
Foundations for Extensible Objects with RolesExtended AbstractGiorgio Ghelli and Debora PalmeriniAbstractObject-oriented database systems are an emerging, promising tech-nology, underpinned by the integration of ideas from object-oriented lan-guages along with the speci�c needs of database applications.The fundamental reason for using such systems is that any real-worldentity can be modelled with one object which matches its structure andbehavior. To this end, the standard notion of object has to be augmentedso that it can model the fact that an entity may acquire new pieces ofstructure and behavior during its existence, without changing its identity.To allow this extensibility in a statically typed system, a notion of context-dependent behavior (\role playing") has to be added to the basic featuresof object-oriented languages. This feature is also a useful modeling device.Languages with role mechanisms have already been proposed. How-ever, their design is full of choices which cannot be easily justi�ed. Astrong foundation for the object-with-roles notion would be extremelyhelpful to justify these choices and to understand, and prove, the proper-ties of such a mechanism. In this paper we describe such a foundation,building on the object model proposed by Abadi and Cardelli.1 IntroductionIn the database �eld, the object-oriented data model attracts much attention be-cause of its ability to faithfully represent real world entities. However, databaseapplications need an operation, which we call object extension, which is not al-lowed in the standard object-oriented model. Object extension is the operationwhich allows an object, created in a class C, to become an instance of a subclassS too, without changing its identity.The problematic aspect of extension can be better explained by an example.Consider an object type Person with two subtypes, Student and Employee,which both introduce an IdCode �eld, with a di�erent meaning and even adi�erent type. Extension allows one to build a student John with IdCode 100and then to extend it to be also an employee with IdCode \I1". It is not clear,now, how John should answer an IdCode message.We call \incompatible" such an extension that adds an already present �eld,with a non compatible type. In the FOOL (\Foundations of O-O Languages")1

�eld it is usually assumed that such an incompatible extension should be alwaysforbidden.Another alternative, studied in the �eld of database languagues ([GSR96],[BG95], [Run92], [AGO95]. . .), is to give John a context dependent behavior:in di�erent contexts John plays either the Student or the Employee role, andanswers the IdCode message in a role-dependent way. The idea of objects withmultiple roles, whose behavior depends on the role played, is also a useful mod-eling device, which combines the
exibility given by method overriding with theability to access di�erent methods in di�erent situations.In the Pisa University database group we have de�ned and developed adatabase programming language, Fibonacci, which embodies these ideas ([AGO95]).During this process, we had to make some design choices, and to adopt sometyping rules, whose real meaning was not totally clear to us. Our understandingof the object with roles mechanism was not complete, and this paper tries to�ll this gap.The paper is structured as follows. In Section 2 we recall Abadi-Cardelli&-calculus, which is the basis of our proposal. In Section 3 we give an informalintroduction to our calculus. The calculus, in its basic form, is formally intro-duced in Section 4. Section 5 enriches the calculus with an inheritance mecha-nism. Section 6 describes an important technical point, the internal structureof the set of role-tags. Section 7 discusses some related works. Section 8 drawssome conclusions.2 The &-calculusOur model is de�ned as an extension of Abadi-Cardelli &-calculus. In thatcalculus, an object is simply a method suite, where each method has a special\self-variable", bound by the & binder. Three operations are de�ned on objects:construction [li = &(xi : A)bi2Ii], method selection a:l, and method updatea:l &(xi : A)b. Method selection returns the body of the selected methodand substitutes the \self-variable" with the object; method update updates thebody of a method. The syntax of the calculus is de�ned below; type rules andoperational semantics can be found in [AC96].Types A;B :: = K j [li : Bi i2I]Terms a; b; o :: = x j k j [li = &(xi : A)bi i2I] j o:l j o:l &(xi : A) b3 An overview of the calculus3.1 The Fibonacci modelOur role model is an abstract version of the Fibonacci model, which is betterexplained by an example. The following piece of Fibonacci code de�nes threeobject types, then builds a student, and extends it to an employee.2

Let Person = IsA NewObject With Name: String; End;Let Student = IsA Person With IdCode: Int; End;Let Employee = IsA Person With IdCode: String; End;let john = object Personmethods Name = "John" end;let johnAsStudent = extend john to Studentmethods IdCode = 100 end;let johnAsEmployee = extend johAsStudent to Employeemethods IdCode = "I1" end;According to Fibonacci \arrows and boxes" informal model, the constructionand extension operations above build an object with an internal structure ofthree roles, one for each di�erent object type owned by the object. Each of thethree identi�ers john... denotes a di�erent role of the same object, as depictedin Figure 1.
�- - johnAsEmployeejohnAsStudentjohn @@IEmployeeStudent���Person

Figure 1: The internal structure of an object with rolesA message can be sent to a role either with the o!l or with the o:l notation. Inthe �rst case, the method is looked for in the receiving role and in its ancestors(upward lookup). In the second case, the method is �rst looked for in the roledescendants, starting from last one acquired; if no descendant has a method forthe message, upward lookup is performed (double lookup). If the method is foundduring downward lookup, then an instance of self in that method denotes therole where the method has been found; otherwise, self denotes the role whichreceived the message. If extension is never used, then every object is alwaysaccessed from its bottom role, hence the double and upward lookup coincide,and both coincide with the standard Smalltalk rule, including the semantics ofself. In this paper we will only address upward lookup, but double lookup doesnot introduce additional problems.3.2 The abstract modelThe essential features of the Fibonacci model that we would like to representare:1. classical smalltalk-like objects are a special case of objects with roles (other3

proposals support roles at the expense of other features, such as dynamicbinding);2. a \role expression" denotes one speci�c role of an object; messages aresent to roles, and method lookup depends on the receiving role (in otherapproaches, messages are sent to objects, and it is the context, namely thestatic type of the receiver, which in
uences method lookup, as in [BG95]);3. object types (more precisely, role types) are generative: the Isa operatorgenerates a brand new type whenever it is invoked; for example, Employeeand Student would be two di�erent types even if IdCode were an integerin both cases;4. an object is not allowed to acquire the same role type twice: extending astudent to the type Student is not allowed.Features (1) and (2) are fundamental and easily defendable design choices,while (3), hence (4), are more questionable.In the type theoretic �eld, we usually prefer to deal with non-generativeobject types, mainly because generative types, which may be seen as a limitedform of dependent types, have bad interactions with other constructs, such asmodules and polymorphism. In the database �eld, on the other side, we prefergenerative types because a Person models a class of entities which \happen" tohave a certain interface, but the \identity" of the type, and its position in thetype hierarchy, cannot be simply identi�ed with its interface.We chose here to model generative types to have a more faithful modelfor Fibonacci, and also because we believe that generative object types is animportant notion which needs better foundations. The system we present heremodels generative types in a non-generative context by exploiting the idea of\role-tags"; in Section 6 we spend some more words on this idea.Finally, we adopt here constraint (4) because it is found in Fibonacci, butit may be dropped without major consequences.For the sake of simplicity, we will only model upward lookup and, to keepwith the tradition, we will use the standard notation o:l instead of the Fibonaccio!l; modelling double lookup too would not add much to the work.To model objects with roles we proceed as follows. Since methods are se-lected on the basis of a message and a role, we index methods in an object witha role name{message pair. The \role name" is chosen from an in�nite set R ofrole-tags. Then, since an \object expression" actually denotes one speci�c roleof an object, we transform objects into role-tag{object pairs. Hence, an object-with-role playing the role R is now represented as follows, where the currentrole R belongs to fRig i2I :hR; [Ri; li = &(xi : A) bi i2I]iEvery role-tag R;Ri comes from an arbitrary partially ordered set R. Ourtheory is independent of the chosen R, hence we can assume that whichever4

object type hierarchy we are interested in, this hierarchy is chosen as R. Forexample the previous example can be modelled by takingR = hfPers, Stud, Empg;Ordiwhere Ord is order generated by Stud � Pers, Emp � Pers. We can do better,however, and de�ne a special set R where every �nite object type hierarchycan be \faithfully" embedded. This construction is explained in Section 6 only,since our particular notion of \faithfulness" can be better understood after thecalculus has been presented.This calculus, with the reduction rules that we will de�ne, allows one tomodel the john, johnAsStudent, johnAsEmployee values which are produced bythe previous Fibonacci operations as follows.john = hPers; [Pers;Name = &() "John"]ijohnAsStudent = hStud; [Pers;Name = &() "John";Stud;Name = &() "John"; Stud; IdCode = &() 100]ijohnAsEmployee = hEmp; [Pers;Name = &() "John";Stud;Name = &() "John"; Stud; IdCode = &() 100;Emp;Name = &() "John"; Emp; IdCode = &() "I1"]iWe will de�ne a side-e�ect free calculus, as is common in the type-theoretic�eld, to be able to study the essential features avoiding some unnecessary com-plications. More precisely, though the notion of `object identity' is not modeledin side-e�ect calculi, our study will nevertheless face the type-theoretic prob-lems which are posed by identity preserving update, while avoiding to deal withstores and locations. This presence of the typing problems of imperative object-oriented languages in the functional setting is a well-known phenomenon, whichis explained by the presence of self, combined with the requirement that meth-ods which have been type-checked before functional update of the object shouldnot need to be checked once more after the update. Informally, an updatedobject is referenced both by the instances of self in the methods checked beforeupdate and by those in the methods added by the update operation. This formof sharing, althought limited, already presents the same type-theoretics chal-lenges that arise in the imperative setting because of the full sharing allowedby the presence of updatable locations. The extension of this calculus to animperative one is relatively straightforward.Since this basic calculus is modelled over the &-calculus, it has no inheri-tance operator, and inheritance can be represented using the same techniquesas in [AC96]. However, the example above shows that here inheritance is moreimportant than in usual object calculi: in object calculi inheritance is used toavoid code replication in the de�nition of di�erent objects (or classes), whilehere we have to deal with code replication inside one single object. For thisreason, we will also study a version of the role calculus with inheritance, bygiving a translation onto the basic role calculus. However we start with theinheritance-free calculus because we are looking for the simplest calculus wherethe notion of roles can be studied. 5

4 The basic calculus4.1 The syntaxThe role calculus extends the &-calculus by indexing methods with role-tag{label pairs and by pairing each object with a \current role". We also extendthe calculus with some role-related operations:1. object extension: this operation adds a new set of methods to an object;the role-tag{label pairs of the new methods are required not to appear inthe object: o+ [R; li = &(xi : A) bi i2I]2. role navigation: the operation o as R sets the current role-tag of o to R;3. role checking: the operation o is R tests the current role-tag of o;4. dynamic type cast: the operation check(a : A) casts a to the object typeA, and fails if this is not sound; this operation is not part of the kernel ofevery role calculus, but is very useful in practice.The syntax of the calculus is thus de�ned as follows, where R and Ri rangeover R.Types A;B :: = K j hR; [Ri; li : Bi i2I]i j hR; [Ri; li : Bi i2I]i+Terms a; b; o :: = x j k j hR; [Ri; li = &(xi : A) bi i2I]ij o:l j o:l &(x : A) bj o+ [R; li = &(xi : A) bi i2I]j o as R j o is R j check(a : A)Environments E :: = () j E; x : AJudgements J :: = E ` } j ` A } j E ` a : A j ` A � BNote that in the object construction and object extension operations A doesnot depend on i because all methods must declare the same type for their selfparameter xi.4.2 Typing and subtypingAs in [AC96], the type of an object describes the structure of the object itself,hence its syntax is hR; [Ri; li : Bi i2I]i, and the type rules for object forma-tion, method extraction, method update, and subsumption, are essentially as in[AC96].We would like to have a non trivial subtype relation, including at least widthsubtyping (more �elds in a subtype), as in Abadi-Cardelli calculus. However,we also have to type the object extension operation, with the constraint that arole-tag{message pair cannot be acquired twice. Subsumption combined withwidth subtyping implies that from the type of a record we can only read thepresence of a �eld but not its absence, which makes it impossible to check the6

constraint on object extension. This is a classical problem, which we solve inthe simplest way, by de�ning both a strict and a weak object type. The stricttype hR; [Ri; li : Bi i2I]i describes the exact structure of an object, hence onlytrivial subtyping is de�ned on strict types (rule [StrictSub-Form] below), andstrict types are used to type the extension operation (rule [Ext]). The weakobject type hR; [Ri; li : Bi i2I]i+ lists some messages which are guaranteed tobe answered by the object, hence width subtyping applies, and weak types areused to type method extraction (rule [Meth]). We use strict types to type-checkmethod updates too (rule [Upd]), hence we gain deep subtyping on weak types(rule [WeakSub]). Strict types can be promoted to the correspondent weak type(rule [StrictWeakSub]). Hereafter, unquali�ed \object type" stands for the weakversion. The use of strict and weak types to type update and query operationsrespectively was �rst proposed in [Ghe90], and developed independently, forobject update, in [FM96]; it is also strictly connected with the idea of \rowvariables".Weak object subtyping also allows the current role to be promoted to asuper-role. This happens because we want, for example, to be able to writea function to print the name of a person as follows, and then to apply it tostudents and employees.let type Person = <Pers,[Pers,Name:String]>+;let printName = fun(x:Person) printString(x.Name);However, role promotion create a soundness problem. It would not be soundto pass an object o whose strict type is hStud; [Pers;Name : string]i to thefunction above, since x.Name would look for a Stud,Name method, but o is notable to answer the Name method in its Student role (we have no inheritancehere); however, the type of o is a subtype of hPers; [Pers;Name : string]i. Wesolve this problem by considering such an object as ill formed: if a studentcan answer a method m as a person, it must be able to answer m as a studenttoo. This \downward closure" condition is formalized in the �fth premise of rule[StrictSub-Form], and will come (almost) for free in the version with inheritance.The premise is better read as: for every method Rj ; lj and for every role Ri � Rjwhich appears in some other method, there is a method Rh; lh which answersthe message lj for the role Ri (i.e., hRh; lhi = hRi; lji).A problem would also arise if we allowed an object with strict type hStud; [Stud;Name :int; Pers;Name : string]i to be passed to the same function. In this case, theStud;Name method answers the call x.name which has been typed with respectto the Pers;Name method, hence the type of the �rst method must be a subtypeof the type of the second. This \covariance" condition is captured by the fourthpremise of rule [StrictSub-Form]. Notice that this covariance is orthogonal tothe deep subtyping question, but is strictly related to the same condition we �ndin the �-& calculus of overloaded functions with late binding [Ghe91, CGL95].For reasons of space we cannot discuss this point any further.We are now ready to present the most important typing rules of our system.We only omit the obvious rules for variables and constants. We de�ne goodformation ` A } as ` A � A. 7

Subtyping and type formation(1) 8i 6= j: hRi; lii 6= hRj ; lji(2) 8i2I: ` Bi }(3) R 2 [Ri; li = &(xi : A) bi i2I](4) 8i; j2I: Ri � Rj ; li = lj) ` Bi � Bj(5) 8i; j2I: Ri � Rj) 9h2I: hRh; lhi = hRi; lji [StrictSub-Form]` hR; [Ri; li : Bi i2I]i � hR; [Ri; li : Bi i2I]i8i02I 0: ` B0i0 }R0 � R 8i2I: 9i02I 0: R0i0 = Ri; li0 = li;` B0i0 � Bi [WeakSub]` hR0; [R0i; l0i : B0i i2I0]i+ � hR; [Ri; li : Bi i2I]i+` hR; [Ri; li : Bi i2I]i } [StrictWeakSub]` hR; [Ri; li : Bi i2I]i � hR; [Ri; li : Bi i2I]i+Term formation let A = hR; [Ri; li : Bi i2I]i8i 2 I: E; xi : A+ ` bj : Bj [ObjIntro]E ` hR; [Ri; li = &(xi : A) bi i2I]i : Alet A = hR; [Ri; li : Bi i2I ;R; lj : Bj j2J]iE ` a : hR0; [Ri; li : Bi i2I]i ` A }8j2J: E; xj : A+ ` bj : Bj [Ext]E ` a+ [R; lj = &(xj : A+) bj j2J] : AE ` a : A = hR; [Ri; li : Bi i2I]i9h2I: hRh; lhi = hR; li E; x : A+ ` b : Bh [Upd]E ` a:l &(x : A+) b : AE ` a : A ` A � B [Subs]E ` a : B E ` a : hR; [R; l : B]i+ [Meth]E ` a:l : BE ` a : hR; [Ri; li : Bi i2I]i+ [Is]E ` a as R0 : hR0; [Ri; li : Bi i2I]i+ E ` a : hR; []i+ [As]E ` a is R0 : boolE ` a : hR; []i+ [Check]E ` check(a : A) : A8

4.3 The reduction rulesWe de�ne the operational semantics of the language as a deterministic relationbetween terms and values, where values are de�ned by the following grammar.Values v :: = x j k j hR; [Ri; li = &(xi : A) bi i2I]ij AsError j CheckErrorWe have included the operator as and check(a : A) which may raise run-time error, and we chose to include these errors in the set of values, for the sakeof simplicity. We only give here the three most important rules.a ! hR; [Ri; li = &(xi : A) bi i2I]i9h 2 I: Rh; lh = R; l bh[xh o] ! v [Meth]o:l ! va ! hR0; [Ri; li = &(xi : A0) bi i2I]i 6 9i 2 I; j 2 J: Ri; li = R; lj [Ext]a+ [R; lj = &(xj : A) bj j2J]! hR; [Ri; li = &(xi : A) bi i2I ;R; lj = &(xj : A) bj j2J]ia ! hR; [Ri; li = &(xi : A0) bi i2I]i 9h 2 I: Rh; lh = R; l [Upd]o:l &(x : A) b! hR; [Ri; li = &(xi : A) bi i2Infhg;Rh; lh = &(x : A) b]i4.4 The strong typing theoremIn the full paper we �rst de�ne an evaluation function eval which, given aclosed term, applies the de�nition of the reduction relation and either diverges,or returns a value (maybe an error), or returns a failure when no reduction rulecan be applied. Then, we prove the following strong-typing theorem.Theorem 4.1 (Strong Typing) Let c be a closed term. If () ` c : C theneval(c) does not return a failure.The key lemmas prove transitivity elimination, good behavior w.r.t. well-typed substitution, subject reduction.5 The hierarchical calculus5.1 The calculusFor reasons of space, we only give a general discussion; please see the full paperfor details. 9

In the base calculus method extraction is simply direct �eld access plus selfsubstitution, as in [AC96]. This is the most elementary solution, but it forces alot of code replication, and it introduces the \downward closure" constraint inthe object type formation rule. We now study a variant where, if no Stud;Namemethod is present, the Pers;Name method is used instead.We �rst de�ne a lookup function [Ri; li : Bi i2I]R;l, which returns the mini-mum super-role of R associated with l in [Ri; li : Bi i2I], as:[Ri; li : Bi i2I]R;l = hRj ; lj ; Bji if Rj = minfRi j Ri � R; li = lg[Ri; li : Bi i2I]R;l " if fRi j Ri � R; li = lg is emptyor has several minimal elementsThis lookup function is then used to type method extraction (rule [MethH])and to de�ne the semantics of the same operation.Inheritance is very useful, but creates a \diamond closure" problem, whichresembles the classical multiple-inheritance problems of object-oriented lan-guages. Consider a lattice Top, R, S, Bot, where Top and Bot are the maximumand minimum elements, and consider an object o with type hR; [Top; l : T ; R; l :A; S; l : B]i+. Considering that the strict current role of o may be Bot, howcan we type o:l? With our lookup technique, o:l would fail if no method forBot; l were de�ned, hence the simplest solution is to put a \diamond closure"condition in the good formation rule, which forces us to have a method for Bot; lin situations like this one (the same technique has been used in the �-& calculus[CGL95]).8i; j2I: (i 6= j ^ li = lj ^ 9R: (R � Ri ^ R � Rj))) [Ri; li : Bi i2I]R;li # 1However, this solution is not acceptable here, since, in the presence of acommon subtype T of students and employees, it would force any object which isboth a student and an employee to belong to type T too, which is too restrictivefor our purposes. Moreover, this solution breaks a hidden assumption of ourcalculus, which we call \downward openness" of R. We want every term whichis well-typed with a given R to remain well-typed if a new element is addedto R, provided that this new element is not a super-role of any old R in R.This weakening-like property allows this calculus to be easily extended with anoperation to de�ne new role-tags at the bottom of the current hierarchy, henceto be the foundation of incremental type-checking techniques. This property isenjoyed by all our rules, but would be broken by this diamond closure condition:the previous type is well formed when Bot is not in R, but would become ill-formed after Bot is added.Hence we adopt a di�erent solution. Every object in the hierarchical calculuscarries both a current role and a set of admissible roles; the syntax is nowhR; fRjg j2J ; [Ri; li = &(xi : A) bi i2I]i. An object can only assume one of theadmissible roles fRjg j2J . Hence, going back to the previous example, when we1If we drop the i 6= j condition, this can be expressed as: 8i: 8R � Ri: [Ri; li : Bi i2I]R;li #;which shows that diamond closure is stricly related to the downward closure problem.10

build an object whose type is hR; fTop; R; Sg; [Top; l : T ; R; l : A; S; l : B]i,there is no need to de�ne a method for the Bot; l pair, since the operationo as Bot is prevented by this type. If we put Bot into the admissible types,then we also have to de�ne a method for Bot; l; this is enforced by the sixthpremise of the [ObjFormH] rule.(1) R2fRkg k2K(2) fRig i2I � fRkg k2K(3) 8i 6= j: hRi; lii 6= hRj ; lji(4) 8i2I: ` Bi }(5) 8i; j2I: Ri � Rj ; li = lj) ` Bi � Bj(6) 8k2K: 8i 2 I: Rk � Ri) [Ri; li : Bi i2I]Rk;li # [ObjFormH]` hR; fRkg k2K ; [Ri; li : Bi i2I]i }We also present two other crucial rules, which de�ne subtyping and methodextraction.8i02I 0: ` B0i0 } R0 � R fRkg k2K � fR0kg k2K08i2I: 9i02I 0: R0i0 � Ri; li0 = li;` B0i0 � Bi [WeakSubH]` hR0; fR0kg k2K0 ; [R0i; l0i : B0i i2I0]i+� hR; fRkg k2K ; [Ri; li : Bi i2I]i+E ` a : hR; fRkg k2K ; [Ri; li : Bi i2I]i+[Ri; li : Bi i2I]R;l = hRh; lh; Bhi [MethH]E ` a:l : Bh5.2 The translationThe hierarchical calculus can be faithfully translated onto the base calculus. Weonly suggest here the translation; observe how the set of admissible roles playsa key role in this translation.The translation of A = hR; fRkg k2K ; [Ri; li : Bi i2I]i is the object typehR; [Complete([Ri; li : Bi i2I]; fRkg k2K)]i, whereComplete([Ri; li : Bi i2I]; fRkg k2K)contains the signature of every message which an object with type A can un-derstand, and is de�ned as:fR; l : T j 8k2K; i2I such that [Ri; li : Bi i2I]Rk;li #and [Ri; li : Bi i2I]Rk;li = hR; l; T ig:Objects are translated in the same way.
11

6 Role-tagsWe anticipated that role-tags are meant to be a model for Fibonacci generativetypes. In Fibonacci, a generative type de�nition (IsA T with �) denotes anobject type which is characterized by its supertype T , its signature �, and aunique time-stamp generated when the de�nition is processed. At run-time,the type time-stamp is recorded in each role value, and is used to implementoperations such as Is T and As T (method lookup is implemented in a moree�cient way, which makes no use of the time-stamp at method lookup time; see[ABGO93, ADG95]). Because of these time-stamps, types are not always erasedat run time; for example, if a polymorphic function or a module is parametrizedover an object type, it actually receives the timestamp of that type as a param-eter.A role-tag R represents the hidden time-stamp. We decouple the tag from itssignature, to keep the model simpler. We are currently studying extensions todeal with modules and parametric polymorphism. In this context, the explicitpresence of the role-tags helps understanding when types can be erased andwhen they have to be passed around at run time; however, the decoupling ofthe role-tag from the signature becomes much more problematic.In the full paper we describe a construction for a set R where every �nitetype hierarchy can be \faithfully" embedded, in a \downward open" way.7 Related workObjects with roles and an extension operation have been studied in [SS91, PK97,GSR96, BG95, Run92]. Most of these works focus on modeling (in the informa-tion system sense), with the notable exception of [BG95], where a formal modelis presented. This model follows the database tradition and only describes thedata aspects but does not formalize the computation. It also di�ers from ourapproach since the role played by an object depends on the static type of theexpression which denotes the object itself, i.e. they do not have two di�erentvalues, in the semantic domain, to denote two di�erent roles of the same object,but the message interpretation mechanism is a�ected both by the dynamic andby the static type of the object. This approach is interesting, but we �nd it lessexpressive, and more complex, than the one described in the present paper.In [ABGO93, AGO95] the role mechanism of Fibonacci is described, and itssemantics is outlined informally. This high-level mechanism is behind the basiccalculus that we de�ne here.Many typed calculi supporting record or object extension have been studied(see, for example, [R�em89, JM88, FM96, Liq97, BBDCL97]). All these papersstudy how to forbid what we called \incompatible extensions" in the presenceof subtyping. Indeed, in the presence of \width subtyping", the static typeof an expression contains less �elds than those in the denoted record, whichmakes it impossible to be sure that a �eld f is not already present, maybe withan incompatible type. The proposed solutions range from the assignment of12

two types to a record, one exact and the other where �elds may be forgotten[FM96], to richer type systems where both the presence and absence of �eldsmay be reported [CM91, R�em89, JM88], to systems where the dependenciesamong di�erent methods are tracked [Liq97]. Preventing incompatible updatesis also a problem for us, but it is not our central concern, hence we will adoptthe simple solution proposed in [Ghe90, FM96]. The real focus of our research isa new semantics for object extension and message passing which allows, undersome conditions, incompatible extensions.A very interesting work which goes in this direction is presented in thepaper [RS98]. In the �rst order system presented in that paper, an object ismade of a method suite where every method is indexed by a number, plus adictionary which maps names to numbers; methods are accessed by name fromthe outside and by their internal number from self. For example, if a methodm1 = &(s) s:m2 is added to an object whose dictionary maps m2 to 2, then m1is stored as m1 = &(s) s:2. In this way, it is possible to forget the existence ofm2 by width subtyping, and then to add a new �eld named m2 with a di�erenttype without interfering with the future executions of m1. Indeed, m1 will stillaccess the method indexed by 2, while the new m2 will get a di�erent internalnumber. A method update operation is also de�ned such that, when method m2mapped to 2 is updated using this operations, then it is really the method withinternal index 2 which get changed; in this way, the usual late-binding behaviorof self can be obtained.Their proposal is related to ours. In an imperative version of their system, ifa student johnAsStudent with an integer code is built, then its code its forgottenby subsumption, and �nally it is extended with a code "I1" and the result isbound to johnAsEmployee, then two di�erent access paths to the same objectare obtained, which are, essentially, two di�erent dictionaries, which are similarto our roles. However, there are some di�erences. First, roles made throughdictionaries have no name, hence there are no as or is operations. A subtlerand more important di�erence is better explained by an example. Consider anobject o with role P and with a method P;m1 whose body calls self.m2. In ourcalculus, if we extend it to two di�erent subroles S1; S2 which both implementmethod m2, then a call to (o as Si):m1 will, correctly, invoke Si:m2 for i = 1; 2;this is the usual late-binding behavior of self.In Riecke's and Stone's approach, when we add the version of m2 for S1we use the update operation, to obtain the late-binding behavior of self. Af-terwards, when we add the version of m2 for S2, we have to choose betweenextension and method update. If we use extension, we obtain a new dictionaryfor the object but self.m2, inside m1, remains bound to the old version of m2.If we use method override then self.m2 gets bound to the new version of m2,but there is no way to make it use the old version: with extension we have rolesbut static binding of self, with method update we have dynamic binding but noroles. This is not, of course, a fault of Riecke and Stone's approach, but just aconsequence of the fact that their aim is di�erent from the one of this work.13

8 ConclusionsObject extension and roles cannot be avoided in certain applications of object-oriented languages, but these notions lack a solid foundation. We have presentedsuch a foundation and have commented on some of the key issues that arise in oursetting: resolution of ambiguous messages, covariance, downward or diamondclosure, and extensibility of the set of role tags. Most of these issues are directlyrelated to some of the hardest problems we had to face during the design of theFibonacci language.ConclusionsWe thanks the anonymous referees for the constructive references. Discussionswith Luca Cardelli and John Riecke have been very helpful. This work hasbeen supported in part by grants from the E.U., workgroup PASTEL, and by\Ministero dell'Universit�a e della Ricerca Scienti�ca e Tecnologica", projectINTERDATA.References[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object datamodel with roles. In Proceedings of the International Conferenceon Very Large Data Bases (VLDB), pages 39{51, Dublin, Ireland,1993.[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.[ADG95] A. Albano, M. Diotallevi, and G. Ghelli. Extensible objects fordatabase evolution: Language features and implementation issues.In Proceedings of the Fifth Intl. Workshop on Data Base Program-ming Languages (DBPL), Gubbio, Italy, 1995.[AGO95] A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programminglanguage for object databases. The VLDB Journal, 4(3):403{439,1995.[BBDCL97] Viviana Bono, Michele Bugliesi, Mariangiola Dezani-Ciancaglini,and Luigi Liquori. Subtyping constraints for incomplete objects. InProceedings of TAPSOFT/CAAP 97, volume 1214 of Lecture Notesin Computer Science, pages 465{477. Springer-Verlag, Berlin, 1997.[BG95] E. Bertino and G. Guerrini. Objects with Multiple Most Speci�cClasses. In Proc. Ninth European Conference on Object-OrientedProgramming, LNCS N. 952, pages 102{126, Berlin, 1995. Springer-Verlag. 14

[CGL95] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A cal-culus for overloaded functions with subtyping. Information andComputation, 117(1):115{135, 15 February 1995. a preliminaryversion appeared in LISP and Functional Programming, July 1992(pp. 182{192), and as Rapport de Recherche LIENS-92-4, EcoleNormale Sup�erieure, Paris.[CM91] Luca Cardelli and John Mitchell. Operations on records. Mathe-matical Structures in Computer Science, 1:3{48, 1991. Also in CarlA. Gunter and John C. Mitchell, editors, Theoretical Aspects ofObject-Oriented Programming: Types, Semantics, and LanguageDesign (MIT Press, 1994); available as DEC Systems ResearchCenter Research Report #48, August, 1989, and in the proceed-ings of MFPS '89, Springer LNCS volume 442.[FM96] Kathleen Fisher and John Mitchell. The development of type sys-tems for object-oriented languages. Theory and Practice of ObjectSystems, 1(3):189{220, 1996.[Ghe90] Giorgio Ghelli. A class abstraction for a hierarchical type system. InProceedings of ICDT 90, volume 470 of Lecture Notes in ComputerScience, pages 56{71. Springer-Verlag, Berlin, 1990.[Ghe91] Giorgio Ghelli. A static type system for message passing. In Con-ference on Object-Oriented Programming Systems, Languages, andApplications, pages 129{143, Phoenix, Arizona, October 1991. Dis-tributed as SIGPLAN Notices, Volume 26, Number 11, November1991.[GSR96] G. Gottlob, M. Schre
, and B. R�ock. Extending Object-OrientedSystems with Roles. ACM Transactions on Information Systems,14(3):268{296, 1996.[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extendedpattern matching and subtypes (preliminary version). In Proceed-ings of the ACM Conference on Lisp and Functional Programming,pages 198{211, Snowbird, Utah, July 1988.[Liq97] Luigi Liquori. An extended theory of primitive objects: First or-der system. In M.Aksit and S. Matsuoka, editors, Proceedings ofECOOP 97, volume 1241 of Lecture Notes in Computer Science,pages 146{169. Springer-Verlag, Berlin, 1997.[PK97] M.P. Papazoglou and B.J. Kr�amer. A Database Model for ObjectDynamics. The VLDB Journal, (6):73{96, 1997.[R�em89] Didier R�emy. Typechecking records and variants in a natural ex-tension of ML. In Proceedings of the Sixteenth Annual ACM Sym-posium on Principles of Programming Languages, Austin, pages15

242{249. ACM, January 1989. Also in Carl A. Gunter and JohnC. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-gramming: Types, Semantics, and Language Design (MIT Press,1994).[RS98] J.C. Riecke and C.A. Stone. Privacy via subsumption. In FifthInternational Workshop on Foundations of Object-Oriented Pro-gramming (FOOL 5), January 1998.[Run92] E.A. Rundensteiner. MultiView: A Methodology for SupportingMultiple Views in Object-Oriented Databases. In Proc. of the Eigh-teenth Intl. Conf. on Very Large Data Bases (VLDB), Vancouver,British Columbia, Canada, pages 187{198, San Mateo, California,1992. Morgan Kaufmann Publishers.[SS91] M.H. Scholl and H.-J. Schek. Supporting Views in Object-OrientedDatabases. IEEE Data Engineering Bulletin, 14(2), 1991.

16

