesting subclasses are LL(1)  and LR(1)  grammars 

We will focus, for now, on LL(1) grammars & predictive parsing


