
Context-sensitive Analysis  
or  

Semantic Elaboration  

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Beyond Syntax

There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(int a, int b,int c,int d) {
 …
}
fee() {

int f[3],g[0], h, i, j, k;
 char *p;

fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• number of args to fie()
• declared g[0], used g[17]
• “ab” is not an int
• wrong dimension on use of f
• undeclared variable q
• 10 is not a character string

All of these are
“deeper than syntax”

Beyond Syntax

To generate code, the compiler needs to answer many questions
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but not used?
• Which declaration of “x” does a given use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)

• In “f ← 15”, how should 15 be represented?
• How many arguments does “fie()” take? What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These are beyond the expressive power of a CFG

Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of speech
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?
• Use formal methods

— Context-sensitive grammars?
— Attribute grammars

• Use ad-hoc techniques
— Symbol tables
— Ad-hoc code (action routines)

In context-sensitive analysis, ad-hoc techniques dominate practice.

Beyond Syntax

Telling the story
• We will study the formalism — an attribute grammar

— Clarify many issues in a succinct and immediate way
— Separate analysis problems from their implementations

• We will see that the problems with attribute grammars
motivate actual, ad-hoc practice
— Non-local computation
— Need for centralised information

We will cover attribute grammars, then move on to ad-hoc ideas

Attribute Grammars

What is an attribute grammar?

• A context-free grammar augmented with a set of rules
• Each symbol in the derivation (or parse tree) has a set of

named values, or attributes
• The rules specify how to compute a value for each attribute

— Attribution rules are functional; they uniquely define the value

Example grammar

This grammar describes
signed binary numbers

We would like to augment it
with rules that compute the
decimal value of each valid
input string

Examples

We will use these two examples throughout the lecture

Number → Sign List

→ Sign Bit

→ Sign 1

→ – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List

→ Sign List Bit

→ Sign List 1

→ Sign List Bit 1

→ Sign List 0 1

→ Sign Bit 0 1

→ Sign 1 0 1

→ – 101

Number

ListSign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Back to the Examples

One possible evaluation order:

1 List.pos
2 Sign.neg
3 Bit.pos
4 Bit.val
5 List.val
6 Number.val

Other orders are possible

Evaluation order
must be consistent
with the attribute
dependence graph

Knuth suggested a data-flow model for evaluation

• Independent attributes first

• Others in order as input values become available

Rules + parse tree imply an
attribute dependence graphEvaluation order

Back to the Examples

This is the complete
attribute dependence
graph for “–101”.

It shows the flow of all
attribute values in the
example.

Some flow downward
→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes
in the parent, children, or
siblings of a node

The Rules of the Game

• Attributes associated with nodes in parse tree
• Rules are value assignments associated with productions
• Attribute is defined once, using local information
• Label identical terms in production for uniqueness
• Rules & parse tree define an attribute dependence graph

— Graph must be non-circular

This produces a high-level, functional specification

Synthesized attribute
— Depends on values from children

Inherited attribute
— Depends on values from siblings & parent

N.B.: AG is a specification
for the computation, not an
algorithm

Using Attribute Grammars
Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

We want to use both kinds of attributes

Synthesized Attributes

• Use values from children
 & from constants

• S-attributed grammars

• Evaluate in a single
 bottom-up pass

Good match to LR parsing

Inherited Attributes
• Use values from parent,
 constants, & siblings

• Directly express context

• Can rewrite to avoid them

• Thought to be more natural

Not easily done at parse time

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

Syntax Tree

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Attributed Syntax Tree

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Val draws from children & the same node.

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

More Synthesized attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

Back to the Example

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods sort this
graph to find independent values,
then work along graph edges.

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore the
structure of this graph.

The dependence graph must be acyclic

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

