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The organization of this course

Schedule :  
Two weekly lectures 
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• A brief recall on formal languages: 
•Grammars, automata, theorems, regular and context free 
languages 
•Chomsky hierarchy 

• Lexical analysis 
• Parser 
• Contextual analysis 
• Intermediate representation 
• Code shape 
• Optimization  
• Dataflow analysis 
• More static analyses: control flow and abstract interpretation 
• Register allocation 

What we will see



Our textbook



Other information

• web page, I will add there all the slides 

www.di.unipi.it/~gori/Linguaggi-Compilatori2020 
Material for specific topics: 
  

• Introduction to Automata Theory, Languages, And Computation.  
Hopcroft, Motwani, Ullman 

• Fondamenti dell'Informatica. Linguaggi formali, calcolabilita' e complessita'.  
Dovier, Giacobazzi  
Bollati Boringhieri 

• Principles of Program Analysis.  
Nielson,Nielson, Hankin  
Springer 

• Static Inference of Numeric Invariants by Abstract Interpretation a tutorial by Antoine 
Mine on Abstract interpretation.  

http://www.di.unipi.it/~gori/Linguaggi-Compilatori2020
http://pages.di.unipi.it/gori/Linguaggi-Compilatori2020/course_ok.pdf


Roberta Gori 
roberta.gori@di.unipi.it 

My own research program 
• Whole program analysis for verification and optimization 
• Static analysis to discern program behavior 
• Abstract interpretation based techniques 

About this teacher

mailto:roberta.gori@di.unipi.it


Compilers

• What is a compiler? 
— A program that translates an executable program in one language into an 

executable program in another language 
— The compiler should improve the program, in some way 

• What is an interpreter?                                                     
— A program that reads an executable program and an input and produces the 

results of executing that program  on the input 

• C and C++ are typically compiled,  

Pyton and Scheme are typically interpreted 

• Java is complicated  

    -  Compiled to bytecodes (code for the Java VM) 

— which are then interpreted 
— Or a hybrid strategy is used 

→ Just-in-time compilation

Common mis-statement: 
X is an interpreted language 
(or a compiled language) 
It’s a property of the 
implementation !



Why Study Compilation?

• Compilers are important 
— Responsible for many aspects of system performance 
— Attaining performance has become more difficult over time 

→ In 1980, typical code got 85% or more of peak performance 
→Today, that number is closer to 5 to 10% of peak 
→ Compiler has become a prime determiner of performance 

• Compilers are interesting 
— Compilers include many applications of theory to practice 
— Writing a compiler exposes algorithmic & engineering issues 

• Compilers are everywhere 
— Many practical applications have embedded languages 

→ Commands, macros, formatting tags … 

— Many applications have input formats that look like languages

Still many open problems! 



Reducing the Price of Abstraction

Computer Science is the art of creating virtual objects and 
making them useful. 

• We invent abstractions and uses for them 
• We invent ways to make them efficient 
• Programming is the way we realize these inventions 

Well written compilers make abstraction affordable 
• Cost of executing code should reflect the underlying work 

rather than the way the programmer chose to write it 
• Change in expression should bring small performance change 
• Cannot expect compiler to devise better algorithms 

— Don’t expect bubblesort to become quicksort



Making Languages Usable

It was our belief that if FORTRAN, during its first months, were to 
translate any reasonable “scientific” source program into an object 
program only half as fast as its hand-coded counterpart, then 
acceptance of our system would be in serious danger... I believe that 
if we failed to produce efficient programs, the widespread use of 
languages like FORTRAN would have been seriously delayed. 

— John Backus on the subject of the 1st FORTRAN compiler

Era nostra convinzione che se FORTRAN, durante i suoi primi mesi, avesse tradotto un qualsiasi 
programma sorgente "scientifico" ragionevole in un programma oggetto piu’ efficiente  solo della 
metà della sua controparte codificata a mano, allora l'accettazione del nostro linguaggio sarebbe 
stata in serio pericolo. Credo che se non fossimo riusciti a produrre programmi efficienti, l'uso 
diffuso di linguaggi come FORTRAN sarebbe stato seriamente ritardato.



Simple Examples

Which is faster?

for (i=0; i<n; i++)
   for (j=0; j<n; j++)
       A[i][j] = 0;

p = &A[0][0];
t = n * n;
for (i=0; i<t; i++)
   *p++ = 0;

All three loops have distinct 
performance. 

for (i=0; i<n; i++)
   for (j=0; j<n; j++)
       A[j][i] = 0;

0.51 sec on 10,000 x 10,000 array

1.65 sec on 10,000 x 10,000 array

0.11 sec on 10,000 x 10,000 array

All data collected with gcc 4.1, -O3, running on a 
queiscent, multiuser Intel T9600 @ 2.8 GHz 

bzero((void*) &A[0][0],(size_t) n*n*sizeof(int))

Conventional wisdom suggests using 

0.52 sec on 10,000 x 10,000 array

A good compiler should know these tradeoffs, 
on each target, and generate the best code. 
Few real compilers do.



Intrinsic Merit

➢ Compiler construction poses challenging and interesting problems: 

— Compilers must process large inputs, perform complex algorithms, 
but also run quickly 

— Compilers have primary responsibility for run-time performance 

— Compilers are responsible for making it acceptable to use the full 
power of the programming language 

— Computer architects perpetually create new challenges for the 
compiler by building more complex machines 
→ Compilers must hide that complexity from the programmer 

➢ A successful compiler requires mastery of the many complex 
interactions between its constituent parts



Artificial intelligence Greedy algorithms 
Heuristic search techniques

Algorithms Graph algorithms, union-find 
Dynamic programming

Theory DFAs & PDAs, pattern matching 
Fixed-point algorithms

Systems Allocation & naming,  
Synchronization, locality

Architecture Pipeline & hierarchy management  
Instruction set use

Intrinsic Interest

➢ Compiler construction involves ideas from many different parts 
of computer science



The View from 35,000 Feet 



Source 
code

Machine 
codeCompiler

Errors 

High-level View of a Compiler

Implications 
• Must recognize legal (and illegal) programs 
• Must generate correct code 
• Must manage storage of all variables (and code) 
• Must agree with OS & linker on format for object code 

Big step up from assembly language—use higher level notations



Source 
code

Front 
End

Errors 

Machine 
code

Back 
EndIR

Depends primarily 
on source language

Depends primarily 
on target machine

Classic principle from 
software engineering: 
Separation of concerns

Traditional Two-pass Compiler

Implications 
• Use an intermediate representation (IR) 
• Front end maps legal source code into IR 

• Back end maps IR into target machine code 
• Admits multiple front ends & multiple passes      (better code) 

Typically, front end is O(n) or O(n log n), while back end is NPC



Source 
code Scanner

IR
Parser

Errors 

tokens

The Front End

Responsibilities 
• Recognize legal (& illegal) programs 
• Report errors in a useful way 
• Produce IR & preliminary storage map 
• Shape the code for the rest of the compiler 
• Much of front end construction can be automated



Source 
code Scanner

IR
Parser

Errors 

tokens

The Front End

Scanner 
• Maps character stream into words—the basic unit of syntax  
             (Lexical analysis) 
• Produces pairs — a word &  its part of speech 

x = x + y ;   becomes <id,x> = <id,x> + <id,y> ; 
— word ≅ lexeme, part of speech ≅ token type, pair ≅ a token 

• Typical tokens include number, identifier, +, –, new, while, if 
• Speed is important 

Textbooks advocate automatic scanner generation 
Commercial practice appears to be hand-coded scanners



 

Split program to individual words that makes sense:  
           My mother cooooookes dinner not. 

while (y < z) {
    int x = a + b;            
     y += x; }            

Lexical analysis



Source 
code Scanner

IR
Parser

Errors 

tokens

The Front End

Parser 
• Recognizes context-free syntax & reports errors  
                           (Syntax Analysis) 
• Guides context-sensitive (“semantic”) analysis  (type checking) 
• Builds IR for source program 

Hand-coded parsers are fairly easy to build 
Most books advocate using automatic parser generators



The Front End

For Lexical and Syntact analysis we need grammars 

  SheepNoise → SheepNoise  baa 
                                          |   baa 

This grammar defines the set of noises that a sheep makes under 
normal circumstances 

It is written in a variant of Backus–Naur Form (BNF) 

Formally, a grammar G = (S,N,T,P) 
• S  is the start symbol 
• N  is a set of non-terminal symbols 
• T  is a set of terminal symbols or words 
• P  is a set of productions or rewrite rules      (P : N → N ∪T ) 



1.  Goal → Expr
2.  Expr  → Expr  Op  Term
3.               |   Term
4.  Term  → number

5.               |    id
6.  Op      → +
7.               |    -

S = Goal

T = { number, id, +, - } 

N = { Goal, Expr, Term, Op } 

P = { 1, 2, 3, 4, 5, 6, 7 }

The Front End
Context-free syntax can be put to better use 

• This grammar defines simple expressions with addition & 
subtraction over  “number” and “id” 

• This grammar, like many, falls in a class called “context-free 
grammars”, abbreviated CFG



Production     Result 
       Goal
 1    Expr 
 2    Expr  Op  Term 
 5    Expr  Op  y 
 7    Expr   -  y
 2    Expr  Op  term  -  y 

 4    Expr  Op  2  -  y
 6    Expr  +  2  -  y
 3    Term  +  2  -  y
 5    x  +  2  -  y  

1.  Goal → Expr
2.  Expr  → Expr  Op  Term
3.               |   Term
4.  Term  → number
5.               |    id
6.  Op      → +
7.               |    -

A derivation

The Front End
Given a CFG, we can derive sentences by repeated substitution 

To recognize a valid sentence in some CFG, we reverse this process 
and build up a parse
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Term

Op TermExpr

TermExpr

Goal

Expr

Op

<id,x>

<number,2>

<id,y>

+

-

The parse tree contains a lot of 
unneeded information

1.  Goal → Expr
2.  Expr  → Expr  Op  Term
3.               |   Term
4.  Term  → number
5.               |    id
6.  Op      → +
7.               |    -

The Front End
A parse can be represented by a tree  (parse tree or syntax tree) 
 x  +  2  -  y



+

-

<id,x> <number,2>

<id,y> The AST summarizes 
grammatical structure, 
without including detail 
about the derivation 

The Front End

Compilers often use an abstract syntax tree instead of  
 a parse tree 

This is much more concise 

ASTs are one kind of intermediate representation (IR)



Split program to individual words that makes sense:  
           My mother cookes dinner not. 

while (y < z) {
    int x = a + b;            
     y += x; }            

 Syntax analysis 



Source 
code Scanner

IR
Parser

Errors 

tokens

a ← b x c + d
becomes ←

a +

dx

b c

Recall the speed difference 
between different ways of 

writing a simple array 
initialization

The Front End

Code shape determines many properties of resulting program



Source 
code Scanner

IR
Parser

Errors 

tokens

a ← b x c + d 
e ← f + b x c + d

becomes

If you turn this AST into code, 
you will likely get duplication

←

a +

dx

b c

←

e

+

dx

b c

+

f

seq

The Front End

Code shape determines many properties of resulting program



Source 
code Scanner

IR
Parser

Errors 

tokens

a ← b x c + d 
e ← f + b x c + d

becomes

load @b ⇒ r1 
load @c ⇒ r2 
mult r1,r2 ⇒ r3 
load @d ⇒ r4 
add r3,r4 ⇒ r5 

store r5 ⇒ @a 
load @f ⇒ r6 
add  r5,r6 ⇒ r7 
store r7 ⇒ @e

reuses  
b x c + d

We would like to produce this code, 
but getting it right takes a fair 
amount of effort ….

computes  
b x c + d

The Front End

Code shape determines many properties of resulting program



Errors 

IR Register 
Allocation

Instruction 
Selection

Machine 
code

Instruction 
Scheduling

IR IR

The Back End

Responsibilities 
• Translate IR into target machine code 
• Choose instructions to implement each IR operation 
• Decide which value to keep in registers 

Automation has been less successful in the back end



Errors 

IR Register 
Allocation

Instruction 
Selection

Machine 
code

Instruction 
Scheduling

IR IR

Standard goal has become “locally optimal” code.

The Back End

Instruction Selection 
• Produce fast, compact code 
• Take advantage of target features  such as addressing modes 
• Usually viewed as a pattern matching problem 

— ad hoc methods, pattern matching, dynamic programming 
— Form of the IR influences choice of technique 

This was the problem of the future in 1978 
— Spurred by transition from PDP-11 to VAX-11 
— Orthogonality of RISC simplified this problem



Errors 

IR Register 
Allocation

Instruction 
Selection

Machine 
code

Instruction 
Scheduling

IR IR

The Back End

Register Allocation 
• Have each value in a register when it is used 
• Manage a limited set of resources 
• Can change instruction choices & insert LOADs & STOREs 
• Optimal allocation is NP-Complete in most settings 

Compilers approximate solutions to NP-Complete problems



Register allocation for a = (a x 2 x b x c) x d

Use 6 registers!

Use 3 registers!



The Back End

Instruction Scheduling 
• Avoid hardware stalls and interlocks 
• Use all functional units productively 
• Can increase lifetime of variables         (changing the allocation) 

Optimal scheduling is NP-Complete in nearly all cases 

Heuristic techniques are well developed

Errors 

IR Register 
Allocation

Instruction 
Selection

Machine 
code

Instruction 
Scheduling

IR IR



Instruction scheduling

• Reorder operations to reflect the target machine performance 
constraints 

LoadAI, storeAI   3 cycles 
mult                      2 cycles 
others                  1 cycle 



Errors 

Source 
Code

Optimizer 
(Middle End)

Front 
End

Machine 
code

Back 
End

IR IR

Traditional Three-part Compiler

Code Improvement (or Optimization) 
• Analyzes IR and rewrites (or transforms) IR 
• Primary goal is to reduce running time of the compiled code 

— May also improve space, power consumption, … 
• Must preserve “meaning” of the code 

— Measured by values of named variables 



Errors 

Opt 
1

Opt 
3

Opt 
2

Opt 
n

...IR IR IR IR IR

Modern optimizers are structured as a series of  passes

The Optimizer (or Middle End)

Typical Transformations 
• Discover & propagate some constant value 
• Move a computation to a less frequently executed place 
• Specialize some computation based on context 
• Discover a redundant computation & remove it 
• Remove useless or unreachable code 
• Encode an idiom in some particularly efficient form


