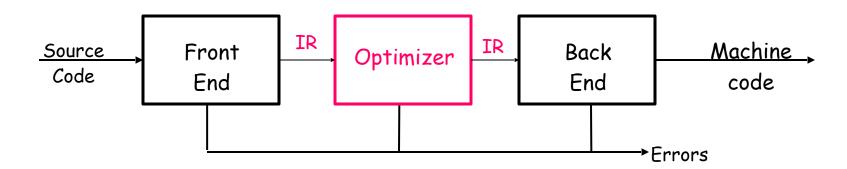
This lecture begins the material from Chapter 8 of EaC

Introduction to Code Optimization

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved

Traditional Three-Phase Compiler



Optimization (or Code Improvement)

- Analyzes IR and rewrites (or transforms) IR
- Primary goal is to reduce running time of the compiled code
 - May also improve space, power consumption, ...

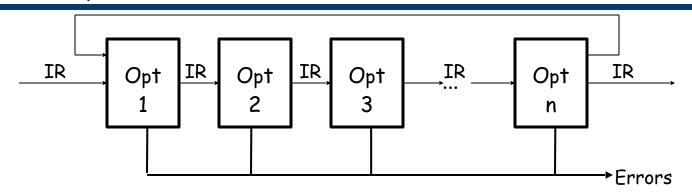
Transformations have to be:

- Safely applied and (it does not change the result of the running program)
- Applied when profit has expected

Background

- Until the early 1980s optimisation was a feature should be added to the compiler only after its other parts were working well
- Debugging compilers vs. optimising compilers
- After the development of RISC processors the demand for support from the compiler

The Optimizer



Modern optimizers are structured as a series of passes

Typical Transformations

- Discover & propagate some constant value
- Move a computation to a less frequently executed place
- Specialize some computation based on context
- Discover a redundant computation & remove it
- Remove useless or unreachable code

The Role of the Optimizer

- The compiler can implement a procedure in many ways
- The optimizer tries to find an implementation that is "better"
 - Speed, code size, data space, ...

To accomplish this, it

- Analyzes the code to derive knowledge about run-time behavior
 - Data-flow analysis, pointer disambiguation, ...
 - General term is "static analysis"
- Uses that knowledge in an attempt to improve the code
 - Literally hundreds of transformations have been proposed
 - Large amount of overlap between them

Nothing "optimal" about optimization

Proofs of optimality assume restrictive & unrealistic conditions

Scope of Optimization

In scanning and parsing, "scope" refers to a region of the code that corresponds to a distinct name space.

In optimization "scope" refers to a region of the code that is subject to analysis and transformation.

- Notions are somewhat related
- Connection is not necessarily intuitive

Different scopes introduces different challenges & different opportunities

Historically, optimization has been performed at several distinct scopes.

Scope of Optimization

CFG of basic blocks: BB is a maximal length sequence of straightline code.

Local optimization

- Operates entirely within a single basic block
- Properties of block lead to strong optimizations

Regional optimization

- Operate on a region in the CFG that contains multiple blocks
- Loops, trees, paths, extended basic blocks

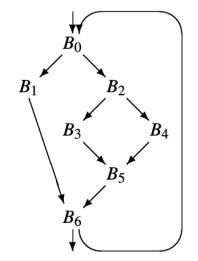
new opportunities

Whole procedure optimization (intraprocedural)

- Operate on entire CFG for a procedure
- Presence of cyclic paths forces analysis then transformation

Whole program optimization (interprocedural)

- Operate on some or all of the call graph (multiple procedures)
- Must contend with call/return & parameter binding



Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every path from the procedure's entry, it has been evaluated, and its constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant

- It can preserve the results of earlier evaluations
- It can replace the current evaluation with a reference

Two pieces to the problem

- Proving that x+y is redundant, or <u>available</u>
- Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Rewriting to avoid Redundancy

$$a \leftarrow b + c$$

$$b \leftarrow a - d$$

$$c \leftarrow b + c$$

$$d \leftarrow a - d$$

$$a \leftarrow b + c$$

$$b \leftarrow a - d$$

$$c \leftarrow b + c$$

$$d \leftarrow b$$

Rewritten Block

The resulting code runs more quickly but extend the lifetime of b This could cause the allocator to spill the value of b

Since the optimiser cannot predict the behaviour of the register allocator, it assumes that rewriting to avoid redundancy is profitable!

Redundancy without textual identity

The problem is more complex that it may seem!

$$a \leftarrow b \times c$$

$$d \leftarrow b$$

$$e \leftarrow d \times c$$

The key notion

- Assign an identifying number, V(e), to each expression
 - V(x+y) = V(j) iff x+y and j always have the same value \leftarrow
 - Use hashing over the value numbers to make it efficient
- Use these numbers to improve the code

Improving the code

- Replace redundant expressions
 - Same $V(e) \Rightarrow$ refer rather than recompute

Within a basic block; definition becomes more complex across blocks

The Algorithm

For each operation $o = \langle operator, o_1, o_2 \rangle$ in the block, in order

- 1. Get value numbers for operands from hash lookup
- 2. Hash $\langle operator, VN(o_1), VN(o_2) \rangle$ to get a value number for o
- 3. If o already had a value number, replace o with a reference operator, $VN(o_1)$, $VN(o_2)$.

If hashing behaves, the algorithm runs in linear time

An example

Original Code

$$a \leftarrow b + c$$

$$b \leftarrow a - d$$

$$c \leftarrow b + c$$

*
$$d \leftarrow a - d$$

With VNs

$$a^3 \leftarrow b^1 + c^2$$

$$b^5 \leftarrow a^3 - d^4$$

$$c^6 \leftarrow b^5 + c^2$$

*
$$d^5 \leftarrow a^3 - d^4$$

Rewritten

$$a \leftarrow b + c$$

$$b \leftarrow a - d$$

$$c \leftarrow b + c$$

One redundancy

Eliminate stmt with

Local Value Numbering: the role of naming

An example

Original Code

$$a \leftarrow x + y$$

*
$$b \leftarrow x + y$$

$$* c \leftarrow x + y$$

With VNs

$$a^3 \leftarrow x^1 + y^2$$

*
$$b^3 \leftarrow x^1 + y^2$$

$$a^4 \leftarrow 17$$

*
$$c^3 \leftarrow x^1 + y^2$$

Rewritten

$$a^3 \leftarrow x^1 + y^2$$

*
$$b^3 \leftarrow a^3$$

$$a^4 \leftarrow 17$$

*
$$c^3 \leftarrow a^3$$
 (oops!)

Two redundancies

Eliminate stmtswith a *

Options

• Use $c^3 \leftarrow b^3$

with a mapping from values

to names

- Save a³ in t³
- Rename around it

Local Value Numbering: renaming

Example (continued):

Remember the SSA form?

Original Code

$$a_0 \leftarrow x_0 + y_0$$

* $b_0 \leftarrow x_0 + y_0$

*
$$c_0 \leftarrow x_0 + y_0$$

Renaming:

- Give each value a unique name
- Makes it clear

With VNs

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

*
$$b_0^3 \leftarrow x_0^1 + y_0^2$$

$$a_1^4 \leftarrow 17$$

$$* c_0^3 \leftarrow x_0^1 + y_0^2$$

Rewritten

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

*
$$b_0^3 \leftarrow a_0^3$$

$$a_1^4 \leftarrow 17$$

*
$$c_0^3 \leftarrow a_0^3$$

Notation:

 While complex, the meaning is clear

Result:

- a₀³ is available
- Rewriting now works

How to reconcile this new subscripted names with the original ones? A clever implementation would map $a_1 - a_2 + b_0 - b_1 + c_0 - c_2 + c_0 - c_1 + c_0 - c_0 - c_1 + c_0 - c_0 - c_1 + c_0 - c_0$

The impact of indirect assignments

- To manage the subscripted naming the compiler maintain a map from names to the current subscript.
- With a direct assignment a <- b + c, the changes are clear
- With an indirect assignment *p <- 0?
- The compiler can perform static analysis to disambiguate pointer references (to restrict the set of variables to whom p can refer to).

Ambiguous reference the compiler cannot isolate a single memory location

Simple Extensions to Value Numbering

Constant folding

- Add a bit that records when a value is constant
- Evaluate constant values at compile-time
- Replace with load immediate or immediate operand
- No stronger local algorithm

Commutative operations

• commutative operations that differs only for the order of their operands should receive the same value numbers a x b and b x a

Algebraic identities

- Must check (many) special cases
- Replace result with input VN
- Build a decision tree on operation

(Recap)

The LVN Algorithm, with bells & whistles

for i ← 0 to n-1

- 1. get the value numbers V_1 and V_2 for L_i and R_i
- Block is a sequence of n operations of the form $T_i \leftarrow L_i Op_i R_i$
- 2. if L_i and R_i are both constant then Constant folding evaluate Li Op_i R_i , assign it to T_i and mark T_i as a constant
- 3. if Li $Op_i R_i$ matches an identity then Algebraic identities replace it with a copy operation or an assignment
- 4. if Op_i commutes and $V_1 > V_2$ then swap V_1 and V_2
- 5. construct a hash key $\langle V_1, Op_i, V_2 \rangle$
- if the hash key is already present in the table then replace operation I with a copy into T_i and mark T_i with the VN else

insert a new VN into table for hash key & mark T_i with the VN

The Algorithm

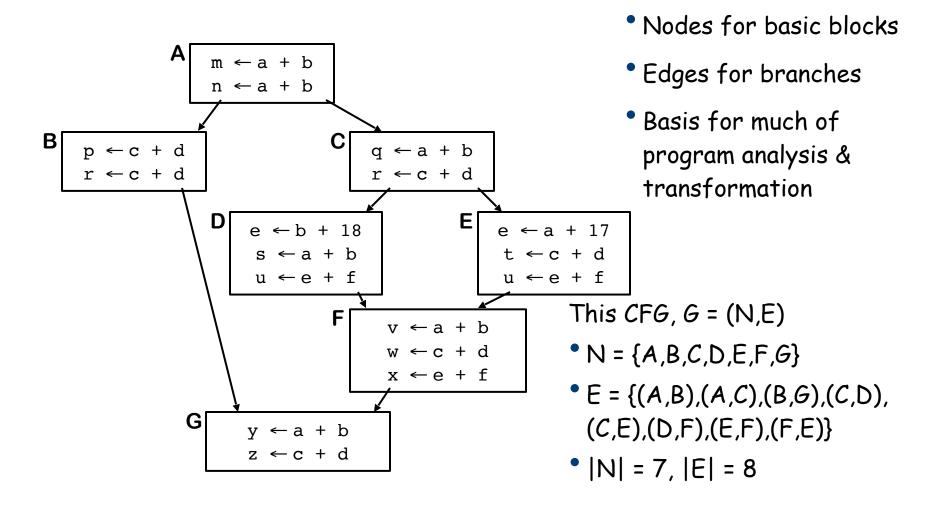
For each operation $o = \langle operator, o_1, o_2 \rangle$ in the block, in order

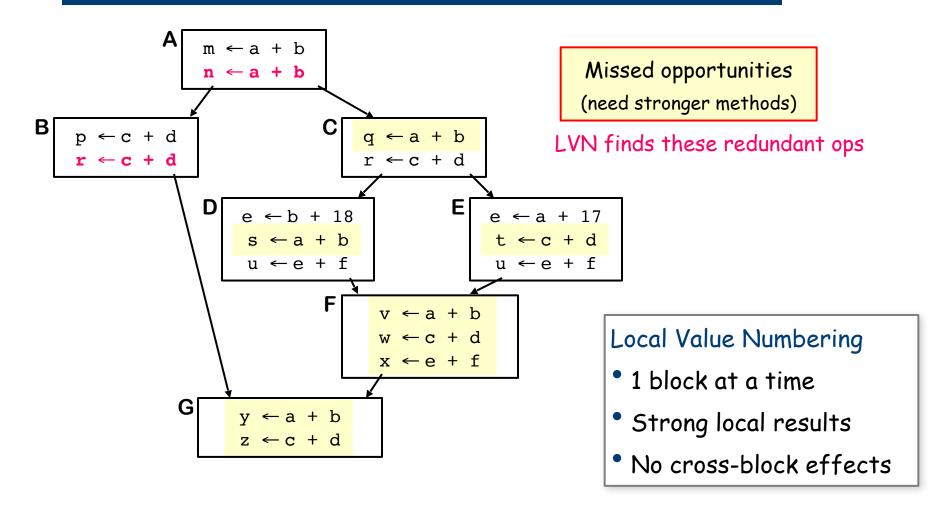
- 1 Get value numbers for operands from hash lookup
- 2 Hash $\langle operator, VN(o_1), VN(o_2) \rangle$ to get a value number for o
- 3 If a already had a value number, replace a with a reference

Complexity & Speed Issues

- "Get value numbers" linear search versus hash
- "Hash $\langle op, VN(o_1), VN(o_2) \rangle$ " linear search versus hash
- Copy folding set value number of result
- Commutative ops double hash versus sorting the operands

Terminology Control-flow graph (CGF)

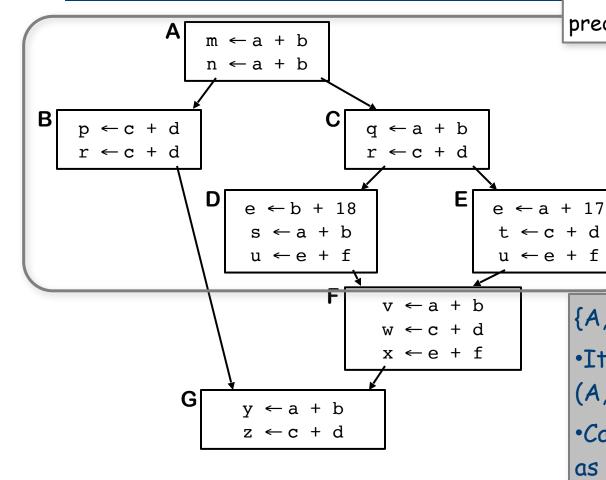




A Regional Technique

Superlocal Value Numbering

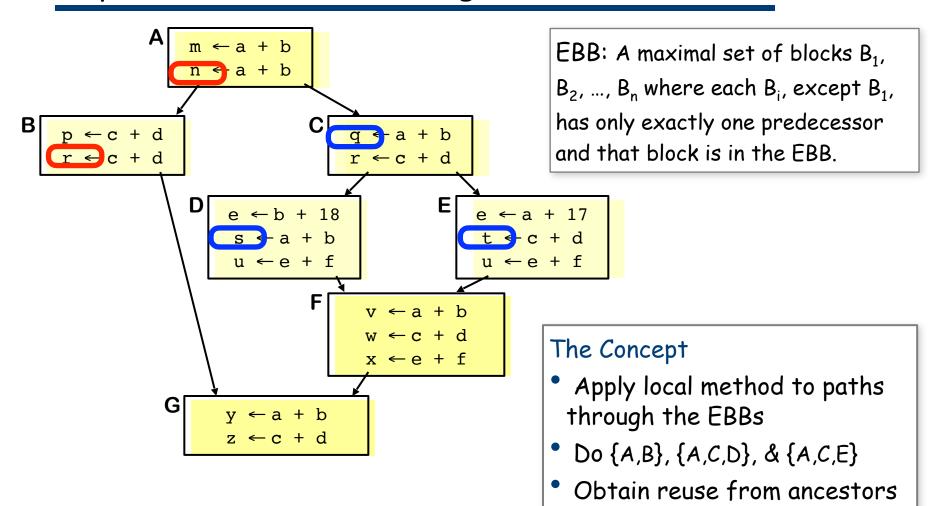
Extended Basic Block: maximal set of blocks B_1 , B_2 , ..., B_n where each B_i , except B_1 , has exactly one predecessor in the EBB itself.



 $\{A,B,C,D,E\}$ is an EBB

- •It has 3 paths: (A,B), (A,C,D), & (A,C,E)
- •Can sometimes treat each path as if it were a block

 $\{F\}$ & $\{G\}$ are degenerate EBBs



Avoid re-analyzing A & C

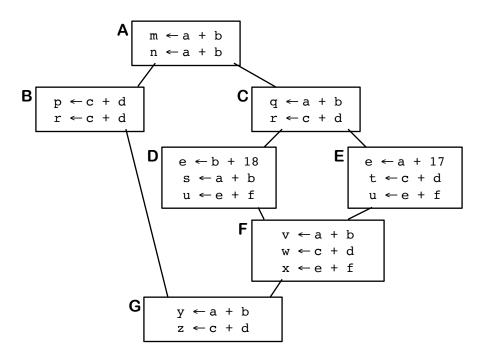
Does not help with F or G

Efficiency

- Use A's table to initialize tables for B & C
- To avoid duplication, use a scoped hash table
 - A, AB, A, AC, ACD, AC, ACE, F, G

"kill" is a re-definition of some name

- Need a VN→name mapping to handle kills
 - Must restore map with scope
 - Adds complication, not cost

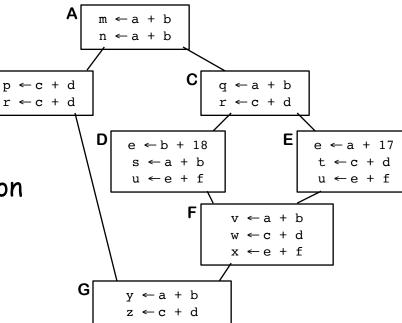


Efficiency

- Use A's table to initialize tables for B & C
- To avoid duplication, use a scoped hash table
 - A, AB, A, AC, ACD, AC, ACE, F, G
- Need a VN→name mapping to handle kills
 - Must restore map with scope
 - Adds complication, not cost

To simplify THE PROBLEM

- Need unique name for each definition
- Makes name ⇔ VN
- Use the SSA name space



"kill" is a re-definition

of some name

(locally)

Example (from earlier):

Original Code

$$a_0 \leftarrow x_0 + y_0$$

*
$$b_0 \leftarrow x_0 + y_0$$

 $a_1 \leftarrow 17$

*
$$c_0 \leftarrow x_0 + y_0$$

With VNs

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

*
$$b_0^3 \leftarrow x_0^1 + y_0^2$$

 $a_1^4 \leftarrow 17$

*
$$c_0^3 \leftarrow x_0^1 + y_0^2$$

Rewritten

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

*
$$b_0^3 \leftarrow a_0^3$$

$$a_1^4 \leftarrow 17$$

*
$$c_0^3 \leftarrow a_0^3$$

Renaming:

- Give each value a unique name
- Makes it clear

Notation:

 While complex, the meaning is clear

Result:

- a_0^3 is available
- Rewriting just works

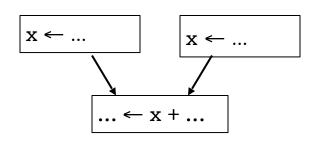
(in general)

Two principles

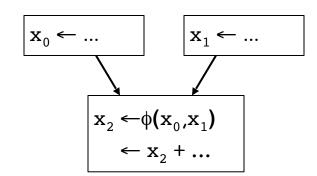
- Each name is defined by exactly one operation
- Each operand refers to exactly one definition

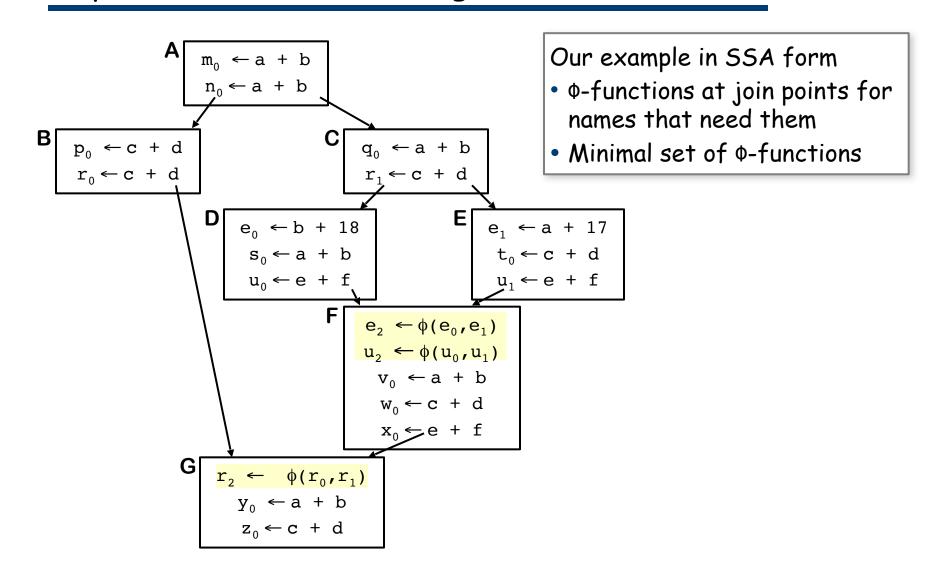
To reconcile these principles with real code

- Insert φ-functions at merge points to reconcile name space
- Add subscripts to variable names for uniqueness



becomes



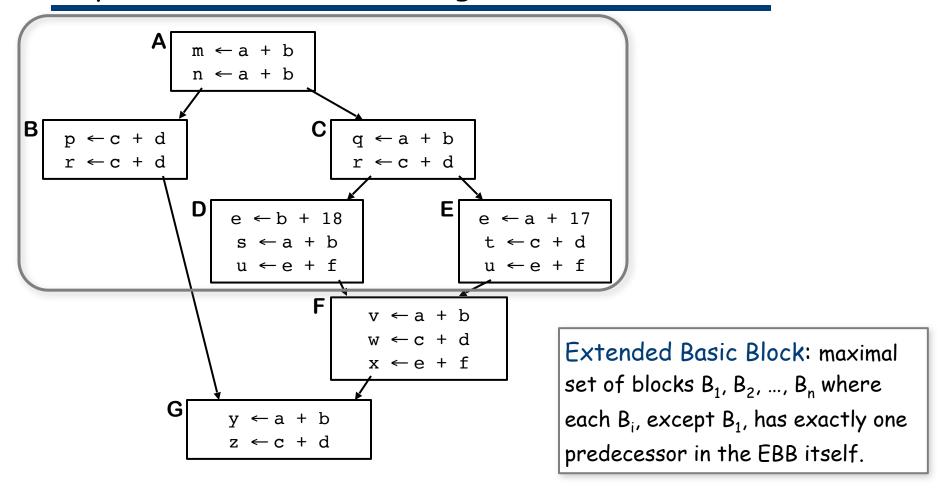


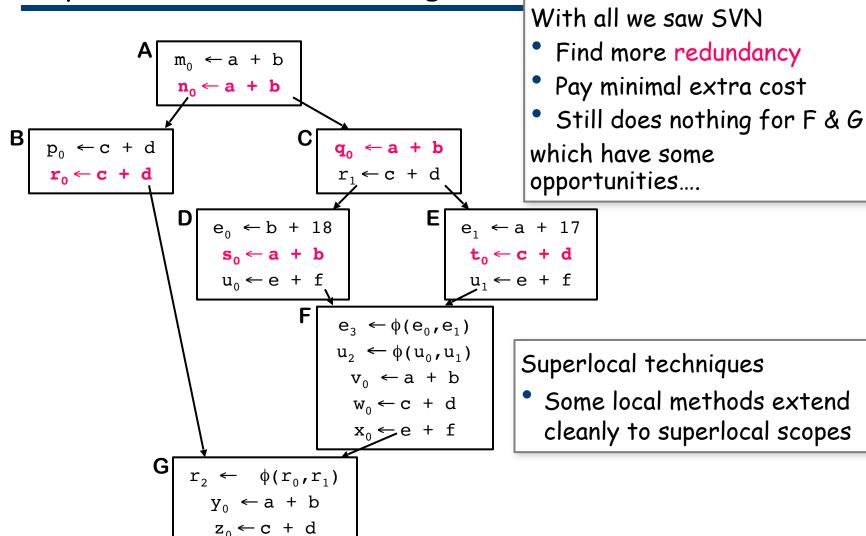
The SVN Algorithm

```
WorkList ← { entry block }
                                                               Blocks to process
Empty ← new table
                                                             Table for base case
while (WorkList is not empty)
    remove a block b from WorkList
    SVN(b, Empty)
                                        Assumes LVN has been parameterized
                                        around block and table
SVN(Block, Table)
    t ← new table for Block, with Table linked as surrounding scope
                                                            Use LVN for the work
    LVN(Block, t)
    for each successor s of Block
                                                                In the same FBB
      if s has just 1 predecessor
         then SVN(s, t)
                                                               Starts a new EBB
       else if s has not been processed
         then add s to WorkList
    deallocate t
```

A Regional Technique

Superlocal Value Numbering





Loop Unrolling

Applications spend a lot of time in loops

We can reduce loop overhead by unrolling the loop

```
do i = 1 to 100 by 1

a(i) \leftarrow b(i) * c(i)

end
a(1) \leftarrow b(1) * c(1)
a(2) \leftarrow b(2) * c(2)
a(3) \leftarrow b(3) * c(3)
...
a(100) \leftarrow b(100) * c(100)
```

- Eliminated additions, tests and branches: reduce the number of operations Can subject resulting code to strong local optimization!
- Only works with fixed loop bounds & few iterations
- The principle, however, is sound
- Unrolling is always safe, as long as we get the bounds right

Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4 (8, 16, 32? depends on # of registers)

do i = 1 to 100 by 1

$$a(i) \leftarrow b(i) * c(i)$$

end
Unroll by 4
do i = 1 to 100 by 4
 $a(i) \leftarrow b(i) * c(i)$
 $a(i+1) \leftarrow b(i+1) * c(i+1)$
 $a(i+2) \leftarrow b(i+2) * c(i+2)$
 $a(i+3) \leftarrow b(i+3) * c(i+3)$
end

Achieves much of the savings with lower code growth

- Reduces tests & branches by 25%
- LVN will eliminate duplicate adds and redundant expressions
- Less overhead per useful operation

But, it relied on knowledge of the loop bounds...

Loop Unrolling

Unrolling with unknown bounds

Need to generate guard loops

do
$$i = 1$$
 to n by 1
 $a(i) \leftarrow b(i) * c(i)$
end

Achieves most of the savings

- Reduces tests & branches by 25%
- LVN still works on loop body
- Guard loop takes some space

```
i ← 1
do while (i+3 < n)
    a(i) \leftarrow b(i) * c(i)
    a(i+1) \leftarrow b(i+1) * c(i+1)
    a(i+2) \leftarrow b(i+2) * c(i+2)
    a(i+3) \leftarrow b(i+3) * c(i+3)
   i ←i + 4
    end
do while (i < n)
    a(i) \leftarrow b(i) * c(i)
   i \leftarrow i + 1
    end
```

Can generalize to arbitrary upper & lower bounds, unroll factors

$$i=1,...100 : a(i)=a(i)+b(i)+b(i-1)$$

One other unrolling trick

Eliminate copies at the end of a loop

```
t1 ← b(0)

do i = 1 to 100 by 1

t2 \leftarrow b(i)

a(i) \leftarrow a(i) + t1 + t2

t1 ← b(0)

do i = 1 to 100 by 2

t2 \leftarrow b(i)

a(i) \leftarrow a(i) + t1 + t2

t1 ← b(i+1)

a(i+1) \leftarrow a(i+1) + t2 + t1

end

Unroll
```

- Eliminates the copies, which were a naming artifact
- Achieves some of the benefits of unrolling
 - Lower overhead, longer blocks for local optimization
- Situation occurs in more cases than you might suspect

Sources of Degradation

- It increases the size of the code
- The unrolled loop may have more demand for registers
- If the demand for registers forces additional register spills (store and reloads) then the resulting memory traffic may overwhelm the potential benefits of unrolling