Computing an Array Address of an array A[low:high]
Ali]

. + (i-low) x sizeof(A[i]) Color Code:
* Ingeneral: base(A)+ (i-low) x sizeof(A[i]) Invariant
Varying

Depending on how A is declared, @A may be
*an offset from the ARP,
*an of fset from some global label, or

*an arbitrary address.
The first fwo are compile time constants.




Computing an Array Address A[low:high]

where w = sizeof(A[i])

AL ]
e @A+ (i-low)xw

* TIngeneral: base(A)+ (i-low)x w

Almost always a power of

2, known at compile-time

= use a-shift for speed

If the compiler knows low it can fold the subtraction

info @A

Ag = QA — (low * w)

The false zero of A



The False Zero
Ag = QA — (]
ar2.71 ° (o * )

01I234567

@A0 @A
computing A[i] with A computing A[i] with AO
Zoacjl_l Q@A = TQA loadl QA = TaA,
sub Tiy2 — T [shiftl r;,2 = T

lShth] 1, 2 —ay

l0adAO  Tan .ty — 1 loadA0  raa,, 1 =Ty



How does the compiler handle A[i,j] ?

First, must agree on a storage scheme
Row-major order (most languages)
Lay out as a sequence of consecutive rows

Rightmost subscript varies fastest
A[11], A[1,2], A[1,3], A[21], A[2,2], A[2,3]

Column-major order (Fortran)
Lay out as a sequence of columns
Leftmost subscript varies fastest
A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)
Vector of pointers to pointers to ... to values
Takes much more space, trades indirection for arithmetic

Not amenable to analysis



Laying Out Arrays

The Concept

A

Row-major order

A

Column-major order

A

These can have
distinct & different
cache behavior

Indirection vectors

A

1111,2(1,3|1,4
211221]23|24
11(1,2|1,3(1,4(21(2,2]|2,3|2,4
111211(1,2|12,2(1,3/2,3|1,4|24
1 —111(12]|1,3|1,4
121222324




ComEu’ring an Array Address

Al1]

where w = sizeof(A[1,1])

low; low, hight,

e @A+ (i-low)xw

* Ingeneral: base(A)+ (i-low)xw

What about A[iy,i,]?

Row-major order, two dimensions

(A1) 1,211,314

hight; 3,122 23] 2,4

This stuff looks expensivel
Lots of implicit +, -, x ops

@A + ((i; - low; ) x (high, - low, + 1) + i, - low,) x w
A[2,3] @A+(2-1)x 4+(3-1)

Column-major order, two dimensions

@A + ((i, - low, ) x (high, = low; + 1) +i; - low,) x w

Indirection vectors, two dimensions

*(Ali; Dli,] — where A[i;]is, itself, a 1-d array reference

éieg”@A+(q-bw)xw




Optimizing Address Calculation for A[i,|]

In row-major order

@A + (i-low,) x (high,~low,+1) x w + (j - low,) x w low, low, hight,
11,2 1,3 |14
21 12,2(2,3|2,4

Which can be factored into A
@A +i x (high,~low,+1) x w + j x w hight,

- (low; x (high,-low,+1) x w) - (low, x w)

If low,, high,, and w are known, the last term is a constant

Define @A, as

@A - (low; x (high,~low,+1) x w - low, x w

If @A is known, @A,
is a known constant.

And len, as (high,-low,+1)

Then, the address expression becomes
@Ay + (ixlen, +j) xw,

\/& Compile-time constants




Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

e Need dimension information = build a dope vector
e Store the values in the calling sequence

e Pass the address of the dope vector in the parameter slot
e (Generate complete address polynomial at each reference

Some improvement is possible
e Choose the address polynomial based on the false zero
e Pre-compute the fixed terms in prologue sequence

What about call-by-value?
e Most languages pass arrays by reference
e This is a language design issue

@A

low,

high,

low,

high,




The DoEe vector

program main;
begin;
declare x(1:100,1:10,2:50),
y(1:10,1:10,15:35) float;

call fee(x)
call fee(y);
end main;

procedure fee(A)
declare A(C*,*,*) float;
begin;
declare x float;
declare 1, J, k fixed binary;

x = A(1,],k);

end fee;

A >
@XO

100
10
49

At the First Call

>
\é

@y q
10
10
21

At the Second Call



Range checking

A program that refers out-of-the-bound array elements is not well
formed.

Some languages like Java requires out-of-the-bound accesses be
detected and reported.

In other languages compilers have included mechanisms to detect and
report out-of-the-bound accesses.

The easy way is to introduce is to introduce a runtime check that verifies

the compiler has to prove

Expens |V€“ that a given reference cannot

generate an out-of-bounds reference

that the index value f[I”S in the array range

Information on the bounds in the dope vector



Array Address Calculations

Array address calculations are a major source of overhead

* Scientific applications make extensive use of arrays and array-like
structures
— Computational linear algebra, both dense & sparse

e Non-scientific applications use arrays, too

— Representations of other data structures
— Hash tables, adjacency matrices, tables, structures, ...

Array calculations tend iterate over arrays
e Loops execute more often than code outside loops

e Array address calculations inside loops make a huge difference in
efficiency of many compiled applications

Reducing array address overhead has been a major focus of
optimization since the 1950s.



ExamEIe: Array Address Calculations in a Loop

A, B are declared as conformable
floating-point arrays

DOJ=1N
A[L,J]= A[LJ]+ B[IJ] In column-major order
END DO @A +(jxlen, +i)xw

nhumber of rowsl!
Naive: Perform the address calculation twice

DOJT=1,N
RL= @A+ (T Xlen; +T)xw )
RZ:@BO+(J{Ien1+I)xw )
MEM(R1) = MEM(R1) + MEM(R2)
END DO




ExamEIe: Array Address Calculations in a Loop

DOJ=1N
A[IJ]=A[IJ]+B[IJ]
END DO

More sophisticated: Move common calculations out of loop

Rl=Txw
c=len;xw | Compile-time constant
R2=@A,+R1
R3 = @B, +R1
DOJ=1N

a=Jxc

R4 =R2 +a

R5=R3+a

MEM(R4) = MEM(R4) + MEM(RD)
END DO

Loop-invariant code motion




ExamEIe: Array Address Calculations in a Loop

DOJ=1N

A[I,J]=A[I,J]+B[IJ]

END DO

Very sophisticated: Convert multiply to add

Rl=Txw

c=len,xw | Compile-time constant

R2=@A,+RI1;

R3 = @B, +RI;

DOJ=1N
R2=R2+c¢
R3=R3 +c

J is now bookkeeping

A good compiler would
rewrite the end-of-
loop test to operate
on R2 or R3

(Linear function test
replacement)

MEM(R2) = MEM(R2) + MEM(R3)

END DO

Operator Strength Reduction (§ 10.4.2 in EaC)




Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures
* Languages support can be different:
* In C most manipulations takes the form of calls to library routines

- Other languages provvide first-class mechanism to specify
substrings or concatenate them

e Fundamental unit is a character
— Typical sizes are one or two bytes

— Target ISA may (or may hot) support character-size operations

String operation can be costly
* Older CISC architectures provide extensive support for string manipulation

* Modern RISC architectures rely on compiler to code this complex operations
using a set a of simpler operations



Representing and Manipulating Strings

Two common representations of string "a string”

* Explicit length field

8 |a | ¥ | s g
@b
* Null fermination
a | | s | T \O
@b

* Language design issue
— Fixed-length versus varying-length strings

Length field may
take more space
than terminator

(1 or 2 length fields)



Reer'esen‘ring and ManiEula’ring S'rr'ings

Each representation as advantages and disadvantages

Operation Explicit Length Null Termination

Assignment Straightforward Straightforward
Checked Assignment  Checking is easy =~ Must count length
Length O(1) O(n)

Concatenation Must copy data Length + copy data

Unfortunately, null termination is almost considered normal
e Hangover from design of C
* Embedded in OS and API designs



N\anil:_)ula’ring S’rr'ings

a[1]=b[2]

Single character assignment

* With character operations
— Compute address of rhs, load character
— Compute address of |hs, store character

* With only word operations (>1 char per word)
— Compute address of word containing rhs & load it
— Move character to destination position within word
— Compute address of word containing lhs & load it
— Mask out current character & mask in new character

— Store |hs word back into place



ManiEula’ring S’rrings

Multiple character assignment

Two strategies
1. Wrap a loop around the single character code, or
2. Work up to a word-aligned case, repeat whole word moves, and
handle any partial-word end case

With character operations

With only word operations



N\anil:_)ula’ring S’rr'ings

Concatenation

* String concatenation is a length computation followed by a pair of
whole-string assignments

— Touches every character

— There can be length problems!



N\aniEulaTing S’rr'ings

Length Computation

* Representation determines cost
— Explicit length turns length(b) intfo a memory reference

— Null termination turns length(b) into a loop of memory references
and arithmetic operations

e Length computation arises in other contexts
— Whole-string or substring assignment
— Checked assignment (buffer overflow)
— Concatenation

— Evaluating call-by-value actual parameter



Boolean & Relational Values

How should the compiler represent them?
* Answer depends on the target machine

Implementation of booleans, relational
expressions & control flow constructs
varies widely with the ISA

Two classic approaches
e Numerical (explicit) representation
e Positional (implicit) representation

Best choice depends on both context and ISA

Some cases works better with the first representation other ones
with the second!



Boolean & Relational ExEressions

First, we need to recognize boolean & relational expressions

Expr — Expr v AndTerm NumExpr — NumExpr + Term
| AndTerm |  NumExpr - Term
AndTerm — AndTerm A RelExpr | Term
| RelExpr Term — Term x Value
RelExpr  — RelExpr < NumExpr | Term = Value
RelExpr < NumExpr | Value
RelExpr = NumExpr Value — = Factor
RelExpr # NumExpr Factor
RelExpr > NumExpr Factor ( Expr )
RelExpr > NumExpr number




Boolean & Relational Values
Next, we need to represent the values

Numerical representation

* Assign numerical values to TRUE and FALSE

e Use hardware AND, OR, and NOT operations

e Use comparison to get a boolean from a relational

If the target machine supports boolean operations that compute

’rhe boolean PCSUH’ cmp_LT rx,ry->rl  rl=True if rx<=ry, rl=False otherwise
X <Yy becomes cmp_LT r,ry =r;
if (x<y) 3 CMP_LT ryry =1y
then stmt ecomes
! cbr r — _stmt,,_stmt,
else stmt,




Boolean & Relational Values

What if the target machine uses a condition code?

cmp r1,r2 -> cc sets cc with code for LT LE ,EQ,GE,GT NE

* Must use a conditional branch to interpret result of compare

If the target machine computes a code result of the comparison and
we need to store the result of the boolean operation

X <y becomes cmp Moly = CC,
Lt: loadl 1 = ro
cbr LTccl2,l3
sets PC=12 if CC=LT PC=13 otherwise br - Le
L load| 0 = )
Le: ... other statements ...



Boolean & Relational Values

The last example actually encoded result in r2

If result is used to control an operation, that may suffice

Straight Condition Codes

Boolean Comparisons

Example

if (x <vy)
thena«c+d
else a«—e+f

L1:

Lz:

Lout:

comp  ryly
cbr_LT CCq
add re,lg
br

add Fe,l
br

nop

= CC]
— L4,
= I,

— Lout
= I,

— Lour

cmp_LT
cbr

add

br

add

br

Moly

Fesld

Fe,l'f

=Ne
— Lq,L
=,
— Lout
=,
— Lout

Positional encoding!




Boolean & Relational Values

Other Architectural Variations

Conditional move & predication both simplify this code

Example Cond/itional Move Predicated Execution
if (x<vy) comp  ryly = CC;4 CMP_LT ry,ry =y
thena < c+d add  rry =r, ((ry)? add rofg =T, )
else ace+f add Fesl's =T (=ry) 2 add re,fs =1y,
1I2i_LT CCq,ry,r2; =, '

i2i_LT cc,rl,r2->r3 copy rlinr3 if cc matches LT, copy r2 inr3 otherwise

Both versions avoid the branches

(r1)? add r2,r3 ->r4 the add operation executes if rl is true

Both are shorter than cond'n codes or Boolean-valued compare

Are they equivalent to the initial code? Not always!

Are they better? does code size matter? or execution time?



Boolean & Relational Values

Consider the assignment x <~ a<bac<d

Straight Condition Codes

Boolean Compare

comp r,f, = CCy

cor_LT CCi —L4,L,
L,: comp re,fg = CC,

cor_LT CC; — Ls,l,

L,: loadl 0 = Iy
br —> LOUT
Ls: loadl 1 = Iy
Lour: nop

CMP_LT r,rp, =r,
CMP_LT r,ry =15
and r,f, = ry

Here, Boolean compare produces much better code




Boolean & Relational Values

Conditional move & predication help here, too

Conditional Move Predicated Execution
comp Iyl = CCq; | CMpP_LT rgr, =1y
I2I_LT CCq,rr,rg = CMP_LT rgorg =10
X<—a<bacx<d
comp rg,ly = CC, |and r,fro =r,

I2I_LT CCo,rr,lg =17

and r,r = Iy

i2i_LT cc,rl,r2->r3 copy rlinr3 if cc matches LT, copy r2 inr3 otherwise

Conditional move is worse than Boolean compare
Predication is identical to Boolean compares

The bottom line:
= Context & hardware determine the appropriate choice



Control Flow

If-then-else

* Follow model for evaluating relationals & booleans with branches (if
the if-then-else statement have trivial parts )

- Using predicate for large blocks in the then and else part wastes
execution cycles

Branching versus predication

* Frequency of execution
— Uneven distribution = do what it takes to speed common case

e Amount of code in each case
— Unequal amounts means predication may waste issue slots

e Control flow inside the construct
— Any branching activity within the construct complicates the predicates
and makes branches attractive



Short-circuit Evaluation

Optimize boolean expression evaluation (lazy evaluation)

* Once value is determined, skip rest of the evaluation
1f (xor y and z) then ..

— If x is true, need not evaluate y or z
— Branch directly to the "then" clause
— On a PDP-11 or a VAX, short circuiting saved time

* Modern architectures may favor evaluating full expression
— Rising branch latencies make the short-circuit path expensive
— Conditional move and predication may make full path cheaper

* Past: compilers analyzed code to insert short circuits

* Future: compilers analyze code to prove legality of full path
evaluation where language specifies short circuits



Control Flow

Loops
* Evaluate condition before loop (if needed) l

e Evaluate condition after loop Pre-test
* Branch back to the top (if needed)

Loop body

Post-test

while, for, do, & until all fit this basic model

Next block
l




ImElemen‘ring LooEs

for i=1;i<100; 1) { loop body }
next statement

loadl 1 = I )
load| 1 = I >~ Initialization
loadl 100 =r; -
cmp_GE ri,r3 =y I
T s S Ll ™ Pre-test
L,: /Joop body -
add r,r2  =ry
Cmp_LT r,r3  =rs Post-test
cbr s — Lq,Ls
L,:  next statement




Break statements

Many modern programming languages include a break
* Exits from the innermost control-flow statement |

— Out of the innermost loop oro-tast
— QOut of a case statement
Translates into a jump Loop head
* Targets statement outside control- N
flow construct E"leak in~1B1 B2 "Nskip in
. . B 2
* Creates multiple-exit construct A
Post-test

e Skip in loop goes to next iteration

Only make sense if loop has > 1 block Next block




Case (switch) Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood,
part 2 is the key:
need an efficient method to locate the designated code

many compilers provvide several different search schemas each one
can be better in some cases.



Case statements are a place where attention
Case Statements to code shape pays of f handsomely.

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case (use break)
Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies

e Linear search (nested if-then-else constructs)

e Build a table of case expressions & binary search it
e Directly compute address (requires dense case set)



Linear Search

_ L1 <« e
switch (ep) | .
if (t 0)
case O: blockg; ther blockg
break: else if (t, 1)
case l: Dblocky; then block;
break; e fo(ty J
case 3: Dblocks; then blocks
break; else if (t; = 3)
default: blocky; then blocksy
preak; else blocky

Switch Statement Implementing as a Linear Search



Binarx Search

switch {er) |

L1 < e
case U: blockg Value Label y
break; o B down <« 0 // lower bound
r ¢ up <« 10 // upper bound + 1
case 15: blocks 15 LB1s
hreax; ’_233___[‘8_;&;4 while (gown + 1 < up) |
ase 23 blockys 37 LB;:—4 miagdle <« (up + down) =+ ¢
“ao [ N 3/
i ‘ C 44t A \
break; 41 N if (Value [middlel < tp)
i then down <« middle
. 50 LBgg A
68 1 1B.a else up <« middie
case 99: blockgy 68 LBy }
hreak; 72| LBra | |
default: blocky 83 Bg3 | if (Vatue [down] = t,4
break; 99 LBgg | then jump to Label[down]

| else jump to LBy

, Search Table .
Switch Statement Code for Binary Search



Direct Address ComEu’raTion

* requires dense case set

switch {e)) |

case 0:  blocky
break:

ase 11 block
break;

case Z2:  blocks
break;

case 9:  blockg
break;

defau' t: blocky
break;

}

Switch Statement

_Label
LBg
LB

s

’. —_—

LB

LB~

LB
Lbg
| LBs |
| 56 |
g

By
Bo

1

Jump Table

t

L] < £y

if (0>t ort; > 9)

than qup tn i&u
glse
ty, «@Table + t; x 4
ty « memory(t,)

jump to tj

Code for Address
Computation



