
Almost always a power
of 2, known at compile-time
⇒ use a shift for speed

Color Code:

Invariant
 Varying

Depending on how A is declared, @A may be
•an offset from the ARP,
•an offset from some global label, or
•an arbitrary address.
The first two are compile time constants.

Computing an Array Address of an array A[low:high]
A[i]
• @A + (i – low) x sizeof(A[i])
• In general: base(A) + (i – low) x sizeof(A[i])

Almost always a power of
2, known at compile-time
⇒ use a shift for speed

Computing an Array Address A[low:high]

A[i]
• @A + (i – low) x w
• In general: base(A) + (i – low) x w

If the compiler knows low it can fold the subtraction
into @A

A0 = @A� (low ⇤ w)
<latexit sha1_base64="o9adgsuvOIHC8YpeEE49zwW8WGA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxCFSwzVdCN0OrGZQX7gHYYMmmmDc0kQ5Kx1KFf4saFIm79FHf+jeljoa0HLhzOuZd77wliRpV2nG8rs7K6tr6R3cxtbe/s5u29/YYSicSkjgUTshUgRRjlpK6pZqQVS4KigJFmMLid+M1HIhUV/EGPYuJFqMdpSDHSRvLtfNV3rivVsyITQ3g6PPHtglNypoDLxJ2TApij5ttfna7ASUS4xgwp1XadWHspkppiRsa5TqJIjPAA9UjbUI4iorx0evgYHhulC0MhTXENp+rviRRFSo2iwHRGSPfVojcR//PaiQ6vvJTyONGE49miMGFQCzhJAXapJFizkSEIS2puhbiPJMLaZJUzIbiLLy+TRrnknpfK9xeFys08jiw4BEegCFxwCSrgDtRAHWCQgGfwCt6sJ+vFerc+Zq0Zaz5zAP7A+vwBClCRZA==</latexit>

The false zero of A

where w = sizeof(A[i])

 2 6 5 4 7 3

A[2..7]

@A

 1 0

@A0

The False Zero

loadI @A0) r@A0

lshiftI ri, 2) r1
loadA0 r@A0 , r1) rv

<latexit sha1_base64="YweNpKilgXnHByJ6gRj43Ueq/YY=">AAACeXicbVHBbtQwEHUClBKg3cKxPRhWXVVVtUq2SOW4pRd6K4htK21WkeNMdq06dmRPilZR/oFv48aPcOGCsw0S7XYky0/vvRmPZ9JSCoth+Mvznzx9tvF880Xw8tXrre3ezptLqyvDYcK11OY6ZRakUDBBgRKuSwOsSCVcpTdnrX51C8YKrb7hsoRZweZK5IIzdFTS+xGnMBeqZsawZVNLKZtAapad0wEdnyYhdXf8VcwX6Bz6OzVJ3dJNHAfSLkSOzmgScTRa80WtxVU6DZ30L40eOYEO7jtvgxhU1rWQ9PrhMFwFXQdRB/qki4uk9zPONK8KUMgls3YahSXOXDUUXEITxJWFkvEbNoepg4oVYGf1anIN3XdMRnNt3FFIV+z/GTUrrF0WqXMWDBf2odaSj2nTCvOPs1qoskJQ/O6hvJIUNW3XQDNhgKNcOsC4Ea5XyhfMMI5uWYEbQvTwy+vgcjSMjoejLx/640/dODbJLnlPDkhETsiYfCYXZEI4+e3tefvewPvjv/MP/MM7q+91OW/JvfCP/wKHRrw9</latexit>

loadI @A) r@A

subI ri, 2) r1
lshiftI r1, 2) r2
loadA0 r@A, r2) rv

<latexit sha1_base64="tUNnTxhGDE6+obiZEb8HzbE8NEQ=">AAACknicbVFdT9swFHUyNlj2QffxthdrFWgPqEoK06Y9QDtehsQDmyggNVXkODethWNH9g1TFeUH7e/wxr+Z2+YBKFeydXTOuR++TkspLIbhnec/23j+YnPrZfDq9Zu325137y+srgyHEddSm6uUWZBCwQgFSrgqDbAilXCZXh8v9MsbMFZodY7zEiYFmyqRC87QUUnnX5zCVKiaGcPmTS2lbAKpWXZCd+lgSN0d/xHTGTpd/6UmqQfDJo4DW6XOYRKx11+zRE6XdiZyXFqiJyz9hcV1GYZOWhWle47efWi7CWJQWTtb0umGvXAZdB1ELeiSNs6Szm2caV4VoJBLZu04CkucuGoouIQmiCsLJePXbApjBxUrwE7q5UobuuOYjObauKOQLtn7GTUrrJ0XqXMWDGf2sbYgn9LGFebfJ7VQZYWg+KpRXkmKmi7+h2bCAEc5d4BxI9yslM+YYRzdLwZuCdHjJ6+Di34v2u/1fx90Bz/bdWyRT+Qz+UIi8o0MyC9yRkaEe9veV+/QO/I/+j/8oX+8svpem/OBPAj/9D95/sN2</latexit>

computing A[i] with A0computing A[i] with A

A0 = @A� (low ⇤ w)
<latexit sha1_base64="o9adgsuvOIHC8YpeEE49zwW8WGA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxCFSwzVdCN0OrGZQX7gHYYMmmmDc0kQ5Kx1KFf4saFIm79FHf+jeljoa0HLhzOuZd77wliRpV2nG8rs7K6tr6R3cxtbe/s5u29/YYSicSkjgUTshUgRRjlpK6pZqQVS4KigJFmMLid+M1HIhUV/EGPYuJFqMdpSDHSRvLtfNV3rivVsyITQ3g6PPHtglNypoDLxJ2TApij5ttfna7ASUS4xgwp1XadWHspkppiRsa5TqJIjPAA9UjbUI4iorx0evgYHhulC0MhTXENp+rviRRFSo2iwHRGSPfVojcR//PaiQ6vvJTyONGE49miMGFQCzhJAXapJFizkSEIS2puhbiPJMLaZJUzIbiLLy+TRrnknpfK9xeFys08jiw4BEegCFxwCSrgDtRAHWCQgGfwCt6sJ+vFerc+Zq0Zaz5zAP7A+vwBClCRZA==</latexit>

How does the compiler handle A[i,j] ?

First, must agree on a storage scheme
Row-major order (most languages)

Lay out as a sequence of consecutive rows

Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)
Lay out as a sequence of columns

Leftmost subscript varies fastest

A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)
Vector of pointers to pointers to … to values

Takes much more space, trades indirection for arithmetic

Not amenable to analysis

The Concept

Row-major order

Column-major order

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have
distinct & different
cache behavior

Laying Out Arrays

This stuff looks expensive!
Lots of implicit +, -, x ops

e.g., @A + (i1 – low) x w

Computing an Array Address

A[i]
• @A + (i – low) x w
• In general: base(A) + (i – low) x w

What about A[i1,i2] ?

Row-major order, two dimensions
 @A + ((i1 – low1) x (high2 – low2 + 1) + i2 – low2) x w

Column-major order, two dimensions
 @A + ((i2 – low2) x (high1 – low1 + 1) + i1 – low1) x w

Indirection vectors, two dimensions
 *(A[i1])[i2] — where A[i1] is, itself, a 1-d array reference

where w = sizeof(A[1,1])

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

low2 hight2

hight1

low1

A[2,3] @A+(2-1)x 4+(3-1)

In row-major order
@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w

Which can be factored into
@A + i x (high2–low2+1) x w + j x w

 – (low1 x (high2–low2+1) x w) - (low2 x w)

If lowi, highi, and w are known, the last term is a constant

Define @A0 as

 @A – (low1 x (high2–low2+1) x w - low2 x w

And len2 as (high2-low2+1)

Then, the address expression becomes
 @A0 + (i x len2 + j) x w

Compile-time constants

If @A is known, @A0
is a known constant.

Optimizing Address Calculation for A[i,j]

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

low1

hight1

hight2low2

@A
low1

high1

low2

high2

Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters
• Need dimension information ⇒ build a dope vector
• Store the values in the calling sequence
• Pass the address of the dope vector in the parameter slot
• Generate complete address polynomial at each reference

Some improvement is possible
• Choose the address polynomial based on the false zero
• Pre-compute the fixed terms in prologue sequence

What about call-by-value?
• Most languages pass arrays by reference
• This is a language design issue

The Dope vector

Range checking
A program that refers out-of-the-bound array elements is not well

formed.

Some languages like Java requires out-of-the-bound accesses be
detected and reported.

In other languages compilers have included mechanisms to detect and
report out-of-the-bound accesses.

The easy way is to introduce is to introduce a runtime check that verifies
that the index value falls in the array range

Information on the bounds in the dope vector

the compiler has to prove
that a given reference cannot
generate an out-of-bounds reference

Expensive!!

Array Address Calculations

Array address calculations are a major source of overhead
• Scientific applications make extensive use of arrays and array-like

structures
— Computational linear algebra, both dense & sparse

• Non-scientific applications use arrays, too
— Representations of other data structures

→Hash tables, adjacency matrices, tables, structures, …

Array calculations tend iterate over arrays
• Loops execute more often than code outside loops
• Array address calculations inside loops make a huge difference in

efficiency of many compiled applications
Reducing array address overhead has been a major focus of

optimization since the 1950s.

A, B are declared as conformable
floating-point arrays

Example: Array Address Calculations in a Loop

DO J = 1, N
 A[I,J] = A[I,J] + B[I,J]
END DO

Naïve: Perform the address calculation twice

DO J = 1, N
 R1 = @A0 + (J x len1 + I) x w

 R2 = @B0 + (J x len1 + I) x w

 MEM(R1) = MEM(R1) + MEM(R2)
END DO

 @A0 + (j x len1 + i) x w

In column-major order

number of rows!

Loop-invariant code motion

Example: Array Address Calculations in a Loop

DO J = 1, N
 A[I,J] = A[I,J] + B[I,J]
END DO

More sophisticated: Move common calculations out of loop

R1 = I x w
c = len1 x w ! Compile-time constant
R2 = @A0 + R1
R3 = @B0 + R1
DO J = 1, N
 a = J x c
 R4 = R2 + a
 R5 = R3 + a
 MEM(R4) = MEM(R4) + MEM(R5)
END DO

Operator Strength Reduction (§ 10.4.2 in EaC)

J is now bookkeeping

A good compiler would
rewrite the end-of-
loop test to operate
on R2 or R3

(Linear function test
replacement)

Example: Array Address Calculations in a Loop
DO J = 1, N
 A[I,J] = A[I,J] + B[I,J]
END DO

Very sophisticated: Convert multiply to add

R1 = I x w
c = len1 x w ! Compile-time constant

R2 = @A0 + R1 ;

R3 = @B0 + R1;

DO J = 1, N
 R2 = R2 + c
 R3 = R3 + c
 MEM(R2) = MEM(R2) + MEM(R3)
END DO

Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures
• Languages support can be different:

• In C most manipulations takes the form of calls to library routines
• Other languages provvide first-class mechanism to specify

substrings or concatenate them

• Fundamental unit is a character
— Typical sizes are one or two bytes

— Target ISA may (or may not) support character-size operations

String operation can be costly
• Older CISC architectures provide extensive support for string manipulation
• Modern RISC architectures rely on compiler to code this complex operations

using a set a of simpler operations

@b

Length field may
take more space
than terminator

@b

Representing and Manipulating Strings

Two common representations of string “a string”
• Explicit length field

• Null termination

• Language design issue
— Fixed-length versus varying-length strings (1 or 2 length fields)

Representing and Manipulating Strings

Each representation as advantages and disadvantages

Unfortunately, null termination is almost considered normal
• Hangover from design of C
• Embedded in OS and API designs

Manipulating Strings

Single character assignment

• With character operations
— Compute address of rhs, load character
— Compute address of lhs, store character

• With only word operations (>1 char per word)
— Compute address of word containing rhs & load it
— Move character to destination position within word
— Compute address of word containing lhs & load it
— Mask out current character & mask in new character
— Store lhs word back into place

a[1]=b[2]

Manipulating Strings

Multiple character assignment
Two strategies

1. Wrap a loop around the single character code, or
2. Work up to a word-aligned case, repeat whole word moves, and

handle any partial-word end case

With character operations

With only word operations

Manipulating Strings

Concatenation
• String concatenation is a length computation followed by a pair of

whole-string assignments
— Touches every character

— There can be length problems!

Manipulating Strings

Length Computation

• Representation determines cost
— Explicit length turns length(b) into a memory reference
— Null termination turns length(b) into a loop of memory references

and arithmetic operations

• Length computation arises in other contexts
— Whole-string or substring assignment

— Checked assignment (buffer overflow)
— Concatenation

— Evaluating call-by-value actual parameter

Implementation of booleans, relational
expressions & control flow constructs
varies widely with the ISA

Boolean & Relational Values

How should the compiler represent them?
• Answer depends on the target machine

Two classic approaches
• Numerical (explicit) representation
• Positional (implicit) representation

Best choice depends on both context and ISA
Some cases works better with the first representation other ones

with the second!

Expr � Expr ∨ AndTerm

| AndTerm

AndTerm � AndTerm ∧ RelExpr

| RelExpr

RelExpr � RelExpr < NumExpr

| RelExpr ≤ NumExpr

| RelExpr = NumExpr

| RelExpr ≠ NumExpr

| RelExpr ≥ NumExpr

| RelExpr > NumExpr

NumExpr � NumExpr + Term

| NumExpr - Term

| Term

Term � Term × Value

| Term ÷ Value

| Value

Value � ¬ Factor

| Factor

Factor | (Expr)

| number

Boolean & Relational Expressions
First, we need to recognize boolean & relational expressions

Boolean & Relational Values
Next, we need to represent the values

Numerical representation
• Assign numerical values to TRUE and FALSE
• Use hardware AND, OR, and NOT operations
• Use comparison to get a boolean from a relational
If the target machine supports boolean operations that compute
the boolean result cmp_LT rx,ry-> r1 r1=True if rx<=ry, r1=False otherwise

Boolean & Relational Values
What if the target machine uses a condition code?

• Must use a conditional branch to interpret result of compare

If the target machine computes a code result of the comparison and
we need to store the result of the boolean operation

cmp r1,r2 -> cc sets cc with code for LT,LE,EQ,GE,GT,NE

cbr_LT cc l2,l3
sets PC=l2 if CC=LT PC=l3 otherwise

Boolean & Relational Values

The last example actually encoded result in r2

If result is used to control an operation, that may suffice

Positional encoding!

Other Architectural Variations

Conditional move & predication both simplify this code

Both versions avoid the branches
Both are shorter than cond’n codes or Boolean-valued compare
Are they equivalent to the initial code? Not always!
Are they better? does code size matter? or execution time?

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise

Boolean & Relational Values

?
?

(r1)? add r2,r3 ->r4 the add operation executes if r1 is true

Boolean & Relational Values
Consider the assignment x ← a < b ∧ c < d

Here, Boolean compare produces much better code

x ← a < b ∧ c < d

Boolean & Relational Values
Conditional move & predication help here, too

Conditional move is worse than Boolean compare
Predication is identical to Boolean compares

The bottom line:
⇒ Context & hardware determine the appropriate choice

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise

Control Flow

If-then-else
• Follow model for evaluating relationals & booleans with branches (if

the if-then-else statement have trivial parts)
• Using predicate for large blocks in the then and else part wastes
 execution cycles

Branching versus predication
• Frequency of execution

— Uneven distribution ⇒ do what it takes to speed common case

• Amount of code in each case
— Unequal amounts means predication may waste issue slots

• Control flow inside the construct
— Any branching activity within the construct complicates the predicates

and makes branches attractive

Short-circuit Evaluation

Optimize boolean expression evaluation (lazy evaluation)

• Once value is determined, skip rest of the evaluation
if (x or y and z) then …
— If x is true, need not evaluate y or z

→ Branch directly to the “then” clause
— On a PDP-11 or a VAX, short circuiting saved time

• Modern architectures may favor evaluating full expression
— Rising branch latencies make the short-circuit path expensive
— Conditional move and predication may make full path cheaper

• Past: compilers analyzed code to insert short circuits
• Future: compilers analyze code to prove legality of full path

evaluation where language specifies short circuits

Control Flow
Loops
• Evaluate condition before loop (if needed)
• Evaluate condition after loop
• Branch back to the top (if needed)

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block

Implementing Loops

for (i = 1; i< 100; 1) { loop body }
next statement

Pre-test

Post-test

Initialization

Break statements

Many modern programming languages include a break
• Exits from the innermost control-flow statement

— Out of the innermost loop
— Out of a case statement

Translates into a jump
• Targets statement outside control-
 flow construct
• Creates multiple-exit construct
• Skip in loop goes to next iteration

Only make sense if loop has > 1 block

Pre-test

Loop head

Post-test

Next block

B 1 B 2Break in
B 1

Skip in
B 2

Case (switch) Statements

1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood,
part 2 is the key:
need an efficient method to locate the designated code

many compilers provvide several different search schemas each one
can be better in some cases.

Case Statements

1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies
• Linear search (nested if-then-else constructs)
• Build a table of case expressions & binary search it
• Directly compute address (requires dense case set)

Case statements are a place where attention
to code shape pays off handsomely.

Linear Search

Switch StatementSwitch Statement

Switch Statement Implementing as a Linear Search

Binary Search

Jump Table

Switch Statement
Search Table

Code for Binary Search

Direct Address Computation

• requires dense case set

Switch Statement
Jump Table

Code for Address
Computation

