
Overview of the Course

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved.

The organization of this course

Schedule :
Two weekly lectures

One weekly lecture for constructing a compiler

Roberta Gori
roberta.gori@di.unipi.itMar 11:00 12:45

Gio 9:00 10:45

letterio.galletta@imtlucca.it
Letterio Galletta

Ven 11:00 12:45

mailto:roberta.gori@di.unipi.it
mailto:letterio.galletta@imtlucca.it

• A brief recall on formal languages:
•Grammars, automata, theorems, regular and context free
languages
•Chomsky hierarchy

• Lexical analysis
• Parser
• Contextual analysis
• Intermediate representation
• Code shape
• Optimization
• Dataflow analysis
• More static analyses: control flow and abstract interpretation
• Register allocation

What we will see

Our textbook

Other information

• web page, I will add there all the slides

www.di.unipi.it/~gori/Linguaggi-Compilatori2020
Material for specific topics:

• Introduction to Automata Theory, Languages, And Computation.  
Hopcroft, Motwani, Ullman

• Fondamenti dell'Informatica. Linguaggi formali, calcolabilita' e complessita'.  
Dovier, Giacobazzi  
Bollati Boringhieri

• Principles of Program Analysis.  
Nielson,Nielson, Hankin  
Springer

• Static Inference of Numeric Invariants by Abstract Interpretation a tutorial by Antoine
Mine on Abstract interpretation.  

http://www.di.unipi.it/~gori/Linguaggi-Compilatori2020
http://pages.di.unipi.it/gori/Linguaggi-Compilatori2020/course_ok.pdf

Roberta Gori
roberta.gori@di.unipi.it

My own research program
• Whole program analysis for verification and optimization
• Static analysis to discern program behavior
• Abstract interpretation based techniques

About this teacher

mailto:roberta.gori@di.unipi.it

Compilers

• What is a compiler?
— A program that translates an executable program in one language into an

executable program in another language
— The compiler should improve the program, in some way

• What is an interpreter?
— A program that reads an executable program and an input and produces the

results of executing that program on the input

• C and C++ are typically compiled,

Pyton and Scheme are typically interpreted

• Java is complicated

 - Compiled to bytecodes (code for the Java VM)

— which are then interpreted
— Or a hybrid strategy is used

→ Just-in-time compilation

Common mis-statement:
X is an interpreted language
(or a compiled language)
It’s a property of the
implementation !

Why Study Compilation?

• Compilers are important
— Responsible for many aspects of system performance
— Attaining performance has become more difficult over time

→ In 1980, typical code got 85% or more of peak performance
→Today, that number is closer to 5 to 10% of peak
→ Compiler has become a prime determiner of performance

• Compilers are interesting
— Compilers include many applications of theory to practice
— Writing a compiler exposes algorithmic & engineering issues

• Compilers are everywhere
— Many practical applications have embedded languages

→ Commands, macros, formatting tags …

— Many applications have input formats that look like languages

Still many open problems!

Reducing the Price of Abstraction

Computer Science is the art of creating virtual objects and
making them useful.

• We invent abstractions and uses for them
• We invent ways to make them efficient
• Programming is the way we realize these inventions

Well written compilers make abstraction affordable
• Cost of executing code should reflect the underlying work

rather than the way the programmer chose to write it
• Change in expression should bring small performance change
• Cannot expect compiler to devise better algorithms

— Don’t expect bubblesort to become quicksort

Making Languages Usable

It was our belief that if FORTRAN, during its first months, were to
translate any reasonable “scientific” source program into an object
program only half as fast as its hand-coded counterpart, then
acceptance of our system would be in serious danger... I believe that
if we failed to produce efficient programs, the widespread use of
languages like FORTRAN would have been seriously delayed.

— John Backus on the subject of the 1st FORTRAN compiler

Era nostra convinzione che se FORTRAN, durante i suoi primi mesi, avesse tradotto un qualsiasi
programma sorgente "scientifico" ragionevole in un programma oggetto piu’ efficiente solo della
metà della sua controparte codificata a mano, allora l'accettazione del nostro linguaggio sarebbe
stata in serio pericolo. Credo che se non fossimo riusciti a produrre programmi efficienti, l'uso
diffuso di linguaggi come FORTRAN sarebbe stato seriamente ritardato.

Simple Examples

Which is faster?

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[i][j] = 0;

p = &A[0][0];
t = n * n;
for (i=0; i<t; i++)
 *p++ = 0;

All three loops have distinct
performance.

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[j][i] = 0;

0.51 sec on 10,000 x 10,000 array

1.65 sec on 10,000 x 10,000 array

0.11 sec on 10,000 x 10,000 array

All data collected with gcc 4.1, -O3, running on a
queiscent, multiuser Intel T9600 @ 2.8 GHz

bzero((void*) &A[0][0],(size_t) n*n*sizeof(int))

Conventional wisdom suggests using

0.52 sec on 10,000 x 10,000 array

A good compiler should know these tradeoffs,
on each target, and generate the best code.
Few real compilers do.

Intrinsic Merit

➢ Compiler construction poses challenging and interesting problems:

— Compilers must process large inputs, perform complex algorithms,
but also run quickly

— Compilers have primary responsibility for run-time performance

— Compilers are responsible for making it acceptable to use the full
power of the programming language

— Computer architects perpetually create new challenges for the
compiler by building more complex machines
→ Compilers must hide that complexity from the programmer

➢ A successful compiler requires mastery of the many complex
interactions between its constituent parts

Artificial intelligence Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms, union-find
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

Intrinsic Interest

➢ Compiler construction involves ideas from many different parts
of computer science

The View from 35,000 Feet 

Source
code

Machine
codeCompiler

Errors

High-level View of a Compiler

Implications
• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

Source
code

Front
End

Errors

Machine
code

Back
EndIR

Depends primarily
on source language

Depends primarily
on target machine

Classic principle from
software engineering:
Separation of concerns

Traditional Two-pass Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR

• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Responsibilities
• Recognize legal (& illegal) programs
• Report errors in a useful way
• Produce IR & preliminary storage map
• Shape the code for the rest of the compiler
• Much of front end construction can be automated

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Scanner
• Maps character stream into words—the basic unit of syntax
 (Lexical analysis)
• Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;
— word ≅ lexeme, part of speech ≅ token type, pair ≅ a token

• Typical tokens include number, identifier, +, –, new, while, if
• Speed is important

Textbooks advocate automatic scanner generation
Commercial practice appears to be hand-coded scanners

 

Split program to individual words that makes sense:
 My mother cooooookes dinner not.

while (y < z) {
 int x = a + b;
 y += x; }

Lexical analysis

Source
code Scanner

IR
Parser

Errors

tokens

The Front End

Parser
• Recognizes context-free syntax & reports errors
 (Syntax Analysis)
• Guides context-sensitive (“semantic”) analysis (type checking)
• Builds IR for source program

Hand-coded parsers are fairly easy to build
Most books advocate using automatic parser generators

The Front End

For Lexical and Syntact analysis we need grammars

 SheepNoise → SheepNoise baa
 | baa

This grammar defines the set of noises that a sheep makes under
normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

Formally, a grammar G = (S,N,T,P)
• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P : N → N ∪T)

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number

5. | id
6. Op → +
7. | -

S = Goal

T = { number, id, +, - }

N = { Goal, Expr, Term, Op }

P = { 1, 2, 3, 4, 5, 6, 7 }

The Front End
Context-free syntax can be put to better use

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “context-free
grammars”, abbreviated CFG

Production Result
 Goal
 1 Expr
 2 Expr Op Term
 5 Expr Op y
 7 Expr - y
 2 Expr Op term - y

 4 Expr Op 2 - y
 6 Expr + 2 - y
 3 Term + 2 - y
 5 x + 2 - y

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id
6. Op → +
7. | -

A derivation

The Front End
Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence in some CFG, we reverse this process
and build up a parse

Comp 412, Fall 2010

Term

Op TermExpr

TermExpr

Goal

Expr

Op

<id,x>

<number,2>

<id,y>

+

-

The parse tree contains a lot of
unneeded information

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id
6. Op → +
7. | -

The Front End
A parse can be represented by a tree (parse tree or syntax tree)
 x + 2 - y

+

-

<id,x> <number,2>

<id,y> The AST summarizes
grammatical structure,
without including detail
about the derivation

The Front End

Compilers often use an abstract syntax tree instead of
 a parse tree

This is much more concise

ASTs are one kind of intermediate representation (IR)

Split program to individual words that makes sense:
 My mother cookes dinner not.

while (y < z) {
 int x = a + b;
 y += x; }

 Syntax analysis

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
becomes ←

a +

dx

b c

Recall the speed difference
between different ways of

writing a simple array
initialization

The Front End

Code shape determines many properties of resulting program

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
e ← f + b x c + d

becomes

If you turn this AST into code,
you will likely get duplication

←

a +

dx

b c

←

e

+

dx

b c

+

f

seq

The Front End

Code shape determines many properties of resulting program

Source
code Scanner

IR
Parser

Errors

tokens

a ← b x c + d
e ← f + b x c + d

becomes

load @b ⇒ r1
load @c ⇒ r2
mult r1,r2 ⇒ r3
load @d ⇒ r4
add r3,r4 ⇒ r5

store r5 ⇒ @a
load @f ⇒ r6
add r5,r6 ⇒ r7
store r7 ⇒ @e

reuses
b x c + d

We would like to produce this code,
but getting it right takes a fair
amount of effort ….

computes
b x c + d

The Front End

Code shape determines many properties of resulting program

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Responsibilities
• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which value to keep in registers

Automation has been less successful in the back end

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

Standard goal has become “locally optimal” code.

The Back End

Instruction Selection
• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

— ad hoc methods, pattern matching, dynamic programming
— Form of the IR influences choice of technique

This was the problem of the future in 1978
— Spurred by transition from PDP-11 to VAX-11
— Orthogonality of RISC simplified this problem

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

The Back End

Register Allocation
• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices & insert LOADs & STOREs
• Optimal allocation is NP-Complete in most settings

Compilers approximate solutions to NP-Complete problems

Register allocation for a = (a x 2 x b x c) x d

Use 6 registers!

Use 3 registers!

The Back End

Instruction Scheduling
• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register
Allocation

Instruction
Selection

Machine
code

Instruction
Scheduling

IR IR

Instruction scheduling

• Reorder operations to reflect the target machine performance
constraints

LoadAI, storeAI 3 cycles
mult 2 cycles
others 1 cycle

Errors

Source
Code

Optimizer
(Middle End)

Front
End

Machine
code

Back
End

IR IR

Traditional Three-part Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

The Optimizer (or Middle End)

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

