Application:

i = O; i:= 0;
t3 := 0; . €3 =0
while i <= n do de€ad variable while i <= n do
. o . j = 0;
P ia. whili ] <=3m do
i : ’_ tl := t3 + j;
while ?_<_ n d?. temp := Base(A) + ti;
21 T t3B+ JEA) + t1 Cont (temp) := Cont(Base(B) + t1)
emp := base ; + Cont(Base(C) + t1);
Cont(temp) := Cont(Base(B) + t1) j 1= j+1
+ Cont(Base(C) + t1); od;
j =341 i= i+l
od; t3 := t3 + (m+1)
i := i+1; od

t3 := t3 + (m+1)
od



Reaching Definitions (Reaching Assignment) Analysis

One of the more useful data-flow analysis

dl : y :
d2 : x :

3
y

dl is a reaching definition for d2

dl : y := 3
d2 : y := 4
d3 : x =y

dl is no longer a reaching definition for d3, because d2 kills its reach:
the value defined in d1 is no longer available and cannot reach d3

A definition d at point i reaches a point p if there is a path from the
point i o p such that d is not killed (redefined) along that path



Reaching definitions

This information is very useful
* The compiler can know whether x is a constant at point p

» The debugger can tell whether is possible that x is an undefined
variable at point p



Reaching definitions

Given a program point n, which definitions are actual - not
successively overwritten by a different assignment - when the
execution reaches n?

And when the execution leaves n?
A program point may clearly "generate” new definitions
A program point n may "kill" a definition:
if nis an assignment x:=exp then n kills all the assignments to the

variable x which are actual in input to n

We are thus interested in computing input and output reaching
definitions for any program point



The intuition: the factorial of n

Which is the actual 3 ‘ /
definition of n n>1;

here? Can n be V

initialised?

output m;

Which is the actual
definition of m here?
Can m be initialised?

Which are the points that are reached by
this definition of m?

ich are the points that are reached by
definition of m?

hich are the actual

efinition of nand m ? Can

n or m be initialised?

I

=)

*

S

8y

S
Il




Formalization of the reachinc_q definition property

The property can be represented by sets of pairs:

{(x,p) | xeVars, p is a program point}€(Vars x Points)

where (x,p) means that the variable x is assigned at
program point p

For each program point, this dataflow analysis computes a

set of such pairs

The meaning of a pair (x,p) in the set for a program point g
is that the assignment of x at point p is actual at point g

? is a special symbol that we add to Points and we use to
represent the fact that a variable x is not initialized.

The set = {(x,?) | x&Vars} therefore denotes that all the
program variables are not initialized.



The domain for Reaching Definitions Analxsis

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.
Let Points={?,1,..N}.

<(7) (Vars x Poinfs)xP(Var's x Points) )N, 2>

- Example Vars={a,b} e N=1



Seecifica’rion

{(x,q9) |q€Points and {x}=def[q]} if {x}=def[p]

o Kills[p] = [
0 i () =deflp]
{(x.p)} if {x}=def[p]

* genylpl= [
l if () =deflp]

As usual, def[p] = {x} when the command in the point p is an assignment
Xizexp



Kill and Gen

ya

output m;




Specification

» Reaching definitions analysis is
specified by equations:
[ {(x,?) | x © VARS}

if p is initial
RDentry(p): <

if p is not initial

RDexit(P) =
(RD.,...y(P) \ Killos[p] ) U gengy[p]

\U{RDexit(q) [¢ Epre[p]}

L
input n;
2 |
m:= 1;

output m;

4
m:= m*n;
5
n:= n-1;




The solution of the previous system

Once again the solution for the equations in the previous system
are require the existence of a fix point

We can apply the Kleene theorem if we have

a) a continuous function on
b) a CPO with bottom



Point b

2N
<(7D (Vars x Poin‘rs)xP(Var's x Points) )N, &>

is a CPO with bottom?

Yes! Because it is finite



Point a: the map

The map Reach:

< (7) (Vars x Poim‘s)xP(Vors x Points) )N-> <(7D (Vars x Poin‘rs)xP(Vcr‘s x Points) )N
defined by

(assuming 1 is the only initial node)

RZGCh(<RDen‘rryl,RDexi’rl,...,RDenTryN,RDexi’rN>)=
<{(x,2) | xin VARS}, RD, .1 \Kill;p[1]) U genyy[1],

U{RD..., Im in pre[2]} , RD ..., \Killys[2]) U gengs[2],

exit2

U{RD Im in pre[NT} , RD \kill,5[N]) U geny [N]>

exitm entryN



Point a

Reach(<RDentry, RDexit;,... RDentry, RDexit,>)=
<{(x,?) | xin VARS}, RD_ ... \Killos[1]) U geny[1],
U{RD |m in pre[2]} , RD \kill ,x[2]) U geny[2]

exit2 entry2

U{RD |m in pre[N]} , RD \kill,x[N]) U geng [N]>

exitm entryN

kill 5 (1)={(a,?)}, geny (1)={(a,1)}
- Example kil (2)={(b.2)}, geng,(2)={(b.2)}

Reach(<Q000")=((@ )b 2@ Db N NP [2 g

Reach(<{(a,?)(b,?)X(a,1)(b,?)X(a,1)(b,?){(a,1)(b,2)}>)= - ’

<{(a,?)(b,?)H(a,1)(b,?)X(a,1)(b,?)H(a,1)(b,2)} \
Note that Reach is monotonel rb:= a+l;

|
Since it is monotone on a finite domain then it is continuous



Why a least fix point

RD analysis is possible,

if an assighment x:=a in some point q is really actual in entry
to some point p then

(qu) S RDenTr‘y(p)

The vice versa does not hold

All fixpoints of the above equation system is an over-approximation of
really reaching definitions.

Computing the least fixpoint gives a more precise over approximation



First iteration:

| 5 (eres (@S
2

m:= 1; RD,..,..(1)= {(n,2),(m,?)}

.| RD,_.,,(1) = {(n,2),(m, )}
n>1: RD, ..., (2)= {(n,2),(m, )}

RD_,;.(2)={(n,?),(m,2)}
RD,, .y (3)={(n,?),(M,2)}
RD,,;.(3)={(n,?),(m,2)}
RD,,..,(4)={(n,?),(M,2)}

6

output m;

RD_,;(4)={(n,?), (m,4)}

RD,,..,(5)= {(n,?),(m,4)}
RD, 4y (P) ={(x,?)| xin Vars}, if p is initial RD_...(5)={(n,5),(m,4)}
RD, 4, (P) =U{RD,,;+(q) | q in pre[p]}, otherwise RD, ... (6)= {(n,?),(m,2)}

RDexi‘l'(p) = (RDen'rry(p) \ k'”RD[P] ) U genRD[p] RDexit(6)= {(nl7)l(m12)}



Second iteration:

1
input n;
m:= 1;
‘ RD,.....,(1)= {(n,2),(m,?)}
c M RD__..(1) = {(n,?),(m,?)}
n>1; 4 D, 1ery(2)= {(n,2),(m,?)}
M= D,.e(2)= {(n,2),(M,2)}
5 Donery(3)={(n,2),(M,2)}
6 n:= D,.e(3)={(n,?),(m,2)}

RD_, . (D)= {(n,?),(M,2)}
RD_,; (D)= {(n,?), (m,4)}
RDemy(p) ={(x,?)| xin Vars}, if p is initial RDentry(5)= {(n,?),(m,4)}
D,y (P) U{RD,,4(q) | q in pre[p]}, otherwise RD__..(5)= {(n,5),(m,4)}

output m;

RD,,4(P) = (RD, . (P) \ Killgp[p1) U gengylpl  RDpe (6)={(n,2),(M,2)}
RD,,,.(6)= {(n,?),(m,2)}

RD,,..,(1)={(n,?),(m,?)}

RD,,; (1) = {(n,?),(m,?)}
RD,,..,(2)= {(n,?),(m,?)}
RD_,;.(2)={(n,?),(m,2)}
RD,,..,(3)={(n,?),(m,2),(n,5)(m,4)}
RD_,;.(3)=1(n,?),(m,2),(n,5)(m,4)}
RD, .., (H=1(n,?),(M,2),(n,5)(m,4)}
RD,,;(4)= {(n,?),(n,5)(m,4)}

RD,, .., (3)={(n,?),(n,5)(m,4)}
RD_,;.(5)={(n,3),(m,4)}
RD,...,(6)={(n,?),(m,2),(n,5)(m,4)}
RD_,;.(6)={(n,?),(m,2),(n,5)(m,4)}

fix point!



RD analxsis

* RD analysis is forward and possible,
i.e., if an assignment x:=a in some point q is really actual in entry
to some point p then
(X.9)ERD,p4ry(p) (While the vice versa does not hold).

How can we use this?

-If the analysis tells us that a variable is undefined then it is
-Loop invariant code motions



Application:

Consider a loop where:
1. mis the entry point

2. an inner point n contains an

assignment x:=exp

3. if for any variable y occurring

inexp (i.e.y vars(exp)) and for any program

point p, we have that
(y'p) RDentry(m) (y'p) RDentry(n)

Then,gfhe assignmeﬁ::exp can be correctly moved out as
preceding the entry point of the loop




AEEIica’rion:

Loop-invariant code motion

y:=3; 2:=5;

for(int

1=0; 1<9; 1i++) {

X =y + 2z;

a[i] =

}

2*i + X

y:=3;
X =

afi]

}

z:=5;

4
y t z;
for(int

1=0; 1i<9; i++) {
= 2*1 + x;




Available ExEr'essions Analxsis

Let p be a program point. For each execution path ending in p,
we want the expressions that have already been evaluated and
then not modified.

These are called available expressions



Example

x:=a+b;

y:=a*b;

while y>a+b 1

do (a:=a+l; X:= a+tb;
x:=a+b;) 2

when the execution reaches 3, the expression a+b
is available, since it has been previously evaluated
(in point 1 for the first iteration of the while-loop
and in point 5 for the next iterations) and does
not need to be evaluated again in 3

» This analysis can be therefore used to avoid re-
evaluations of available expressions




The domain

Let E={ e | e is a sub-expressions/expression appearing in P}
Let N be the number of nodes of the CFG of P

P e&xPE) )y, s is a finite domain



Kill ;e and Gen,¢
An expression e in E is killed in a program point p (e is in Kill ,(p))

if a variable occurring in e is modified (i.e., it is defined by some assignment)
by the command in p.

kill ,e([x:=€'lP)= {e in E | x € vars(e)}

An expression e is generated in a program point p (e is in gen ,(p))
if e is evaluated in p and no variable occurring in e is modified in p.

gen, c([x:=eJr) ={e} if x ¢ vars(e),
gene([x:=elpr) = () if x evars(e);
gen,:(S)P = exps(S) if S x:=e



ExamEIe

x:za+b; y:=a*b; while y>a+b do (a:za+l; x:za+b)

E = {a+b, a*b, a+1}

n Kill\e(N) gen,e(n)
1 |9 {a+b}

2 |D {a*b}

3 |Y {a+b}

4 |{atb, a*b,a+1} |C

5 |O {a+b}




Specification

* Available expressions analysis is specified by the following

equations, for any program point p:
(

% if p is initial

<
AEen'rr'y(p) =

. N{AE_...(q) | g €pre[p]} otherwise

AEexif(p): (AEen‘rr'y(p) \ kl”AE(p)) U genAE(p)



Point a and b to C‘EEIX Kleene Theorem

To find a solution to the previous equation system we need to apply
Kleene Theorem

0) (P ExPE)), V5 is a finite domain therefore is a
CPO, moreover, it has a bottom element

a) Themap (P ExPE)N > (PEXPE))  defined by
(assuming 1 is the only initial node)
A E(< A Een’rryl ,A Eexi'rl ree ,A Een‘l'r'yN :A EexiTN> ) =
<D, (AE 1 \ Kill,e(1)) U gen,g(1),

N{AE s | G in pre[2]}, (AEqumz \ Kill,e(2)) U gen,e(2),

N{AE it | g in pre[NI}, (AE oy \ Kill ,e(N)) U gen,e(N)>



Point a

a) The map
AB(AE vy, AEexitt - AB erntrypn ABxinn®) =
<D, (AEgniry1 \ Kill ,g(1)) U gen,g(1),
NAE it | g in pre[2]}, (AE 2 \ Kill4g(2)) U gen,g(2),

NAE g | g in pre[NI}, (AE oy \ Kill ,e(N)) U gen,e(N)>

P exPeE)y, <>

is monotone on the finite domain

- Example 1 ‘
AE(2,0,0,0,2,2> )= x-= a+b/°/
@ {a+b}, {}, {a*b}, {a*b}, {asb, a*b}> - a,:f,.
AE(<2 {a+b}, {}, {a*b}, {a*b}, {a+b, a*b}>)= ;

<@ {a+b}, {a+b}, {a+b,a*b}, {a+b,a*b}, {a+b,a*b}> x=a+b;




Which fix point?

AE is a definite analysis:
if e €AE,1,,(p) then e is really available in entry to p

the converse does not hold

* Any fixpoint of the above equation system is an under-approximation
of really available expressions.

Between all fix points, we are thus interested in computing
the greatest fixpoint (the more precise approximation)

Also, observe that this is a forward analysis.



C

The starting point, for all n
(n)=AE_,;;(n)={a+b,a*b a+1}

omputing the greatest fix point Eentry

x:za+b; y:=a*b; while y>a+b do (a:za+1; x:za+b)
E = {a+b, a*b, a+1}

n | killyg(n) genae(n)

1 |<D {a+b}

2 |9 {a*b}

3 |9 {a+b}

4 |{a+b, a*b,a+1}|D

5 | {a+b}
AE,.ry(1)= 0 AE,; (1)={a+b}
entry(Z)—{a+b} AE_ . (2) ={a+b,a*b}

(3)={a+b,a*b} AE....(3)={a+b,a*b}
entry(4) ={a+b,a*b} AE_,. (4)={}
entry(S)_{} exit(S)—{a+b}

entry

AE,...,(p)=@ if p is initial
AE neey(P)= M{AE,,;(q) | g in pre[p] }

AE,,:.(p) = (AEentry(p) \ kill ,e(p)) U gen,e(p)

1 ,
X:= a+b;




Second iteration
(p)=@ if pis initial

entry

entry(p)_ r-){AEexit(q) | q ln pr‘e[p]}

AE.;.(p) = (AE, .., (p) \ kill ,e(p)) U gen, e(p)

N AE () AE,...(n)

1 % {a+b}

2 {a+b} {a+b, a*b}

3 {a+b,a™b} {a+b,a*b}

4 |{a+b,a*b} %)

5 %, {a+b}
AE..;.(1)= AE,., (1) U {a+b}
AE..;.(2)= AE,,...(2) U {a*b}
AE.,;.(3)= AE,,..,(3) U {a+b}
AE,...(49)= AE_,..,(4) - {a+b, a*b, a+1}
AE..;.(5)= AE,,..,(5) U {a+b}

N AE by () AE,,:.(n)
1 %) {a+b}

2 {a+b} {a+b, a*™b}
3 {a+b} {a+b}

4 |{a+b} %

S % {a+b}




Third iteration and Greatest Fixpoint

AE,,:.(p) = (AEentry(p) \ kill ,e(p)) U gen,e(p)

entry

(p)=@ if pis initial

entry(p)- M{AE_,..(q) | q in pre[p] }

N |AE (M) AE,...(n)

1 % {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 |{a+b} &

5 |9 {a+b}
AE,,:.(1)= AE_,..,(1) U {a+b}
AE.,..(2)= AE,...,(2) U {a*b}
AE.,..(3)= AE,...,(3) U {a+b}
AE,,..(4)= AE,..,(4) - {a+b, a*b, a+1}
AE.,;.(5)= AE,,..,(5) U {a+b}

N |AE (D) AE.;e(N)
1 %) {a+b}

2 {a+b} {a+b, a*™b}
3 {a+b} {a+b}

4 |{a+b} %)

5 |9 {a+b}




Result

x:za+b; y:=a*b; while y>a+b do (a:=a+1; x:=a+b)

1

N |AE cy(N) AE.,;.(n)
1 |9 {a+b}

2 {a+b} {a+b, a*b}
3 |{atb} {a+b}

4 |{a+b} 0

5 |< {a+b}




Application:

i:= 0;
while i <= n do
j = 0;
while j <= m do

first computation

Ali.jJ=BLi jI+Clij]

temp := Base(A) + ix(m+1) + j;
Cont(temp) := Cont(Base(B) + i*(m+1) + j)

+ Cont(Base(C) t/i*(qfl) + 3);

j = g+l

od;
i := i+l

re-computations
od

tl :=1i *x (m+l) + j;

temp := Base(A) + ti;

Cont (temp) := Cont (Base(B)+t1]
+ Cont(Base(C)+t1,



A Dataflow Analxsis Framework

The above dataflow analyses (Reaching Definitions,
Available Expressions, Live Variables) reveal many
similarities.

One major advantage of a unifying framework of
dataflow analysis lies in the design of a generic
analysis algorithm that can be instantiated in order to
compute different dataflow analyses.



CaTalogue of Dataflow Analxses

Possible Analysis | Definite Analysis
Semantics C Analysis C
Analysis Semantics

Forward
in[n] out[n] |Reaching definitions Available
pre post expressions
Backward
out[n] in[n] Live variables Very busy
post pre

expressions




