# The fix point THEORY

## POSET (Partially ordered set, PO)

$$(P,\sqsubseteq)$$

$$(P,\sqsubseteq)$$
  $\subseteq P \times P$ 

reflexive  $\forall p \in P$ .

$$\forall p \in P$$
.

$$p \sqsubseteq p$$

$$\forall p, q \in P$$
.

antisymmetry 
$$\forall p,q \in P.$$
  $p \sqsubseteq q \land q \sqsubseteq p \Rightarrow p = q$ 

$$\forall p, q, r \in P$$
.

transitive 
$$\forall p,q,r\in P.\ p\sqsubseteq q \land q\sqsubseteq r \Rightarrow p\sqsubseteq r$$

 $p \sqsubseteq q$ 

means that p is less than (or equal to) q

$$p \sqsubseteq q$$
 means  $p \sqsubseteq q \land p \neq q$ 

#### Total Order

A PO 
$$(P, \sqsubseteq)$$
 is total iff

$$\forall p, q \in P. \quad p \sqsubseteq q \lor q \sqsubseteq p$$

A PO where every two elements are comparable

Total? PO?  $(\mathbb{N},\leq)$ Yes Yes Hasse diagram notation (omit: reflexive arcs, transitive arcs)

$$(\wp(S),\subseteq) \qquad \begin{array}{ccc} \mathsf{PO?} & \mathsf{Total?} \\ \mathsf{Yes} & |\mathsf{S}| \text{<} 2 \end{array}$$



PO? Total?

 $(\mathbb{N},=)$  Yes No

0 1 2 3 ...

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\})$$

PO? Total?

Yes No



#### PO with bottom

A PO  $(P, \sqsubseteq)$  that has a least element e, i.e,

$$\forall p \in P.e \sqsubseteq p$$

e is often indicates as  $\perp$ 

PO with  $\perp$  ?  $(\mathbb{N},\leq)$ Yes



 $(\mathbb{N},=)$ 

PO with  $\perp$  ?

No

0 1 2 3 ...

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\})$$
 PO with  $\bot$  ? Yes



#### Lattice

A special structure arises when <u>every</u> pair of elements in a poset has a least upper bound (lub) and a a

greatest lower (glb)



#### Lattice Definition

A lattice is a PO in which every pair of elements has both a lub and a glb



 $(\mathbb{N},\leq)$  Lattice? Yes





 $(\mathbb{N},=)$  Lattice?

No

0 1 2 3 ...

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\})$$

Lattice?



• Is this a lattice?

 No, because the pair {b,c} does not have a least upper bound



What if we modified it as shown here

 Yes, because for any pair, there is a lub & a glb



#### Ascending chains

• A sequence  $(I_n)_{n\in\mathbb{N}}$  of elements in a partial order L is an ascending chain if

$$n \le m \Rightarrow I_n \le I_m$$

• A sequence  $(I_n)_{n\in\mathbb{N}}$  converges if and only if

$$\exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : n_0 \le n \Rightarrow I_{n_0} = I_n$$

 A partial order (L,≤) satisfes the ascending chain condition (ACC) iff each ascending chain converges.

• The PO  $(N,\sqsubseteq)$  does not satisfy the ascending chain condition,



$$(N \cup \{\infty\}, \sqsubseteq)$$

satisfies the ACC condition



 $\circ \infty$ 

#### Complete Partial Order

A poset  $(P, \sqsubseteq)$  is called a complete partial order (CPO) if and only if any of its chains has a lub

If  $(P, \sqsubseteq)$  has a bottom element and any of its chains has a lub then  $(P, \sqsubseteq)$  is called a complete partial order (CPO) with bottom

• (N,  $\leq$ ) has bottom 0 but is not complete: the chain  $0 \leq 1 \leq 2 \leq \cdots \leq n \leq \cdots$  has no upper bound in N.

•  $(N, \ge)$  is a CPO but has no bottom.

$$(N \cup \{\infty\}, \sqsubseteq)$$

is CPO with bottom

$$\circ \infty$$

6431

#### Some complete PO

If  $(P, \sqsubseteq)$  has only finite chains it is complete

If  $(P, \sqsubseteq)$  is finite then it is complete

#### CPO with bottom

$$(\wp(S),\subseteq)$$



#### CPO without bottom

 $(\mathbb{N},=)$ 

0 1 2 3 ...

#### CPO with bottom

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\})$$



### Equivalent Definitions of Complete Lattices

A lattice L is called a complete lattice if every subset S of L admits a lub in L.

1

A lattice L is called a complete lattice if every subset S of L admits a glb in L.



A lattice L is called a complete lattice if every subset S of L admits a glb and a lub in L.

#### The idea



```
\Gamma L= N \cup \{\}
                                                        \circ \infty
      total order on N \cup \{\infty\}
   lub = max 
glb = min
                                                        ∮6
This is a complete lattice
```

### Example of complete lattice



- This is a complete lattice, with infinite elements

#### Lattices and ACC

- If L is a lattice with a bottom element and ACC, then L is a complete lattice
- If L is a finite lattice then it satisfies the ACC and therefore it also is complete.

#### Monotone functions on partial orders

Let  $(P, \leq_P)$  and  $(Q, \leq_Q)$  be PO.

A function  $\varphi$  from P to Q is monotone iff

$$p1 \leq_P p2 \Rightarrow \varphi(p1) \leq_Q \varphi(p2)$$



$$\phi_1(a)$$

$$\phi_1(d)$$

$$\phi_1(b)=\phi_1(c)$$

φ<sub>1</sub> is not monotone

$$\varphi_2(b) = \varphi_2(d)$$

$$\varphi_2(c)$$

$$\varphi_2(a)$$

•  $\varphi_1$  is monotone

### Monotonicity



#### Continuity

• Given two partial orders  $(P,\leq_P)$  and  $(Q,\leq_Q)$ , a functoin  $\phi$  from P to Q is continuous if for every chain S in P

$$\varphi(\mathsf{lub}(\mathsf{S})) = \mathsf{lub}\{ \varphi(\mathsf{x}) \mid \mathsf{x} \in \mathsf{S} \}$$

• if f is monotone on an ACC lattice then f is continuous



## Continuous function



#### **Fixpoints**

- Consider a monotone function  $f: (P, \leq_p) \to (P, \leq_p)$  on a partial order P
- An element x of P is a fixpoint of f if f(x)=x
- The set of fixpoints of f is a subset of P called Fix(f):

$$Fix(f) = \{ l \in P \mid f(l)=l \}$$

#### Fixpoint on Complete Lattices

- Consider a monotone function  $f:L\rightarrow L$  on a complete lattice L.
- Tarski Theorem:

```
Let L be a complete lattice. If f:L \rightarrow L is monotone then |fp(f)| = g|b\{ |l \in L| | |f(l)| \le l \} gfp(f) = |ub\{ |l \in L| | |l \le f(l) \}
```

#### Fixpoints on Complete Lattices



### Function monotone on complete lattice

• Let f be a monotone function:  $(P, \leq_p) \rightarrow (P, \leq_p)$  on a complete lattice P.

Let 
$$\alpha = \bigsqcup_{n \geq 0} f^n(\bot)$$

- If  $\alpha \in Fix(f)$  then  $\alpha = Ifp(f)$ 

### Fixpoints on Complete Lattices



#### Kleene Theorem

#### Kleene Theorem

If f is continuous on a complete CPO with bottom then the least fixpoint of f exists  $\,$  and it is equal to  $\alpha$ 

#### recall that

• if f is monotone on an ACC lattice then f is continuous

## Fixpoints on CPO with bottom when f is continuous

