
Almost always a power  
of  2, known at compile-time 
⇒ use a shift for speed

Color Code: 
 
Invariant 
 Varying

Depending on how A is declared, @A may be  
•an offset from the ARP,  
•an offset from some global label, or  
•an arbitrary address. 
The first two are compile time constants.

Computing an Array Address of an array A[low:high]
A[ i ] 
• @A + ( i – low ) x sizeof(A[i])  
• In general: base(A) + ( i – low ) x sizeof(A[i])



Almost always a power of 
2, known at compile-time  
⇒ use a shift for speed

Computing an Array Address A[low:high]

A[ i ] 
• @A + ( i – low ) x w   
• In general: base(A) + ( i – low ) x  w

If the compiler knows low it can fold the subtraction  
into @A 

A0 = @A� (low ⇤ w)
<latexit sha1_base64="o9adgsuvOIHC8YpeEE49zwW8WGA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxCFSwzVdCN0OrGZQX7gHYYMmmmDc0kQ5Kx1KFf4saFIm79FHf+jeljoa0HLhzOuZd77wliRpV2nG8rs7K6tr6R3cxtbe/s5u29/YYSicSkjgUTshUgRRjlpK6pZqQVS4KigJFmMLid+M1HIhUV/EGPYuJFqMdpSDHSRvLtfNV3rivVsyITQ3g6PPHtglNypoDLxJ2TApij5ttfna7ASUS4xgwp1XadWHspkppiRsa5TqJIjPAA9UjbUI4iorx0evgYHhulC0MhTXENp+rviRRFSo2iwHRGSPfVojcR//PaiQ6vvJTyONGE49miMGFQCzhJAXapJFizkSEIS2puhbiPJMLaZJUzIbiLLy+TRrnknpfK9xeFys08jiw4BEegCFxwCSrgDtRAHWCQgGfwCt6sJ+vFerc+Zq0Zaz5zAP7A+vwBClCRZA==</latexit>

The false zero of A

where w = sizeof(A[i])
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The False Zero

loadI @A0 ) r@A0

lshiftI ri, 2 ) r1
loadA0 r@A0 , r1 ) rv

<latexit sha1_base64="YweNpKilgXnHByJ6gRj43Ueq/YY="></latexit>

loadI @A ) r@A

subI ri, 2 ) r1
lshiftI r1, 2 ) r2
loadA0 r@A, r2 ) rv

<latexit sha1_base64="tUNnTxhGDE6+obiZEb8HzbE8NEQ="></latexit>

computing A[i] with A0computing A[i] with A

A0 = @A� (low ⇤ w)
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How does the compiler handle A[i,j] ?

First, must agree on a storage scheme 
Row-major order                                                  (most languages) 

Lay out as a sequence of consecutive rows 

Rightmost subscript varies fastest 

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3] 

Column-major order                                                       (Fortran)  
Lay out as a sequence of columns 

Leftmost subscript varies fastest 

A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3] 

Indirection vectors                                                            (Java)  
Vector of pointers to pointers to … to values 

Takes much more space, trades indirection for arithmetic 

Not amenable to analysis



The Concept 

Row-major order 

Column-major order 

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have 
distinct & different 
cache behavior 

Laying Out Arrays



This stuff  looks expensive! 
Lots of implicit +, -, x ops

e.g., @A + ( i1 – low ) x w

Computing an Array Address

A[ i ] 
• @A + ( i – low ) x w  
• In general: base(A) + ( i – low ) x w 

What about A[i1,i2] ? 

Row-major order, two dimensions 
 @A + (( i1 – low1 ) x (high2 – low2 + 1) + i2 – low2) x w 

Column-major order, two dimensions 
 @A + (( i2 – low2 ) x (high1 – low1 + 1) + i1 – low1) x w 

Indirection vectors, two dimensions 
 *(A[i1 ])[i2] — where  A[i1] is, itself, a 1-d array reference

where w = sizeof(A[1,1])

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

low2 hight2

hight1

low1

A[2,3]  @A+(2-1)x 4+(3-1)



In row-major order 
@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w 

Which can be factored into 
@A + i x (high2–low2+1) x w + j x w 

    – (low1 x (high2–low2+1) x w) - (low2 x w) 

If  lowi, highi, and w are known, the last term is a constant 

Define @A0 as  

     @A – (low1 x (high2–low2+1) x w - low2 x w 

And len2 as (high2-low2+1)  

Then, the address expression becomes  
     @A0 + (i x len2 + j ) x w

Compile-time constants

If @A is known, @A0 
is a known constant.

Optimizing Address Calculation for A[i,j]

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

low1

hight1

hight2low2



@A
low1

high1

low2

high2

Array References

What about arrays as actual parameters? 

Whole arrays, as call-by-reference parameters 
• Need dimension information ⇒ build a dope vector 
• Store the values in the calling sequence 
• Pass the address of the dope vector in the parameter slot 
• Generate complete address polynomial at each reference 

Some improvement is possible 
• Choose the address polynomial based on the false zero    
• Pre-compute the fixed terms in prologue sequence  

What about call-by-value? 
• Most  languages pass arrays by reference 
• This is a language design issue



The Dope vector



Range checking
A program that refers  out-of-the-bound array elements is not well 

formed. 

Some languages like Java requires out-of-the-bound accesses be 
detected and reported.  

In other languages compilers have included mechanisms to detect and 
report out-of-the-bound accesses. 

The easy way is to introduce is to introduce a runtime check that verifies 
that the index value falls in the array range 

Information on the bounds in the dope vector

the compiler has to prove  
that a given reference cannot  
generate an out-of-bounds reference

Expensive!!



Array Address Calculations

Array address calculations are a major source of overhead 
• Scientific applications make extensive use of arrays and array-like 

structures 
— Computational linear algebra, both dense & sparse 

• Non-scientific applications use arrays, too 
— Representations of other data structures 

→Hash tables, adjacency matrices, tables, structures, … 

Array calculations tend iterate over arrays  
• Loops execute more often than code outside loops 
• Array address calculations inside loops make a huge difference in 

efficiency of many compiled applications 
Reducing array address overhead has been a major focus of 

optimization since the 1950s.



A, B are declared as conformable 
floating-point arrays

Example: Array Address Calculations in a Loop

DO J = 1, N 
 A[I,J] = A[I,J] + B[I,J] 
END DO 

Naïve: Perform the address calculation twice 

DO J = 1, N 
 R1 = @A0 + (J x len1 + I ) x w 

 R2 = @B0 + (J x len1 + I ) x w 

 MEM(R1) = MEM(R1) + MEM(R2) 
END DO

  @A0 + (j x len1 + i ) x w 

In column-major order

number of rows!



Loop-invariant code motion

Example: Array Address Calculations in a Loop

DO J = 1, N 
 A[I,J] = A[I,J] + B[I,J] 
END DO 

More sophisticated: Move common calculations out of loop 

R1 = I x w 
c = len1 x w     ! Compile-time constant 
R2 = @A0 + R1 
R3 = @B0 + R1 
DO J = 1, N 
 a = J x c  
 R4 = R2 + a 
 R5 = R3 + a 
 MEM(R4) = MEM(R4) + MEM(R5) 
END DO



Operator Strength Reduction (§ 10.4.2 in EaC)

J is now bookkeeping 

A good compiler would 
rewrite the end-of-
loop test to operate 
on R2 or R3 

(Linear function test 
replacement)

Example: Array Address Calculations in a Loop
DO J = 1, N 
 A[I,J] = A[I,J] + B[I,J] 
END DO 

Very sophisticated: Convert multiply to add  

R1 = I x w 
c = len1 x w     ! Compile-time constant 

R2 = @A0 + R1 ;   

R3 = @B0 + R1; 

DO J = 1, N 
 R2 = R2 + c 
 R3 = R3 + c 
 MEM(R2) = MEM(R2) + MEM(R3) 
END DO



Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures 
• Languages support can be different: 

• In C most manipulations takes the form of calls to library routines  
• Other languages provvide first-class mechanism to specify 

substrings or concatenate them 

• Fundamental unit is a character 
— Typical sizes are one or two bytes 

— Target ISA may (or may not) support character-size operations 

String operation can be costly 
• Older CISC architectures provide extensive support for string manipulation 
• Modern RISC architectures rely on compiler to code this complex operations 

using a set a of simpler operations



@b

Length field may 
take more space 
than terminator

@b

Representing and Manipulating Strings

Two common representations of string “a string” 
• Explicit length field 

• Null termination 

• Language design issue 
— Fixed-length versus varying-length strings    (1 or 2 length fields)



Representing and Manipulating Strings

Each representation as advantages and disadvantages 

Unfortunately, null termination is almost considered normal 
• Hangover from design of C 
• Embedded in OS and API designs



Manipulating Strings

Single character assignment 

• With character operations 
— Compute address of rhs, load character 
— Compute address of lhs, store character 

• With only word operations               (>1 char per word) 
— Compute address of word containing rhs & load it 
— Move character to destination position within word 
— Compute address of word containing lhs & load it 
— Mask out current character & mask in new character 
— Store lhs word back into place

a[1]=b[2]



Manipulating Strings

Multiple character assignment 
Two strategies  

1. Wrap a loop around the single character code, or 
2. Work up to a word-aligned case, repeat whole word moves, and 

handle any partial-word end case 

With character operations 

With only word operations



Manipulating Strings

Concatenation 
• String concatenation is a length computation followed by a pair of 

whole-string assignments 
— Touches every character 

— There can be length problems!



Manipulating Strings

Length Computation 

• Representation determines cost 
— Explicit length turns length(b) into a memory reference 
— Null termination turns length(b) into a loop of memory references 

and arithmetic operations 

• Length computation arises in other contexts 
— Whole-string or substring assignment 

— Checked assignment (buffer overflow) 
— Concatenation 

— Evaluating call-by-value actual parameter



Implementation of booleans, relational 
expressions & control flow constructs 
varies widely with the ISA

Boolean & Relational Values

How should the compiler represent them? 
• Answer depends on the target machine 

Two classic approaches 
• Numerical (explicit) representation 
• Positional (implicit) representation 

Best choice depends on both context and ISA 
Some cases works better with the first representation other ones 

with the second!



Expr � Expr  ∨ AndTerm

| AndTerm

AndTerm � AndTerm  ∧ RelExpr

| RelExpr

RelExpr � RelExpr  < NumExpr

| RelExpr  ≤ NumExpr

| RelExpr  = NumExpr

| RelExpr  ≠ NumExpr

| RelExpr  ≥ NumExpr

| RelExpr  > NumExpr

NumExpr � NumExpr  + Term

| NumExpr  - Term

| Term

Term � Term  × Value

| Term  ÷ Value

| Value

Value � ¬ Factor

| Factor

Factor | (  Expr  )

| number

Boolean & Relational Expressions
First, we need to recognize boolean & relational expressions



Boolean & Relational Values
Next, we need to represent the values 

Numerical representation 
• Assign numerical values to TRUE and FALSE 
• Use hardware AND, OR, and NOT operations 
• Use comparison to get a boolean from a relational  
If the  target  machine supports boolean  operations that compute 
the boolean result             cmp_LT rx,ry-> r1     r1=True if rx<=ry, r1=False otherwise  



Boolean & Relational Values
What if the target machine  uses a condition code?  

• Must use a conditional branch to interpret result of compare 

If the target machine computes a code result of the comparison and 
we need to store the result of the boolean operation 

cmp r1,r2 -> cc  sets cc with code for LT,LE,EQ,GE,GT,NE

cbr_LT cc l2,l3  
sets PC=l2 if CC=LT  PC=l3 otherwise



Boolean & Relational Values

The last example actually encoded result in r2 

If result is used to control an operation, that may suffice 

Positional encoding! 



Other Architectural Variations 

Conditional move & predication both simplify this code 

Both versions avoid the branches 
Both are shorter than cond’n codes or Boolean-valued compare 
Are they equivalent to the initial code? Not always! 
Are they better? does code size matter? or execution time?

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT,   copy r2 in r3 otherwise

Boolean & Relational Values

?
?

(r1)? add r2,r3 ->r4 the add operation executes if r1 is true 



Boolean & Relational Values
Consider the assignment  x ← a < b ∧ c < d

Here, Boolean compare produces much better code 



x ← a < b ∧ c < d

Boolean & Relational Values
Conditional move & predication help here, too 

Conditional move is worse than Boolean compare 
Predication is identical to Boolean compares 

The bottom line: 
⇒ Context & hardware determine the appropriate choice

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT,   copy r2 in r3 otherwise



Control Flow

If-then-else 
• Follow model for evaluating relationals & booleans with branches (if 

the if-then-else statement have trivial parts )  
• Using predicate for large blocks in the then and else part wastes  
      execution cycles 

Branching versus predication  
• Frequency of execution 

— Uneven distribution ⇒ do what it takes to speed common case 

• Amount of code in each case 
— Unequal amounts means predication may waste issue slots 

• Control flow inside the construct 
— Any branching activity within the construct complicates the predicates 

and makes branches attractive



Short-circuit Evaluation

Optimize boolean expression evaluation (lazy evaluation) 

• Once value is determined, skip rest of the evaluation 
if (x or y and z) then …
— If x is true, need not evaluate y or z 

→ Branch directly to the “then” clause 
— On a PDP-11 or a VAX, short circuiting saved time 

• Modern architectures may favor evaluating full expression 
— Rising branch latencies make the short-circuit path expensive 
— Conditional move and predication may make full path cheaper 

• Past: compilers analyzed code to insert short circuits 
• Future: compilers analyze code to prove legality of full path 

evaluation where language specifies short circuits



Control Flow
Loops 
• Evaluate condition before loop (if needed) 
• Evaluate condition after loop  
• Branch back to the top (if needed) 

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block



Implementing Loops

for (i = 1; i< 100; 1) { loop body }
next statement

Pre-test

Post-test

Initialization



Break statements

Many modern programming languages include a break 
• Exits from the innermost control-flow statement 

— Out of the innermost loop 
— Out of a case statement 

Translates into a jump 
• Targets statement outside control- 
 flow construct 
• Creates multiple-exit construct 
• Skip in loop goes to next iteration 

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break in 
B 1

Skip in 
B 2



Case (switch) Statements

1 Evaluate the controlling expression 
2 Branch to the selected case 
3 Execute the code for that case 
4 Branch to the statement after the case 

Parts 1, 3, & 4 are well understood,  
part 2 is the key:  
need  an efficient method to locate the designated code  

many compilers provvide several different search schemas each one 
can be better in some cases.  



Case Statements

1 Evaluate the controlling expression 
2 Branch to the selected case 
3 Execute the code for that case 
4 Branch to the statement after the case                (use break) 
Parts 1, 3, & 4 are well understood, part 2 is the key 

Strategies 
• Linear search  (nested if-then-else constructs) 
• Build a table of case expressions & binary search it 
• Directly compute address  (requires dense case set)

Case statements are a place where attention 
to code shape pays off handsomely.



Linear Search 

Switch StatementSwitch Statement

Switch Statement Implementing as a Linear Search



Binary Search

Jump Table

Switch Statement
Search Table 

Code for Binary Search



Direct Address Computation

• requires dense case set

Switch Statement
Jump Table 

Code for Address  
Computation


