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Abstract

Object-oriented database systems are an emerging, promising tech-
nology, underpinned by the integration of ideas from object-oriented lan-
guages along with the specific needs of database applications.

The fundamental reason for using such systems is that any real-world
entity can be modelled with one object which matches its structure and
behavior. To this end, the standard notion of object has to be augmented
so that it can model the fact that an entity may acquire new pieces of
structure and behavior during its existence, without changing its identity.
To allow this extensibility in a statically typed system, a notion of context-
dependent behavior (“role playing”) has to be added to the basic features
of object-oriented languages. This feature is also a useful modeling device.

Languages with role mechanisms have already been proposed. How-
ever, their design is full of choices which cannot be easily justified. A
strong foundation for the object-with-roles notion would be extremely
helpful to justify these choices and to understand, and prove, the proper-
ties of such a mechanism. In this paper we describe such a foundation,
building on the object model proposed by Abadi and Cardelli.

1 Introduction

In the database field, the object-oriented data model attracts much attention be-
cause of its ability to faithfully represent real world entities. However, database
applications need an operation, which we call object extension, which is not al-
lowed in the standard object-oriented model. Object extension is the operation
which allows an object, created in a class C, to become an instance of a subclass
S too, without changing its identity.

The problematic aspect of extension can be better explained by an example.
Consider an object type Person with two subtypes, Student and Employee,
which both introduce an IdCode field, with a different meaning and even a
different type. Extension allows one to build a student John with IdCode 100
and then to extend it to be also an employee with IdCode “I1”. It is not clear,
now, how John should answer an IdCode message.

We call “incompatible” such an extension that adds an already present field,
with a non compatible type. In the FOOL (“Foundations of O-O Languages”)



field it is usually assumed that such an incompatible extension should be always
forbidden.

Another alternative, studied in the field of database languagues ([GSR96],
[BGY5], [Run92], [AGO95]...), is to give John a context dependent behavior:
in different contexts John plays either the Student or the Employee role, and
answers the IdCode message in a role-dependent way. The idea of objects with
multiple roles, whose behavior depends on the role played, is also a useful mod-
eling device, which combines the flexibility given by method overriding with the
ability to access different methods in different situations.

In the Pisa University database group we have defined and developed a
database programming language, Fibonacci, which embodies these ideas ([AGO95]).
During this process, we had to make some design choices, and to adopt some
typing rules, whose real meaning was not totally clear to us. Our understanding
of the object with roles mechanism was not complete, and this paper tries to
fill this gap.

The paper is structured as follows. In Section 2 we recall Abadi-Cardelli
¢-calculus, which is the basis of our proposal. In Section 3 we give an informal
introduction to our calculus. The calculus, in its basic form, is formally intro-
duced in Section 4. Section 5 enriches the calculus with an inheritance mecha-
nism. Section 6 describes an important technical point, the internal structure
of the set of role-tags. Section 7 discusses some related works. Section 8 draws
some conclusions.

2 The ¢-calculus

Our model is defined as an extension of Abadi-Cardelli ¢-calculus. In that
calculus, an object is simply a method suite, where each method has a special
“self-variable”, bound by the ¢ binder. Three operations are defined on objects:
construction [l; = ¢(x; : A)bS], method selection a.l, and method update
a.l « ¢(z; : A)b. Method selection returns the body of the selected method
and substitutes the “self-variable” with the object; method update updates the
body of a method. The syntax of the calculus is defined below; type rules and
operational semantics can be found in [AC96].

Types AaB n= K | [ll : Bl iGI]
x| k| [l =c(@i:A)b; ) | ol | o «s(z;: A)b

Terms a,b,o0

3 An overview of the calculus

3.1 The Fibonacci model

Our role model is an abstract version of the Fibonacci model, which is better
explained by an example. The following piece of Fibonacci code defines three
object types, then builds a student, and extends it to an employee.



Let Person IsA NewObject With Name: String; End;

Let Student = IsA Person With IdCode: Int; End;
Let Employee = IsA Person With IdCode: String; End;
let john = object Person

methods Name = "John" end;

let johnAsStudent extend john to Student
methods IdCode = 100 end;
let johnAsEmployee = extend johAsStudent to Employee

methods IdCode = "I1" end;

According to Fibonacci “arrows and boxes” informal model, the construction
and extension operations above build an object with an internal structure of
three roles, one for each different object type owned by the object. Each of the

three identifiers john. .. denotes a different role of the same object, as depicted
in Figure 1.
joh:
Joxt Person
johnAsStudent Student Employee johnAsEmployee

Figure 1: The internal structure of an object with roles

A message can be sent to a role either with the oll or with the 0.l notation. In
the first case, the method is looked for in the receiving role and in its ancestors
(upward lookup). In the second case, the method is first looked for in the role
descendants, starting from last one acquired; if no descendant has a method for
the message, upward lookup is performed (double lookup). If the method is found
during downward lookup, then an instance of self in that method denotes the
role where the method has been found; otherwise, self denotes the role which
received the message. If extension is never used, then every object is always
accessed from its bottom role, hence the double and upward lookup coincide,
and both coincide with the standard Smalltalk rule, including the semantics of
self. In this paper we will only address upward lookup, but double lookup does
not introduce additional problems.

3.2 The abstract model

The essential features of the Fibonacci model that we would like to represent
are:

1. classical smalltalk-like objects are a special case of objects with roles (other



proposals support roles at the expense of other features, such as dynamic
binding);

2. a “role expression” denotes one specific role of an object; messages are
sent to roles, and method lookup depends on the receiving role (in other
approaches, messages are sent to objects, and it is the context, namely the
static type of the receiver, which influences method lookup, as in [BG95)]);

3. object types (more precisely, role types) are generative: the Isa operator
generates a brand new type whenever it is invoked; for example, Employee
and Student would be two different types even if IdCode were an integer
in both cases;

4. an object is not allowed to acquire the same role type twice: extending a
student to the type Student is not allowed.

Features (1) and (2) are fundamental and easily defendable design choices,
while (3), hence (4), are more questionable.

In the type theoretic field, we usually prefer to deal with non-generative
object types, mainly because generative types, which may be seen as a limited
form of dependent types, have bad interactions with other constructs, such as
modules and polymorphism. In the database field, on the other side, we prefer
generative types because a Person models a class of entities which “happen” to
have a certain interface, but the “identity” of the type, and its position in the
type hierarchy, cannot be simply identified with its interface.

We chose here to model generative types to have a more faithful model
for Fibonacci, and also because we believe that generative object types is an
important notion which needs better foundations. The system we present here
models generative types in a non-generative context by exploiting the idea of
“role-tags”; in Section 6 we spend some more words on this idea.

Finally, we adopt here constraint (4) because it is found in Fibonacci, but
it may be dropped without major consequences.

For the sake of simplicity, we will only model upward lookup and, to keep
with the tradition, we will use the standard notation o.[ instead of the Fibonacci
oll; modelling double lookup too would not add much to the work.

To model objects with roles we proceed as follows. Since methods are se-
lected on the basis of a message and a role, we index methods in an object with
a role name—message pair. The “role name” is chosen from an infinite set R of
role-tags. Then, since an “object expression” actually denotes one specific role
of an object, we transform objects into role-tag—object pairs. Hence, an object-
with-role playing the role R is now represented as follows, where the current
role R belongs to {R;} <!:

(R, [Rl, ll = §(.’17i : A) bl iGI]>

Every role-tag R, R; comes from an arbitrary partially ordered set R. Our
theory is independent of the chosen R, hence we can assume that whichever



object type hierarchy we are interested in, this hierarchy is chosen as R. For
example the previous example can be modelled by taking

R = ({Pers, Stud, Emp}, Ord)

where Ord is order generated by Stud < Pers, Emp < Pers. We can do better,
however, and define a special set R where every finite object type hierarchy
can be “faithfully” embedded. This construction is explained in Section 6 only,
since our particular notion of “faithfulness” can be better understood after the
calculus has been presented.

This calculus, with the reduction rules that we will define, allows one to
model the john, johnAsStudent, johnAsEmployee values which are produced by
the previous Fibonacci operations as follows.

john = (Pers, [Pers, Name = ¢() ”John”])

johnAsStudent = (Stud, [Pers, Name = ¢() ” John”;
Stud, Name = () ”John”; Stud, IdCode = () 100])

johnAsEmployee = (Emp, [Pers, Name = ¢() ” John”;
Stud, Name = ¢() ”John”; Stud, IdCode = ¢() 100;
Emp, Name = ¢() ”John”; Emp, IdCode = ¢() ”I1”])

We will define a side-effect free calculus, as is common in the type-theoretic
field, to be able to study the essential features avoiding some unnecessary com-
plications. More precisely, though the notion of ‘object identity’ is not modeled
in side-effect calculi, our study will nevertheless face the type-theoretic prob-
lems which are posed by identity preserving update, while avoiding to deal with
stores and locations. This presence of the typing problems of imperative object-
oriented languages in the functional setting is a well-known phenomenon, which
is explained by the presence of self, combined with the requirement that meth-
ods which have been type-checked before functional update of the object should
not need to be checked once more after the update. Informally, an updated
object is referenced both by the instances of self in the methods checked before
update and by those in the methods added by the update operation. This form
of sharing, althought limited, already presents the same type-theoretics chal-
lenges that arise in the imperative setting because of the full sharing allowed
by the presence of updatable locations. The extension of this calculus to an
imperative one is relatively straightforward.

Since this basic calculus is modelled over the ¢-calculus, it has no inheri-
tance operator, and inheritance can be represented using the same techniques
as in [AC96]. However, the example above shows that here inheritance is more
important than in usual object calculi: in object calculi inheritance is used to
avoid code replication in the definition of different objects (or classes), while
here we have to deal with code replication inside one single object. For this
reason, we will also study a version of the role calculus with inheritance, by
giving a translation onto the basic role calculus. However we start with the
inheritance-free calculus because we are looking for the simplest calculus where
the notion of roles can be studied.



4 The basic calculus

4.1 The syntax

The role calculus extends the ¢-calculus by indexing methods with role-tag—
label pairs and by pairing each object with a “current role”. We also extend
the calculus with some role-related operations:

1. object extension: this operation adds a new set of methods to an object;
the role-tag—label pairs of the new methods are required not to appear in
the object:

o+ [R,l; =¢(x; : A) b; €]

2. role navigation: the operation o as R sets the current role-tag of o to R;
3. role checking: the operation o is R tests the current role-tag of o;

4. dynamic type cast: the operation check(a : A) casts a to the object type
A, and fails if this is not sound; this operation is not part of the kernel of
every role calculus, but is very useful in practice.

The syntax of the calculus is thus defined as follows, where R and R; range
over R.

Types A,B = K | (R,[Ril;: Bi'¢")) | (R,[R;,l; : B;*¢T))*
Terms a,bo == z | k| (R,[Ri,l; =c(z; : A) b; *€T])

| 0l | 0l +¢g(z:A)D

| o+ [R,1; = s(z; : A) b; €]

| oas R | ois R | check(a: A)
Environments FE = ()| E,x: A
Judgements J = EF | FAO | Eta:A| FALB

Note that in the object construction and object extension operations A does
not depend on 7 because all methods must declare the same type for their self
parameter x;.

4.2 Typing and subtyping

As in [AC96], the type of an object describes the structure of the object itself,
hence its syntax is (R,[R;,l; : B;€']), and the type rules for object forma-
tion, method extraction, method update, and subsumption, are essentially as in
[ACY6].

We would like to have a non trivial subtype relation, including at least width
subtyping (more fields in a subtype), as in Abadi-Cardelli calculus. However,
we also have to type the object extension operation, with the constraint that a
role-tag—message pair cannot be acquired twice. Subsumption combined with
width subtyping implies that from the type of a record we can only read the
presence of a field but not its absence, which makes it impossible to check the



constraint on object extension. This is a classical problem, which we solve in
the simplest way, by defining both a strict and a weak object type. The strict
type (R,[R;,l; : B; *€T]) describes the exact structure of an object, hence only
trivial subtyping is defined on strict types (rule [StrictSub-Form] below), and
strict types are used to type the extension operation (rule [Ext]). The weak
object type (R, [R;,l; : B; *€'])* lists some messages which are guaranteed to
be answered by the object, hence width subtyping applies, and weak types are
used to type method extraction (rule [Meth]). We use strict types to type-check
method updates too (rule [Upd]), hence we gain deep subtyping on weak types
(rule [WeakSub]). Strict types can be promoted to the correspondent weak type
(rule [StrictWeakSub]). Hereafter, unqualified “object type” stands for the weak
version. The use of strict and weak types to type update and query operations
respectively was first proposed in [Ghe90], and developed independently, for
object update, in [FM96]; it is also strictly connected with the idea of “row
variables”.

Weak object subtyping also allows the current role to be promoted to a
super-role. This happens because we want, for example, to be able to write
a function to print the name of a person as follows, and then to apply it to
students and employees.

let type Person = <Pers, [Pers,Name:String]>+;
let printName = fun(x:Person) printString(x.Name);

However, role promotion create a soundness problem. It would not be sound
to pass an object o whose strict type is (Stud,[Pers, Name : string]) to the
function above, since x.Name would look for a Stud, Name method, but o is not
able to answer the Name method in its Student role (we have no inheritance
here); however, the type of o is a subtype of (Pers, [Pers, Name : string]). We
solve this problem by considering such an object as ill formed: if a student
can answer a method m as a person, it must be able to answer m as a student
too. This “downward closure” condition is formalized in the fifth premise of rule
[StrictSub-Form], and will come (almost) for free in the version with inheritance.
The premise is better read as: for every method R;,[; and for every role R; < R;
which appears in some other method, there is a method Rj,[, which answers
the message [; for the role R; (i.e., (Ran,ln) = (Ri,1;)).

A problem would also arise if we allowed an object with strict type (Stud, [Stud, Name :
int; Pers, Name : string]) to be passed to the same function. In this case, the
Stud, Name method answers the call x.name which has been typed with respect
to the Pers, Name method, hence the type of the first method must be a subtype
of the type of the second. This “covariance” condition is captured by the fourth
premise of rule [StrictSub-Form]. Notice that this covariance is orthogonal to
the deep subtyping question, but is strictly related to the same condition we find
in the A-& calculus of overloaded functions with late binding [Ghe91, CGL95].
For reasons of space we cannot discuss this point any further.

We are now ready to present the most important typing rules of our system.
We only omit the obvious rules for variables and constants. We define good
formation F A $ as H A < A.



Subtyping and type formation

(1) Vi#j. (Ri, ;) # (Rj,1;)

(2) Viel. FB; $

(3) R e [Ri,li = §(£L‘i : A) b; iEI]

(4) Vi,jel. R; < R;j,l; =1; =+ B; < B;

(5) Vi,jel. RZSR] = dhel. <Rh,lh>:<Rl,l]>

F (R, [Riali : B; iEI]> < (R, [Riali : B; iEI]>

[StrictSub-Form)]

Vi'eI'. - Bl ¢
R’SR Viel. F'el. ;’I:Ri,li’:li,l_BZ,'ISBi

—7 - WeakSub
F(R',[R.,1;: BI'ST)\T <(R,[Ri,1; : B;"€"])* [ ]
l_ R, Rzalz : BZ = <>
( [ i b — [StrictWeakSub)]
|‘ (R, [Rz;lz : B, e ]> S (R, [Rz;lz : B, e ])+
Term formation
let A= (R, [RZ, lz : B, ie[]>
Viel. E,z;: AT Fb;: B,
s o L IJ [ObjIntro]
EF (R, [Ri,l; =c(z; : A) b;'€']) : A
let A= (R, [Rl,ll : Bi iEI;R, lj : B]' jEJ]>
Etra: (RI,[Ri,li :Biiel]) |‘A <>
VijeJ E,xz;: AT Fb;: B;
AL e [Ext]
Eta+[R1; =c(z;: AY) b;7€7]: A
Eta:A= <R, [Rl,ll : Bz ie[])
Anel. (Ry,lp) =(R,)l) E,z:AT+Fb: By,
T [Upd]
Etal+cgz:AT)b: A
Eta:A FA<B Etra:(R,[R,l:B])"
[Subs] [Meth]
EFEta:B FEral:B
EtFa:(R,[Ryl;: B €])T Era:(R[])T
! ! icT\+ [IS] [AS]
Etaas R : (R,[R;l;: B;*"]) EFais R : bool

Era:(R[])T
EF+ check(a:A): A

[Check]



4.3 The reduction rules

We define the operational semantics of the language as a deterministic relation
between terms and values, where values are defined by the following grammar.

Values v = x| k| (R [Ri,li =c(x;: A) b; "))
| AsError | CheckError

We have included the operator as and check(a : A) which may raise run-
time error, and we chose to include these errors in the set of values, for the sake
of simplicity. We only give here the three most important rules.

a = (R,[Ri,l; = ¢(z; : A) b; "))
HhEI.Rh;lh:R,l bh[xh(—o] S v

ol — v

[Meth]

a — (RI, [Rz,ll = ((CEZ' : Al) b; iEID /—_CI’L e€el,je J R;,l; =R, lj

: [Ext]
a + [R,l] = g(x] A) b].]EJ]
= (R,[Ri,l; = ¢(z; = A) b; €1, R, 1; = ¢(x; : A) b; 1€7])
a = (R,[Ri,l; =c(x;: A") b;'€1])  In e I. Rp,lp, = R,1
[Upd]

ol —g(x:A)b
= (R,[Ri,l; = ¢(w; : A) b '€"\L Ry 1y = (a2 A) b])
4.4 The strong typing theorem

In the full paper we first define an evaluation function ewal which, given a
closed term, applies the definition of the reduction relation and either diverges,
or returns a value (maybe an error), or returns a failure when no reduction rule
can be applied. Then, we prove the following strong-typing theorem.

Theorem 4.1 (Strong Typing) Let ¢ be a closed term. If () F ¢ : C then
eval(c) does not return a failure.

The key lemmas prove transitivity elimination, good behavior w.r.t. well-

typed substitution, subject reduction.

5 The hierarchical calculus

5.1 The calculus

For reasons of space, we only give a general discussion; please see the full paper
for details.



In the base calculus method extraction is simply direct field access plus self
substitution, as in [AC96]. This is the most elementary solution, but it forces a
lot of code replication, and it introduces the “downward closure” constraint in
the object type formation rule. We now study a variant where, if no Stud, Name
method is present, the Pers, Name method is used instead.

We first define a lookup function [R;,!; : B; iEI]R,l, which returns the mini-
mum super-role of R associated with [ in [R;,l; : B; *€!], as:

[Rl,l, . Bz iGI]R’l = (Rj,lj,Bj) if Rj = mln{Rl | Rz Z R, lz = l}
[Rz,ll : Bi iEI]RJ T if {Rz | Rl Z R, ll = l} is empty
or has several minimal elements

This lookup function is then used to type method extraction (rule [MethH])
and to define the semantics of the same operation.

Inheritance is very useful, but creates a “diamond closure” problem, which
resembles the classical multiple-inheritance problems of object-oriented lan-
guages. Consider a lattice Top, R, S, Bot, where Top and Bot are the maximum
and minimum elements, and consider an object o with type (R, [Top,l : T; R, :
A; S,1: B])*. Considering that the strict current role of 0 may be Bot, how
can we type 0.[7 With our lookup technique, 0.l would fail if no method for
Bot,l were defined, hence the simplest solution is to put a “diamond closure”
condition in the good formation rule, which forces us to have a method for Bot,
in situations like this one (the same technique has been used in the A-& calculus

[CGLY5)).
Vi,j€l. (i# jAlLi=1; AIR. (R<R;AR<R;) = [Ri,l;i: Bi**'|gy, }!

However, this solution is not acceptable here, since, in the presence of a
common subtype T of students and employees, it would force any object which is
both a student and an employee to belong to type T too, which is too restrictive
for our purposes. Moreover, this solution breaks a hidden assumption of our
calculus, which we call “downward openness” of R. We want every term which
is well-typed with a given R to remain well-typed if a new element is added
to R, provided that this new element is not a super-role of any old R in R.
This weakening-like property allows this calculus to be easily extended with an
operation to define new role-tags at the bottom of the current hierarchy, hence
to be the foundation of incremental type-checking techniques. This property is
enjoyed by all our rules, but would be broken by this diamond closure condition:
the previous type is well formed when Bot is not in R, but would become ill-
formed after Bot is added.

Hence we adopt a different solution. Every object in the hierarchical calculus
carries both a current role and a set of admissible roles; the syntax is now
(R, {R;}7€7 [R;,l; = s(x; = A) b;*€T]). An object can only assume one of the
admissible roles {R;}7S’. Hence, going back to the previous example, when we

L1f we drop the i # j condition, this can be expressed as: Vi. VR < R;. [R;,l; : B; *€1]p . |,
which shows that diamond closure is stricly related to the downward closure problem.

10



build an object whose type is (R, {Top, R, S},[Top,l : T; R,1: A; S, : B]),
there is no need to define a method for the Bot,l pair, since the operation
o as Bot is prevented by this type. If we put Bot into the admissible types,
then we also have to define a method for Bot,[; this is enforced by the sixth
premise of the [ObjFormH] rule.

RE{Rk}kEK

{Ri} €7 C {Rp} Mo

Vi # j. (Ri, i) # (R, 1;)

Viel. - B; $

Vi,jel. R; < R;j,l; =1; =+ B; < B;

VkeK.Viel. R, <R; = [Rl,l, : Biiel]Rle. d
F (R, {Ry} *¢5 [Ri,1; : B;"¥)) ¢

1
2
3
4
5
6

NN N N N N
o — D —

[ObjFormH]

We also present two other crucial rules, which define subtyping and method
extraction.

Vi'el'. B, & R <R {Rp}"<K C{Rj}FeK
viel. 3i'el'. R} > R,ly =1;,+ B} < B;

' eI’ [WeakSubH]
(R (R} FER R 1 BT
< (R,{Ry} *<K [R;,1; : B; *€T])*
Eta: (R, {Rp} ", [R;,l; : Bi*¥'])*
R;,l; : B;*¥!p, = (Ry,1n, B
[ Ir = (Rh,ln, Bn) MethH]

Etral: By

5.2 The translation

The hierarchical calculus can be faithfully translated onto the base calculus. We
only suggest here the translation; observe how the set of admissible roles plays

a key role in this translation.
The translation of A = (R, {Ri}*<X [R;,l; : B;*€!]) is the object type
(R,[Complete([R;,l; : B; *€T], { Ry} *€K)]), where

Complete([R;,[; : B; *€1), { Ry, } *¢K)

contains the signature of every message which an object with type A can un-
derstand, and is defined as:

{R,l :T | VkeK,iel such that [Rl,l, . B; ieI]Rle. +
and [Rz,ll : Bi ieI]RkJi = <R,l,T>}

Objects are translated in the same way.

11



6 Role-tags

We anticipated that role-tags are meant to be a model for Fibonacci generative
types. In Fibonacci, a generative type definition (IsA T with ¥) denotes an
object type which is characterized by its supertype 7', its signature ¥, and a
unique time-stamp generated when the definition is processed. At run-time,
the type time-stamp is recorded in each role value, and is used to implement
operations such as Is T and As T' (method lookup is implemented in a more
efficient way, which makes no use of the time-stamp at method lookup time; see
[ABGO93, ADG95]). Because of these time-stamps, types are not always erased
at run time; for example, if a polymorphic function or a module is parametrized
over an object type, it actually receives the timestamp of that type as a param-
eter.

A role-tag R represents the hidden time-stamp. We decouple the tag from its
signature, to keep the model simpler. We are currently studying extensions to
deal with modules and parametric polymorphism. In this context, the explicit
presence of the role-tags helps understanding when types can be erased and
when they have to be passed around at run time; however, the decoupling of
the role-tag from the signature becomes much more problematic.

In the full paper we describe a construction for a set R where every finite
type hierarchy can be “faithfully” embedded, in a “downward open” way.

7 Related work

Objects with roles and an extension operation have been studied in [SS91, PK97,
GSR96, BG95, Run92]. Most of these works focus on modeling (in the informa-
tion system sense), with the notable exception of [BG95], where a formal model
is presented. This model follows the database tradition and only describes the
data aspects but does not formalize the computation. It also differs from our
approach since the role played by an object depends on the static type of the
expression which denotes the object itself, i.e. they do not have two different
values, in the semantic domain, to denote two different roles of the same object,
but the message interpretation mechanism is affected both by the dynamic and
by the static type of the object. This approach is interesting, but we find it less
expressive, and more complex, than the one described in the present paper.

In [ABGO93, AGO95] the role mechanism of Fibonacci is described, and its
semantics is outlined informally. This high-level mechanism is behind the basic
calculus that we define here.

Many typed calculi supporting record or object extension have been studied
(see, for example, [Rém89, JM88, FM96, Liq97, BBDCL9IT7]). All these papers
study how to forbid what we called “incompatible extensions” in the presence
of subtyping. Indeed, in the presence of “width subtyping”, the static type
of an expression contains less fields than those in the denoted record, which
makes it impossible to be sure that a field f is not already present, maybe with
an incompatible type. The proposed solutions range from the assignment of

12



two types to a record, one exact and the other where fields may be forgotten
[FM96], to richer type systems where both the presence and absence of fields
may be reported [CM91, Rém89, JMB88], to systems where the dependencies
among different methods are tracked [Liq97]. Preventing incompatible updates
is also a problem for us, but it is not our central concern, hence we will adopt
the simple solution proposed in [Ghe90, FM96]. The real focus of our research is
a new semantics for object extension and message passing which allows, under
some conditions, incompatible extensions.

A very interesting work which goes in this direction is presented in the
paper [RS98]. In the first order system presented in that paper, an object is
made of a method suite where every method is indexed by a number, plus a
dictionary which maps names to numbers; methods are accessed by name from
the outside and by their internal number from self. For example, if a method
m1 = ¢(s) s.my is added to an object whose dictionary maps ma to 2, then my
is stored as m1 = ¢(s) s.2. In this way, it is possible to forget the existence of
ms by width subtyping, and then to add a new field named my with a different
type without interfering with the future executions of m;. Indeed, m; will still
access the method indexed by 2, while the new msy will get a different internal
number. A method update operation is also defined such that, when method ms
mapped to 2 is updated using this operations, then it is really the method with
internal index 2 which get changed; in this way, the usual late-binding behavior
of self can be obtained.

Their proposal is related to ours. In an imperative version of their system, if
a student johnAsStudent with an integer code is built, then its code its forgotten
by subsumption, and finally it is extended with a code "I1” and the result is
bound to johnAsEmployee, then two different access paths to the same object
are obtained, which are, essentially, two different dictionaries, which are similar
to our roles. However, there are some differences. First, roles made through
dictionaries have no name, hence there are no as or s operations. A subtler
and more important difference is better explained by an example. Consider an
object o with role P and with a method P, m; whose body calls self.ms. In our
calculus, if we extend it to two different subroles S1, Sy which both implement
method mo, then a call to (o as S;).m; will, correctly, invoke S;.mo for i = 1,2;
this is the usual late-binding behavior of self.

In Riecke’s and Stone’s approach, when we add the version of ms for S
we use the update operation, to obtain the late-binding behavior of self. Af-
terwards, when we add the version of ms for Ss, we have to choose between
extension and method update. If we use extension, we obtain a new dictionary
for the object but self.ms, inside my, remains bound to the old version of m..
If we use method override then self.ms gets bound to the new version of ms,
but there is no way to make it use the old version: with extension we have roles
but static binding of self, with method update we have dynamic binding but no
roles. This is not, of course, a fault of Riecke and Stone’s approach, but just a
consequence of the fact that their aim is different from the one of this work.
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8 Conclusions

Object extension and roles cannot, be avoided in certain applications of object-
oriented languages, but these notions lack a solid foundation. We have presented
such a foundation and have commented on some of the key issues that arise in our
setting: resolution of ambiguous messages, covariance, downward or diamond
closure, and extensibility of the set of role tags. Most of these issues are directly
related to some of the hardest problems we had to face during the design of the
Fibonacci language.

Conclusions

We thanks the anonymous referees for the constructive references. Discussions
with Luca Cardelli and John Riecke have been very helpful. This work has
been supported in part by grants from the E.U., workgroup PASTEL, and by
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