Operations on languages: recap.

Union: AUB
Intersection: An B
Difference: A\ B
Complement: A= 2Z* - A

Concatenation: AB ={ab | a€A, b € B}

®.@)

) .

Kleene Clousure: A" = U A’
i=0



Regular Exl:_wessions

A regular expression denotes a set of strings.

Given a finite alphabet %, the following constants are defined as reqular
expressions:

@ denoting the empty seft,
e denoting the set {},
a in Z denoting the set containing only the character {a.}

If rands are reqular expression denoting the sets R and S, then,
(r+s),(rs) and r* denotes the set R U S, RS and R*, respectively.

L(r) indicates the language denoted by r



Examples

(0" + 1%+ (01)7).

L:{ﬂ HnEN.:L":O”\/:C:ln\/QCZ(Ol)n}

e a|b* denotes
{e,"a","b", "bb", "bbb", ...}
e (a|b)* denotes
all the strings formed with "a" and "b"
e ab*(c|¢) denotes
the set of strings starting with "a", then zero or more "b"s
and finally optionally a “c"
(0](1(01*0)*1))*
denotes the set of binary numbers that are multiples of 3



RoadmaE

DFA — I\A]FA<—> RG

RE &-NFA



Turning a DFA into a RE

Theorem 3
For each DFA D, then there is a regular expression r such that L(D)=L(r).

Construction:
Eliminates states of the automaton and replaces the edges with regular
expressions that includes the behavior of the eliminated states.
Eventually we get down to the situation with just a start and final node,

and this is easy to express as a RE



State Elimination Note: q and p may be the same statel

* Consider the figure below, which shows a generic state s about to be
eliminated. The labels on all edges are regular expressions.

e To remove s, we must make labels from each q; to p; up to p,, that include
the paths we crpld have made through s.

. M
ka

O S
Rk 1

R,,+Q;S*P,
q, " Py

R1m+Q1 S*Pm

=)

Rk1+QkS*P1

ka+QkS >kPm




DFA to RE via State Elimination

Starting with intermediate states and then moving to accepting
states, apply the state elimination process to produce an
equivalent automaton with regular expression labels on the
edges.

The result will be some (one or more than one) state
automaton with a start state and accepting state.



DFA to RE State Elimination (2)

If the two states are different, we will have an automaton
that looks like the following:

R U
S
Start ——* Q@
T

We can describe this automaton as: (R+SU*T)*SU*



DFA to RE State Elimination (3)

If the start state is also an accepting state, then we must also
perform a state elimination from the original automaton that
gets rid of every state but the start state. This leaves the

following: R
A
Start —’

We can describe this automaton as simply R*.



DFA to RE State Elimination (4)

If there are n accepting states, we must repeat the above steps for
each accepting states to get n different regular expressions, R, R,,

.. R . For each repeat we turn any other accepting state to non-

accepting. The desired regular expression for the automaton is
then the union of each of the n regular expressions: RUR,.. UR



DFA->RE Example

* Convert the following to a RE

0 0,1
1 1
0

e First convert the edges to RE's:

0 0+1
1 1
Start —
0



DFA > RE Example (2)

e we want to eliminate State 1:

0 0+1

* obtaining:
0
0+10 O+l
Note edge from 323 m

Start

Answer: (0+10)*11(0+1)*



Third Example

e Automata that accepts even number of 1's

0 0 0
Start —— @ : 2

* Eliminate state 2:

0
10*1
Start ———




Third Example (2)

* Two accepting states, turn off state 3 first

0+10*1

This 1s just 0*; can ignore going to state 3
since we would “die”

0+10*1

0
10*1
Start —— >




Second Example (3)

* Turn off state 1 second:
0+10%1

8- 4

This is just 0%10*1(0+10%1)*

0 0+10*1
/\ Combine from previous slide to get

0* + 0*10%1(0+10%1)*
Start ——— >




RoadmaE

DFA . > I\A”:A «—» RG

RE > &-NFA



Conver‘ring a RE to an Automata

* We can convert a RE to an e-NFA
— Inductive construction
— Start with a simple basis, use that to build more
complex parts of the NFA



RE to e-NFA

e RBasis:

—&

=0




R=S+T ﬁQ/LQ i Qﬁ\
NO o Op

et s O
~ — T PO




RE to e-NFA Example

* Convert R= (ab+a)* to an NFA
— We proceed in stages, starting from simple elements and
working our way up

. - 0
e &



RE to e-NFA Example (2)

ab+a

@@@Q
Qi




Esempio: from RE to &-NFA

L={z|IneNz=0"Vvz=1" Vv z = (01)" }

&-NFA




What have we shown?

* Regular expressions, finite state automata and regular grammars
are really different ways of expressing the same thing.

* Insome cases you may find it easier to start with one and move
to the other
— E.g., the language of an even number of one's is typically
easier to design as a NFA or DFA and then convert it to a

RE



Not all Ianguages are regular‘!

« L={ a"b" | n e Nat }



Pumping Lemma

Given L an infinite reqular language then there exists an integer k such

that for any string z € L.|z| > k it is possible to split z into 3

substrings
z = uwvw with |uv| < k,|v] > 0 such that Vi € N, uv'w € L
0 k
- : M } w I vzel
Y Y , €L
v v v eL




Meaning of the PL




Nega‘ring the PL

dieN. w'w ¢ L



Nega‘ring the PL

The PL gives a necessary condition, that can be used to prove that a
language is not reqular!

If Vke N dz e L.|z| > k forall possible splitting
z = uvw with |uv| < k,|v] >0 3 € N such that uv'w & L

then L is not a regular language!



EsemEio

« L={ a"b" | n € Nat }, consider ke N
* Let z = akbk

zel, |v|=i,

=K o Juv] > k




EsemEio

» L={ a"b" | n € Nat }, consider k <N
+ Let z = akbk

zel, |v|=i,

aktibk g

v2 i#+0




Proeer‘rx of Regular' Ianguages

The regular languages are closed with respect to the union,
concatenation and Kleene closure.

The complement of a regular language is always regular.
* The regular language are closed under intersection

Decision Properties:
Approximately all the properties are decidable in case of finite
automaton.

(i) Emptiness

(ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership



DFA Minimization

® Some states can be redundant:
— The following DFA accepts (a|b)+
— State sl is not necessary

a

O sivel- o




DFA Minimization

® The task of DFA minimization, then, is o automatically transform
a given DFA into a state-minimized DFA

Several algorithms and variants are known



DFA Minimization Algorithm
e Recall that a DFA M=(Q, Z, 8, q,, F)
e Two states p and g are distinct if

pin F and g not in F or vice versa, or
for some a in Z, &(p, a) and d(q, a) are distinct

® Using this inductive definition, we can calculate which states are
distinct



DFA Minimization Algori'rhm

® Create lower-triangular table DISTINCT, initially
blank

® For every pair of states (p,q):

If p is final and q is not, or vice versa
DISTINCT(p,q) = ¢

® Loop until no change for an iteration:
For every pair of states (p,q) and each symbol a
If DISTINCT(p,q) is blank and

DISTINCT( d(p,a), 8(q,a) ) is not blank
= DISTINCT(p,9Q) =a

® Combine all states that are not distinct



Very Simple Example

sO
s

S2

sO [s1 |s2




Very Simple Example

sO
s1 g
S2 |€

sO [s1 |s2

Label pairs with € where one is a final state and the other is not



Very Simple Example

sO

S1

S2

sO

s

S2

Main loop (no changes occur)

DISTINCT(p,q) is blank and

DISTINCT( d(p,a), 8(q,a) ) is not blank
= DISTINCT(p,g9)=a




Very Simple Example

sO
s1 g

S2 |€

sO [s1 |s2

DISTINCT(s1, s2) is empty, so s1 and s2 are equivalent states



Very Simple Example

Merge s1 and s2




More ComEIex ExamEle



More Complex Example
® Check for pairs with one state final and one

no 1- : f/‘"”"‘\_ -—1 —

alble|ld]elf

09




More Complex Example

® First iteration of main’

b

100,

d @)1

e |lO[O]O]O

fle € |le | € | €
olle | €€ |€|e€

h L1110 €]|e




More Complex Example

® Second iteration of main loop:

b

cll 11

dijl 1|1

e (|O]0]0]0

f || e |€e|€e|€e|c€
gllele|e|€ €

h(f 1 1)L |1]0]e]e
a|b|c dle|f|g




More Complex Example

e Third iteration makes no changes
— Blank cells are equivalent pairs of states

4_—
b
c || 1]1
d[1[1 K
e (|O[O0]10]0
f||e|€|€|€|E€ ¢
ocfle|€e|€e|€|e€
hi1|1T]|1]|1[0]e€ele
alblc|d|e|l]|g




More ComEIex ExamEle

e Combine equivalent states for minimized DFA:



Conclusion

® DFA Minimization is a fairly understandable process, and is
useful in several areas

Regular expression matching implementation
Very similar algorithm is used for compiler
optimization to eliminate duplicate

computations
® The algorithm described is O(kn2)
John Hopcraft describes another more

complex algorithm that is O(k (n log n) )



Linguaggi Context Free



Context free Grammars

A Context free Grammar (£, N, S, P) is a generative grammar,
where

- every production has the form U — V

where U belongs to N and V belongs o (X uN)¥

- only for the starting symbol S, we can have S— ¢



Example
G — {{E}) {Or) and) nOt) () )’ O) 1}) E' P}

E — O

|

(E or E)
(E and E)
(not E)

M m o™
1 1



Esempio

S— 0S1]¢

0™"1™ :n > 0}



Example

S — €|0]1]0S0[1ST

l

z={x e {01} |z =2}



Parse tree

Given a grammar (Z, N, S, P).
The parse tree is the graph representation of a derivation,
which can be defined in the following way:

+ every vertex has a label in £ U N U {g},

* the label of the root and of every internal vertex belongs to N,
- if a vertex is labeled with A and has m children labeled with X1,. ..., Xk
+ then the production A->X1..Xk belongs to P,

+ if a vertex is labeled with € then is a leaf and is an only child.



Example

E 0/1/(E or Eot £).

R

(/ Ta\\)

an




Example

E — O[1((E or E)I(E and E)|(not E).

(//jd\\)




Example

E — O[1](E or E)|(E and E){(not E))

\
A

AN



Example

E H@H(E or E)|(E and E)|(not E).

IS
I //k

(“nmot E




Example

E o@(E or E)|(E and E)|(not E).

IS
AN //k

(“nmot E




Example

E H@H(E or E)|(E and E)|(not E).

/T\)
AN AN




Example

E — O|T|/(E or E)|(E and E)|(not E).

L —

w = ((0 or 1) and (not 0))

| — S

2NN

( and E

( ) ("mot)t [ )

0 0




Pushdown automata

S1 | S2 | S3 tape

il

@ Alphabet of stack symbols: R
i}

Z1 | Zy | Z3 stack

The stack head always scans the top symbol
It performs three basic operations:

Push: add a new symbol at the top. of the stack
Pop: read and remove the top symbol
Empty: verify if the stack is empty



Pushdown automata

They can be represented by M = (Q, Z, R, 3, q0,Z0, F) where

* R is the alphabet of stack symbols,

+ 0:Q x (XU{e}) x R — py(Q X R") is the transition function

« ZO0 belonging to R is the starting symbol on the stack



Instantaneous Description

The evolution of the PDA is described by triples (q, w, v) where;

e qis the current state of the control unit
e w is the unread part of the input string or the remaining input

e v is the current contents of the PDA stack

A move from one instantaneous description to another will be denoted by

(qO, aw, Zr) > (q1, w, yr) iff (ql,y) belongs to 8(q0,a,Z)



The Ianguage acceETed bx a Eushdown automaton

Two ways to define a language:
- with empty stack (in this case F is the empty set)
* with final states F

L,(M) = {xe€Z*:(do,x,Zo) =} (a,¢¢),q9€Q}
LrM) = {xe€Z*:(qo,x,Zo) =} (d,¢,7),y €R* q€F}




EsemEio

We will recognise the

L={zcx| z € {a,b}* },¥ = {a,b,c} string when the input and

stack are emptyl!

({q0,q1},{a,b,c},{Z,A,B},5,00,Z,9)  APND
do a b C q1 a b C
yA qO>ZA qO>ZB d1,¢€ Z q1,Z q1,Z
A A di, € q1>Z C|1,Z
B B di,Z | d1,¢ | q1,Z




Remember:we will recognise the
string when the input and stack

EXC(mEIZ: abcba are empty!

do | € a b c d1 a b c
Z do,ZA | 4o, ZB | a1, Z qi,Z | a1,Z
ai,e | d1,Z | q1,Z
B B a1,Z | di,e | 41,2
a bcba a b cba ab ¢ ba
T nastro T nastro T nastro
do = do do
1 via I pia T vila
Z Z A Z BA
abc b a abcb a abcba
T nastro T nastro T nastro
a1 = a1 a1
I vin I pia 1 »ia
B A A




Example

[, =
{x:ER| r € {a,b}* },% = {a,b}

e Q=1{qo
)q1}
e £={ab)
¢ R:{Z)A)B}
qdo € a b
Z
A qO)AZ qO,BZ
q
do, AA | do, BA 1 : - -
Z
di, € e
B do,AB .
| o qi, €
B
o di, €




Unfor‘runa’relx...

not all languages are Context Free |



Pumping Lemma for CF

Given a context free language L there exists an integer k such

that for any string 2 € L.|z| > k it is possible to split z into 5
substrings

z = wvwzy with [vwz| < k, |vz| > 0 such that Vi € N, uwv'wz'y € L

0 k

4 Y WX Y . vzel

LCF —




Meaning of PL




Nega‘ri hg the PL

Ji € N. wo'wz'y ¢ L



Negating the PL for CF

The PL for CF gives a necessary condition, that can be used to prove
that a language is context free!

if VEeN dzc L.|z| > k for all possible splitting of the form
z = wwwzry with |[vwz| < k, |vz| > 0 Ji € N such that uwv'wz'y ¢ L

then L is not context free!



ExamEIe

- Let L={ anbrcn | n e Nat }, consider ke N

- Let z = akbkck

ak b k C k
[ ] [ ]

zel, |v|=i, |x]=)

Iul vIWI X [ ] y
d | ] ] |

remember |vwx|<k



ExamEIe

- Let L={ anbrcn | n e Nat }, consider ke N

- Let z = akbkck

ak bk ck
[ [ ]

zel, |v|=i, |x]=)

Iul vIWI X [ y
d | ] ] |

v  aabbbaabbb

v2 x2




ExamEIe

 Let L={ anbrc" | n e Nat }, consider ke N
« Let z = akbkck

ak bk Ck . .
: | : . zel, |v|=i, [x]|=
L] u v [ 1 WI X y N
¢ T akbkrickt gL
: — — : : -

i+j # 0



ExamEIe

» Let L={ anbrch | n e Nat }, consider ke N

* Let z = akbkck

— zel, |v|=i, |x|=]

Iul vIWI X [ ] y
d | ] ] |

I)<I [vwx| > k



ExamEIe

 Let L={ anbrc" | n e Nat }, consider ke N

- Let z = akbkck

ak bk Ck . .
: : : c zeL, |v|=i, |x|=
Iu VIWI X y N
; —i ! : s
k+ik+jek
—— — ! ! : 4 altiblick gl

i+j # 0



ExamEIe

» Let L={ anbnen | n € Nat }, consider ke N
* Let z = akbkck

I ak I bk n ck : ZEL, |V|=|, |X|=j

akbkc|(+i+j QL

v2 x2 I+) # 0

=



ExamEIe

- Let L={ anbrcn | n e Nat }, consider ke N
* Let z = akbkck

; - | i : <  zeL, |v|=i, |x|=

-
4-

-

= =
b,
.

akb|(+i+]ck QL

v2 x2 i+j =0




Example

» Let L={ anbnch | n e Nat }, consider ke N

- Let z = akbkck

ak . bk . ck ZEL, |V|=|, |X|=j

!ul vIWI X [ y 1
] ] ] ] Tk

v L gktitjpkek el
5 H j i

i+j # 0



Pr'oeer"ries of the CF Ianguages

The CF languages are closed with respect to the union, concatenation
and Kleene closure.

The complement of CF language is not always CF.
* The CF language are not closed under intersection

Decision Properties:
Approximately all the properties are decidable in case of CF

(i) Emptiness

(ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership



Context Sensitive Grammar

Productions of the form U — V such that |U| <=| V]|

Example
S — aSBC|aBC bC — bc
CB — BC cC — cc
bB — DbDb aB — ab

{atblct:i> 1)



Complexity of Languages Problems

Isw L(6)?

Is L(6) empty?

Is L(61) L(62)?

Regular
Grammar

Type 3
P

PSPACE

Context Context Unrestricted
Free Sensitive

Grammar Grammar ©rammar

Type2 Typel  1vPe0
p PSPACE U
p U U
U U U



Examples of Language Hierarchy

The expressing expressive power:

regular c context-free c context-sensitive c phrase-structure
L1 = strings over {0, 1} with an even number of 1's is regular

n n
L2 ={a b | n>0}is context-free, but not regular

L3 = {an b' cnl n>0 }is context-sensitive, but not context-

free



Relationships between Languages and Automata

A language is :

regular
context-free
context-sensitive
phrase-structure

iff accepted by

finite-state automata
pushdown automata
linear-bounded automata
Turing machine



C

homsky's Hierarch

Unristricted Grammar

Type-0

(Recognized by
Turing Machine)

Context Sesitive

Type-1

> Grammar
(Accepted by Linear
Bound Automata)

—» Context Free Grammar

Type-2

(Accepted by Push
Down Automata)

Type-3

> Regular Grammar
(Acceped By
Finite Automata)



