Back to our examEIe

1. in[n]=use[n] VU (out[n] - def[n])
2. out[n]=U{in[m] | m € post[n]}

We need to compute a fix point
- but how can we be sure that such fix-points exist?

We can apply the fix point theory results |
We need to check that we have

a) a continuous function on Kleene's Theorem
b) a CPO with bottom

Point b first

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.

<(7D (Vars)xP(Vars) N, €*s is a finite domain.

Point b

<(7D (Vars)xP(Vars) N, RSN
CPO with bottom?

Yes!| Because it is finite

Point a

The map Live:
((Vars)x P(Var's) N -> (7) (Var's)xP(Var's))N defined by

Live(<ing,outy,...iny,outy>)=

<use[1]uU(out,-def[1]), U in,, ..., use[N]JU (outy, -def[N]),U in,>

meEpost[1] mEpost|N]

Point a

The map Live:
((Vars)x P(Vars))N -> (P (Vars)xP(Vars))N defined by

Live(<ing outy,...,ing,0uty>)=

<use[1]U(out,-def[1]), ing, ..., use[N]JU (outy, -def[N]), g in,>

mepost[1] mepost[N]|

IS continuous?

Yes! because it is monhotone on a finite domain

th a least fixEoin’r

* Live is a possible analysis,
in[n] 2 live-in[n] and out[n] 2 live-out[n]

i.e., if a variable x will be really live in a node n during some program
execution then x belongs to in[n] of all the fixpoints of the function Live

All fixpoints of the equation system is an over-approximation of really live
variables.

We want the least fixpoint (more precise over approximations)

Conservative AEEroxima’rion

* How tfo interpret the output of this static analysis?
- Correctness tells us that:

in[n] 2 live-in[n] and out[n] 2 live-out[n]

If the variable x will be really live in some node n during some

program execution then x belongs to in[n] of all the fixpoints of the
function Live (least fixpoint)

- The converse does not hold: the analysis can tell us that x is in the
computed set out[n], but this does not imply that x will be necessarily
live in n during some program execution

- In liveness analysis "conservative approximation” means that the analysis may
erroneously derive that a variable is live, while the analysis is not allowed to
erroneously derive that a variable is "dead" (i.e., not live).

%if x €in[n] then x could be live at program point n.
%if x&in [n] then x is definitely dead at program point n.

for all n
in[n] :={} out[n]:={};
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};

until (for all n: in'[n]=in[n] && out' [n]=out[n])

c:= c+b;

4 ,

a:= b*2;
a<N;

6

Live! Live2 Lives

in out (In out |In out
1 a a
2 a a bc lJac bec
3 bc bc b bc b
4 b b b
5 a ac |ac ac
6 C C C

return c;

for all n
in[n]:=?; out[n]:=7?;
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};
until (for all n: in'[n]=in[n] && out'[n]=out[n])

Lives Live4 Lived

1n out |in out [|In out

a acC C acC

ac bc lac bc lac begc

bc b bc b bc b

b a b ac |bc ac

acC acC acC acC acC ac

c:= c+b;

4 ,

a.= b*2;
a<N;

6

AN DN DWW +—

C C C

return c;

AN DN BR[N] —

Lived Live® Live’

In out [In out |[In out
C ac |c ac |c ac
ac bc |ac bc |ac bec
bc b bc bc |bc bec
bc ac |bc ac |bc ac
ac ac |ac ac |ac ac
C C C

The algorithm thus gives the following output:

out[1]={a,c}, out[2]={b,c}, out[3]={b,c}, out[4]={a,c},

out[5]={a,c}

In this case, the output of the analysis is precise

a:= 0;
2

b:= a+l;
3

c:= c+b;
4 |
a:= b*2;

a<sN;

6

return c;

ImEr'ovemen’r

In this iterative computation, observe that we have to wait for the next
iteration in order to exploit the new information computed for in and out
onh the nodes.

By a suitable reordering of the nodes and by first computing out[n] and
then in[n], we are able to converge to the fixpoint in just 3 iteration
steps.

for all n
in[n] :=?; out[n]:=7?;
repeat
for all n (6 to 1)
in'[n] :=in[n]; out'[n] :=out[n];
out[n]:= U { in[m] | m € post[n]};
in[n] := use[n] U (out[n] - def[n]);
until (for all n: in'[n]=in[n] && out'[n]=out[n])

for all n

in[n]:=?; out[n]:=7?;

repeat

for all n (6 to 1)

in'[n] :=in[n]; out'[n]:=out[n];
out[n]:
in[n]:
until (for all n:

DN | WU O\

U { in[m]

| m € post[n]};
use[n] U (out[n] - def[n]);

in'[n]=in[n] && out'[n]=out[n])

Live! Live2 Live3

out iIn |out In |out In
C C C

C ac |[ac ac l|ac ac

ac bc lac bc |ac bec

bc bc |bc bc |bc bec

bc ac |bc ac |bc ac

ac ¢ ac ¢ ac ¢

Backward Analxsis

As shown by the previous example, Live Variable
Analysis is a "backward” analysis. This means that
information propagates "backward” from terminal
nodes to initial nodes:

in[n] can be computed from out[n];

out[n] can be computed from in[m] for all the nodes m
that are successors of n.

