Dataflow Analyses

Code Optimization in Compilers

Pregaration Code
for Code 1™ Generator |1
Genaraton

—~———

Conmrod
! Flow mv(c::ov::emm !
Analysis

Correctness Above All!

If may seem obvious, but it bears repeating that optimization should not change the
correctness of the generated code. Transforming the code to something that runs faster
but incorrectly is of little value. It is expected that the unoptimized and optimized
variants give the same output for all inputs. This may not hold for an incorrectly
written program (e.g., one that uses an uninitialized variable).

Control flow graph

Program commands are encoded by nodes in a control flow
graph
If a command S may be directly followed by a command T

then the control flow graph must include a direct arc from
the node encoding S to the node encoding T

Example

[input n;]!
[m:=1;]2
[while n>1 do]3
[m:=m * n;]4
[n:=n - 1; 1]5

[output m;]6

6

output m;

Data-Flow analxses

We will see data-flow analyses:
-Liveness analysis

- Reaching definitions analysis
-Available Expressions analysis

Liveness or Live Variables Analysis

- We need to translate the source program in the
intermediate representation IR that can use a large
(potentially unbounded) number of registers.

* but the program will be executed by a processor with
a (finite and) small number of registers

» Two variables a and b can be stored on the same
register when it turns out that a and b are never
simultaneously “used”

IR: Three Address Code

Three-address instruction has at most three operands
and is typically a combination of an assignment and a
binary operator.

For example: 11 := 12 + 3.

The name derives from the use of three operands in
these statements even though instructions with fewer
operands may occur.

IR: Three Address Code example

Calculate one solution to the
[[quadratic equation]].
X = (-b + sqrt(b”2 - 4*a*c)) / (2*a)

tl := b * b
t2 := 4 * a
t3 := t2 * ¢
t4 := tl1 - t3
t5 := sqrt(t4)
té := 0 - b
t7 := t5 + té6
t8 := 2 * a
t9 := t7 / t8
X := t9

Example

do {
b = a+l;
c += b;
a = b*2;

}
while (a<N) ;

return c;

We may observe that there is not
need for two distinct variables an
and b we could use a unique variable,
because a and b are never . \
simultaneously used. return c;

a<N;

Live Variables Analxsis

» A compiler needs to analyze programs in IR in order to
find out which variables are simultaneously used

- A variable X is live at the exit of a command C if X stores
a value which will be actually used in the future, that is,
X will be used as R-value with no previous use as L-value

+ A variable X which is not live at the exit of C is also
called dead (this information can be used for dead code
elimination)

- This is an undecidable property

Back to the example

A variable X is live when it stores a value
which will be later used with no prior
assignment to X

- The "“last” use of the variable b as r-value is in
command 4

* The variable b is used in command 4: it is
therefore live along the arc 3 — 4

- Command 3 does not assign b, hence b is live
along 2 — 3

+ Command 2 assigns b. This means that the
value of b along 1 — 2 will not be used later

I
o)
*
N

‘.

s |

a<N;

* Thus, the "“live range” of b turns out to be: {2 _ \

— 3,3 — 4}

return c;

Live variables
1 I

-aislivealong4 —5and 5 — 2

- aislivealongl — 2

* ais not live along2 -3 and 3 — 4

- Even if the variable a stores a value in node
3, this value will not be later used, since

node 4 assigns a new value to the variable
a.

return c;

More on live variables

* cis live along all the arcs

Il
(V]
<+ |
= |

* By the way: liveness analysis canbe |b:
exploited to deduce that if cis a
local variable then ¢ will be used with [c.= c4b:
no prior initialization (this | ‘
information can be used by compilers r‘a
to raise a warning message)

.= b*2;

s ||

a<N;

; 1

return c;

%:= a+l;

2 |

c:= c+b;

s]

a:= b*2;
5

a<N;

¢ |

return c;

return c;

-> Two registers are enough: variables a and b will be
never simultaneously live along the same arc

Variables a and b will be
never simultaneously live
along the same arc. Hence,
instead of using two distinct
variables a and b we can
correctly employ a single
variable ab

ab<N;

; |

return c;

We need a way to compute live variables

* A CFG has outqgoing edges (out-edges) that lead to ;| |
successor nodes, and ingoing edges (in-edges) that |5.= 0.
originate from predecessor nodes.

b:= a+l;
- pre[n] and post[n] denote, respectively, the ;
predecessor and successor nodes of some node n.
c:= c+tb;
* As an example, in this CFG: 4a = D*2 -
— 2 and 6 are the out-edges of node 5 because - ’
5 — 6 and 5 — 2 are the out-edges of 5
— 1 and 5 are the in-edges of node 2 since a<N;

5 —2and 1 — 2 are the in-edges of 2 6
return c;

— pre[2]={1,5}; post[5]={2,6}.

Notation

* An assignment to some variable (a use of the |

variable as L-value) is called a definition of the '
variable a:= 0;
- A use of some variable as R-value in a command is 7
called a use of this variable b:= a+l;
3
- def[n] denotes the set of variables that are c:= ctb;
defined in the node n 4
a:= b¥*2;
- use[n] denotes the set of variables that are used
in the node n a<N;
- As an example, in this CFG: 6
- def[3]={c}, def[5]= 0 return c;

- use[3]={b,c}, use[B]={a}

Formalization

- A variable x is live along an arc e—f if there exists a
(real) execution path P from the node e to some node
h such that:

—e—f is the first arc of such path P
— X €use[n]

— for any node n'ze and n'zn in the path P,
x¢def[n']

* A variable x is live-out in some node n if x is live
along some (i.e., at least one) out-edge of n

- A variable x is live-in in some node n if x is live 6

a:= 0;
2
‘b:= a+l;
3
c:= c+b;
4
a:= b*2;
a<N;

along any in-edge of n

return c;

ExamEIe

As an example, in this CFG:
aislivealongl - 2,4 —-5and5 — 2
bislivealong2 - 3,3 -4
c is live along any arc
a is live-in in node 2, while it is not live-out in node 2

a is live-out in node 5 .

a:= 0;
2
‘b:= a+l;
3
c:= c+b;
4
a:= b*2;
a<N;

return c;

ComEu’ring Liveness

Let us define the following notation:

in[n] is the set of variables that the static analysis
determines to be live-in at node n

out[n] is the set of variables that the static analysis
determines to be live-out at node n

ComEuTing Liveness h node of the CFG

P S—

Liveness information: the sets in[n] and out[n] is computed
as an over-approximation in the following way

1. If avariable xcuse[n]then x is live-in in node n.
In other terms, if a node n uses a variable x as R-value then
this variable x is live along each arc that enters into n.

N/

y:= x+z+2;

In[n] 2 use[n]

Computing Liveness

2. If avariable x is live-out in a hode n and x & def[n] then the
variable x is also live-in in this node n.
If a variable x is live for some arc that leaves a node n and x is
not assigned in n then x is live for all the arcs that enter in n

N/

y:= wtz*2;

VAN

In[n] 2 out[n] - def[n]

ComEu‘ring Liveness

3. If avariable x is live-in in a hode m then x is live-out for all the
nodes n such that m&post[n].

This is clearly correct by definition.

n, n,

/ [\

y:= x+z*2;

m

out[n,] 2 U{in[m] | m € post[n,]}
out[n,] 2 U{in[m] | m € post[n,]}

Dataflow Egua’rions

The previous three rules of liveness analysis can be
thus formalized by two equations for each node n:

1. in[n] = use[n] U (out[n] - def[n]) (rules1and 2)

2.out[n] = U{in[m] | m € post[n]} (rule 3)

Correcthess of Liveness

This definition of liveness analysis in[n] and out[n] is correct:
If x is concretely live-in (live-out) in some node n then the
static analysis will detect that x €in[n] (x€ out[n]):

in[n] 2 live-in[n]
out[n] 2 live-out[n]

In other terms, no actually live variable is neglected by liveness
analysis.

Correctness in Dragon Book

Why the Available-Expressions Algorithm Works

We need to explain why starting all OUT’s except that for the entry block
with U, the set of all expressions, leads to a conservative solution to the
data-flow equations; that is, all expressions found to be available really
are available. First, because intersection is the meet operation in this
data-flow schema, any reason that an expression 2 + y is found not to be
available at a point will propagate forward in the flow graph, along all
possible paths, until # + y is recomputed and becomes available again.
Second, there are only two reasons x + y could be unavailable:

1. 2 + y is killed in block B because x or y is defined without a subse-
quent computation of 2 +y. In this case, the first time we apply the
transfer function fg, x + y will be removed from ouT[B].

2. x + y is never computed along some path. Since = + y is never in
OUT[ENTRY], and it is never generated along the path in question,
we can show by induction on the length of the path that 2 + y is
eventually removed from IN’s and OUT’s along that path.

Thus, after changes subside, the solution provided by the iterative algo-
rithm of Fig. 9.20 will include only truly available expressions.

ComEu‘ring Liveness

Liveness analysis is approximate:

it assumes that each path of the CFG is a feasible path
while this hypothesis is obviously not true

ComEu‘ring Liveness

Liveness analysis is approximate: it assumes that each path
of the CFG actually is a feasible path while this hypothesis
is obviously not true.

L The analysis determines that a is live-in in
a:=b*b; nine .
‘ 5, and therefore a is live-out in 3.
f:, —atb - However, no real execution path from 3 to
: ‘ ’ 5 exists (because b+b*b<b is always false)
3;:5=b so that a is not really live when exiting 3!

N

r:lreturn c| |return a

Least Fixpoint
1. in[n] = use[n] U (out[n] - def[n])
2. out[n] = U {in[m] | m € post[n]}

Live variable analysis is computed as the least fixpoint of
the set of equations {1,2} for the sets in and out of each
program point

Correctness tells us that in[n] 2 live-in[n] and out[n] 2 live-
out[n]

Computing the fix point

1. in[n]=use[n] VU (out[n] - def[n])
2. out[n]=U{in[m] | m € post[n]}

* Let Vars be the finite set of variables that occur in the program P to
analyze. Let N be the number of nodes of the CFG of P.

Thus, the map Live:
(P (vars)x P(vars) N > (P (vars)x P(vars))N defined by

Live(<ing,out,...,ing,outy>)=
<use[1]U(out,-def[1]), L in_, ..., use[NJU (outy -def[N]), | in_>

mepost[1] mepost|N]

is a monotonic (and therefore continuous) function on the finite lattice
<(7D (Vars)xP(Vars) N, §2N> and therefore Live has

a least fixpoint

