
Efficient Asymmetric Inclusion Between Regular Expression Types

Dario Colazzo∗ Giorgio Ghelli† Carlo Sartiani†

Abstract

The inclusion of Regular Expressions (REs) is the kernel of any type-checking algorithm
for XML manipulation languages. XML applications would benefit from the extension of
REs with interleaving and counting, but this is not feasible in general, since inclusion is
EXPSPACE-complete for such extended REs. In [9] we introduced a notion of “conflict-
free REs”, which are extended REs with excellent complexity behaviour, including a cubic
inclusion algorithm [9] and linear membership [10]. Conflict-free REs have interleaving and
counting, but the complexity is tamed by the “conflict-free” limitations, which have been
found to be satisfied by the vast majority of the content models published on the Web.

However, a type-checking algorithm needs to compare machine-generated subtypes against
human-defined supertypes. The conflict-free restriction, while quite harmless for the human-
defined supertype, is far too restrictive for the subtype. We show here that the PTIME inclu-
sion algorithm can be actually extended to deal with totally unrestricted REs with counting
and interleaving in the subtype position, provided that the supertype is conflict-free.

This is exactly the expressive power that we need to use subtyping inside type-checking
algorithms, and the cost of this generalized algorithm is only quadratic, which is as good as the
best algorithm we have for the symmetric case (see [5]). The result is extremely surprising,
since we had previously found that asymmetric inclusion becomes NP-hard as soon as the
candidate subtype is enriched with binary intersection, a generalization that looked much
more innocent than what we achieve here.

1 Introduction

Different extensions of Regular Expressions (REs) with interleaving operators and counting are
used to describe the content models of XML in the major XML type languages, such as DTDs,
XML Schema, and RELAX-NG. This fact raised new interest in the study of such extended
REs, and, specifically, in the crucial problem of language inclusion. The problem is EXPSPACE-
complete [11, 8], but, in [9], we introduced a class of conflict-free REs with interleaving and
counting, whose inclusion problem is in PTIME. The class is characterized by the single occurrence
of each symbol and the limitation of Kleene-star to symbols. These very strict constraints have
been repeatedly reported as being actually satisfied by the overwhelming majority of content
models that are published on the Web,1 which makes that result very promising, and of immediate
applicability to the problem of comparing two different human-designed content models.
∗Laboratoire de Recherce en Informatique (LRI) - Université Paris Sud - France
†Dipartimento di Informatica - Università di Pisa - Italy
1Quoting [3]“an examination of the 819 DTDs and XSDs gathered from the Cover Pages (including many high-

quality XML standards) as well as from the web at large, reveals that more than 99% of the REs occurring in
practical schemas are CHAREs (and therefore also SOREs)”; our conflict-free types are more expressive than
CHAREs; similar results, in the high range of 90%, have been reported in [1] and [4]

1

However, the main use of subtype checking is in the context of type checking, where computed
types are checked for inclusion into expected types. This happens when a function, expecting
a type for its parameter, is applied to an expression, whose type is computed; this happens
when the result of an expression is used to update a variable, whose expected type has been
declared; this happens when the final result of a piece of code is compared with its expected
type, in order to declare the code type-correct. In all these cases, the expected type is defined
by a programmer, hence we can restrict it to a conflict-free type with little harm. However,
the computed type reflects the structure of the code. Hence, the same symbol may appear in
many different positions, and Kleene star may appear everywhere. In this situation, the ability
to compare two conflict-free types is too limited, and we have to generalize it somehow.

This seemed very hard for a time. The result in [9] is based on an exact description of conflict-
free types through constraints, which reduces type inclusion to constraint implication. The small-
est generalization of the conflict-free single-occurrence and Kleene-star limitations makes types
impossible to be exactly described by our constraints. This problem does not arise if types are
extended with intersection, since our constraints are closed by intersection. However, we showed
in [9] that just one outermost use of binary intersection in the subtype makes inclusion NP-hard.

Luckily enough, we prove here that we can generalize our result without leaving PTIME if
we embrace asymmetry, and consider the mixed inclusion problem, i.e., the problem of verifying
whether T is included in U , where T and U belong to two different families of extended REs.
In this case, we find a surprisingly good result: inclusion is still in PTIME, provided that the
supertype is conflict-free, while no limit is imposed on the subtype, where interleaving, counting,
and Kleene-star can be freely used. This means that a programmer must only declare conflict-free
types, but the compiler can use the whole power of extended REs to approximate the result of
any expression. The key for this result is understanding that, while the supertype has to be
exactly described by the constraints, this is not necessary for the subtype.

2 Types and Constraints

Following the terminology of [9], we use the term “types” as a synonym for “extended regular
expressions”. Hence a “type” denotes a set of words. A constraint is a simple word property
expressed in the constraint language we introduce below; a constraint denotes the set of words
that satisfy it. We say that a type T satisfies a constraint F when every word in T satisfies F , that
is, when the denotation of T is included in that of F . Hence, every type is upper-approximated
by the set of all constraints that it satisfies. In [9] we introduced conflict-free types, where this
“approximation” is exact, meaning that a word belongs to a conflict-free type if and only if it
satisfies all of its associated constraints.

Our algorithm is based on translating the supertype into a corresponding set of constraints
and verifying, in polynomial time, that the subtype satisfies all of these constraints. In a mixed
comparison, constraints provide an exact characterization for the conflict-free supertype, but
just an upper-approximation for the subtype; we will prove below that this does not affect the
correctness or completeness of the algorithm.

2.1 The Type Language

We describe here the specific syntax that we use for our extended REs, or “types”.
We adopt the usual definitions for words concatenation w1 · w2, and for the concatenation

of two languages L1 · L2. The shuffle, or interleaving, operator w1&w2 is also standard, and is

2

defined as follows.

Definition 2.1 (v&w, L1&L2) The shuffle set of two words v, w ∈ Σ∗, or two languages L1, L2 ⊆
Σ∗, is defined as follows; notice that each vi or wi may be the empty word ε.

v&w =def {v1 · w1 · . . .· vn · wn | v1 · . . .· vn = v, w1 · . . .· wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n > 0}
L1&L2 =def

⋃
w1∈L1, w2∈L2

w1&w2

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2; for example, w1·w2 and w2·w1 are
shuffles of w1 and w2.

We consider the following type language for words over an alphabet Σ:

T ::= ε | a | T [m..n] | T + T | T · T | T&T | T !

where: a ∈ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), n ≥ m, and, for any T !, at least one of the subterms
of T has shape a (N∗ = N ∪ {∗}).

Note that expressions like T [0..n] are not allowed due to the condition on m; of course, the
type T [0..n] can be equivalently represented by T [1..n] + ε. The type T ! denotes JT K \ {ε}. The
mandatory presence of an a subterm in T ! guarantees that T contains at least one word that is
different from ε, hence T ! is never empty (Lemma 2.4), which, in turn, implies that we have no
empty types.

Definition 2.2 (S(w), S(T)) For any word w, S(w) is the set of all symbols appearing in w.
For any type T , S(T) is the set of all symbols appearing in T .

Semantics of types is inductively defined by the following equations.

JεK = {ε} JaK = {a}
JT1 · T2K = JT1K· JT2K JT1&T2K = JT1K&JT2K

JT1 + T2K = JT1K ∪ JT2K JT [m..n]K = {w | w = w1 · . . .· wj ,
JT !K = JT K \ {ε} ∀i ∈ 1..j. wi ∈ JT K, m ≤ j ≤ n}

We will use � to range over · and & when we need to specify common properties, such as, for
example: JT � εK = Jε� T K = JT K.

Types that contain the empty word ε are called nullable and are characterized as follows.

Definition 2.3 N(T) is a predicate on types, defined as follows:

N(ε) = true N(T [m..n]) = false
N(T !) = false N(T + T ′) = N(T) or N(T ′)

N(T � T ′) = N(T) and N(T ′)

In this system, no type is empty, hence any symbol in S(T) appears in some word of T .

Lemma 2.4 (Not empty) For any type T :

JT K 6= ∅ (1)
a ∈ S(T)⇒ ∃w ∈ JT K. a ∈ S(w) (2)

3

2.2 Constraints

Constraints are simple word properties, expressed using the following logic, where a, b ∈ Σ, a 6= b
in a ≺ b, A ⊆ Σ, B ⊆ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), and n ≥ m:

F ::= A+ | A+ ⇒ B+ | a?[m..n] | upper(A) | a ≺ b

We do not explicitly consider conjunctive constraints F ∧ F ′ since we will always associate types
with sets of constraints, whose conjunction the type has to satisfy. Constraint semantics is defined
as follows.

w |= A+ ⇔ S(w) ∩A 6= ∅, i.e. some a ∈ A appears in w

w |= A+ ⇒ B+ ⇔ w 6|= A+ or w |= B+

w |= a?[m..n] (n 6= ∗) ⇔ if a appears in w,
then it appears at least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at least m times

w |= upper(A) ⇔ S(w) ⊆ A
w |= a ≺ b ⇔ there is no occurrence of a in w that follows

one occurrence of b in w

The following special cases of the above definition are worth noticing.

ε 6|= A+ ε |= upper(A) ε |= a?[m..n]
ε |= a ≺ b b |= a ≺ b aba 6|= a ≺ b
w 6|= ∅+ w |= ∅+ Z⇒ A+ w |= ∅+ Z⇒ ∅+

Observe that A+ is monotone, i.e., w |= A+ and w is subword of w′ imply that w′ |= A+,
while upper(A) and a ≺ b are anti-monotone.

A type satisfies a constraint if all of its words do. Set of constraints are interpreted as their
conjunction.

Definition 2.5 (T |= F , T |= S) For any type T , constraint F , set of constraints S:

T |= F ⇔def ∀w ∈ JT K. w |= F T |= S ⇔def ∀F ∈ S. T |= S

A constraint denotes a set of words, as follows.

Definition 2.6 (JF K) For any type constraint F , set of constraints S:

JF K =def {w | w |= F} JSK =def ∩F∈SJF K

As a consequence, the relations T |= F and T |= S are equivalent to JT K ⊆ JF K and JT K ⊆ JSK.

2.3 Constraints and Subtyping

If we consider a function C mapping types to sets of constraints expressed in a language F , we
may define three properties that C may satisfy on a type T :

• soundness: C is sound for T if T |= C(T);

4

• F -completeness: a sound C is complete for F and T if JC(T)K = J{F ∈ F | T |= F}K;

• exactness: C is exact for T if JT K = JC(T)K.

Soundness is the basic property. A sound function is complete for T and F if its description
of T cannot be made more precise by adding more constraints from F . When C is F -complete,
for any F ∈ F s.t. T |= F , we have that JC(T)K ⊆ JF K, i.e., any valid F is subsumed by the
constraints in C(T).

A function is exact for T if C(T) is satisfied by no more words than JT K. A complete function
is not necessarily exact; for example, no constraint set in our language is exact for the type
a [1..2] [1..2]. If a complete function is not exact, no incomplete function may be exact. However,
when an F -complete function is exact, all and only the F -complete functions are exact.

In [9] we defined a class of “conflict-free types”, defined as those types that respect the
following restrictions (hereafter we will use the meta-variable U for conflict-free types):

• symbol counting : if U = U ′ [m..n], then U ′ must be the type a, for some a ∈ Σ (only
symbols can be counted or subject to Kleene-star);

• single occurrence: if U = U1 + U2 or U = U1 � U2, then S(U1) ∩ S(U2) = ∅ (no symbol
appears twice).

The symbol-counting restriction means that, for example, types like (a·b)∗ cannot be expressed.
However, it has been found that DTDs and XSD (XML Schema Definition) schemas use repetition
almost exclusively as aop or as (a + . . . + z)op (see [3]), which can be immediately translated to
types that only count symbols, thank to the U1&U2 and U ! operators. For instance, (a+ . . .+z)∗

can be expressed as (a∗& . . .&z∗), where a∗ is a shortcut for a [1..∗] + ε, while (a+ . . .+ z)+ can
be expressed as (a∗& . . .&z∗)!.

The main result of [9] is a complete constraint extraction procedure for the set of exact types,
plus the following theorem.

Theorem 2.7 If a type U is conflict-free, then any constraint-extraction function that is complete
for our constraint language is exact for U .

An exact function can be used to define a mixed-subtyping algorithm, as follows. The algo-
rithm is mixed because U must admit an exact constraint-extraction function,2 but T can be any
type.

Theorem 2.8 (Mixed subtyping) If C is exact for U , then JT K ⊆ JUK ⇔ T |= C(U).

Proof. (⇒) Assume JT K ⊆ JUK and F in C(U), hence U |= F , hence JUK ⊆ JF K, hence JT K ⊆ JF K,
hence T |= F .

(⇐) Assume that T |= C(U). Hence, JT K ⊆ JC(U)K, hence JT K ⊆ JUK because C is exact for
U .

To exploit this simple, albeit surprising, observation, we need now to complement the exact
constraint-extraction of [9] with a procedure to test for T |= C(U). In [9] we (indirectly) proved
that the problem is NP-hard when T ranges over conflict-free types with intersection. We are
going to give here a quadratic procedure when T ranges over general types (with no intersection,
of course).

2We use the letter U since we apply this theorem to conflict-free types only, but it actually holds for any general
type U that is exactly described by C(U).

5

3 Inclusion Algorithm

In [9], we defined a constraint-extraction function that is exact for conflict-free types. For each
type, this function extracts five classes of constraints: co-occurrence constraints CC(U), order
constraints OC(U), cardinality constraints ZeroMinMax (U), lower-bound constraints SIf (U), and
upper-bound constraints upperS (U), that is, the exact function that we are going to use is defined
as

C(U) = CC(U) ∪ OC(U) ∪ ZeroMinMax (U) ∪ upperS (U) ∪ SIf (U)

To apply Theorem 2.8, we have now to exhibit, for each component Ci (where Ci is one of CC(),
OC(U), etc.), an algorithm to verify that, for each F ∈ Ci(U), T |= F , where T is a general type.
This will be done in the following sections. In each section we will recall the definition of the
corresponding component of C(U).

3.1 Co-Occurrence Constraints

The first component CC(U) of C(U) extracts a set of co-occurrence constraints with shape A+ Z⇒
B+. In this section, we define an algorithm to test T |= A+ Z⇒ B+ for any general type T .

This algorithm is based on the ability to discover which subterms T ′ of T satisfy the simpler
constraints B+ and Σ+ Z⇒ B+. In this section only, we use A++ as an abbreviation for Σ+ Z⇒ A+;
by definition, JA++K = JA+K ∪ {ε}, hence T |= A++ ⇔ JT K \ {ε} |= A+.

We first observe the following facts (for reasons of space, most proofs are omitted and can be
found in the Appendix).

Lemma 3.1 For any type T1 � T2:

T1 � T2 |= A+ ⇔ T1 |= A+ ∨ T2 |= A+

T1 � T2 |= A++ ⇔ T1 |= A+ ∨ T2 |= A+ ∨ (T1 |= A++ ∧ T2 |= A++)
T1 � T2 |= a+ Z⇒ A+ ⇔ (T1 |= a+ Z⇒ A+ ∧ T2 |= a+ Z⇒ A+) ∨ T1 � T2 |= A+

We can now define the functions SC(T), which computes {A | T |= A+}, and SC!(T), which
computes {A | T |= A++}.

Definition 3.2 (Set constraints)

SC(T1 + T2) =def SC(T1) ∩ SC(T2) SC!(T1 + T2) =def SC!(T1) ∩ SC!(T2)
SC(T1 � T2) =def SC(T1) ∪ SC(T2) SC!(T1 � T2) =def SC(T1) ∪ SC(T2)

∪(SC!(T1) ∩ SC!(T2))
SC(T [m..n]) =def SC(T) SC!(T [m..n]) =def SC!(T)

SC(T !) =def SC!(T) SC!(T !) =def SC!(T)
SC(a) =def {A | A ∈ 2Σ, a ∈ A} SC!(a) =def {A | A ∈ 2Σ, a ∈ A}
SC(ε) =def ∅ SC!(ε) =def 2Σ

These functions are complete over set constraints A+ and over “weak set constraints” A++.
The crucial case T1 � T2 was proved in Lemma 3.1, the others are trivial.

Theorem 3.3 (Completeness of SC(T) and SC!(T)) For any type T :

A ∈ SC(T) ⇔ T |= A+ (3.1)
A ∈ SC!(T) ⇔ T |= A++ (3.2)

6

We can now present the main result of this section, Theorem 3.5. It specifies that T |= a+ Z⇒
B+ can be verified by finding, for each occurrence ai of a inside T , a subterm T ′ of T that contains
ai and such that T ′ |= B+; T ′ may, or may not, coincide with T . Intuitively, each w ∈ JT K has
a “parse tree” inside T , specifying one branch for each +. When w |= a+, its parse tree must
contain one a leaf and all its ancestors up to the root of T . If one of these ancestors enjoys
T ′ |= B+, then the piece of w recognized by that T ′ must satisfy B+, hence w |= B+. The tricky
part is proving that this condition is necessary.

We focus on constraints with shape a+ Z⇒ A+ because of the following property, that is an
immediate consequence of the definition of A+ Z⇒ B+.

Property 3.4 (Union) For any word w and constraint A+ Z⇒ B+:

w |= A+ Z⇒ B+ ⇔ ∀a ∈ A. w |= a+ Z⇒ B+

Theorem 3.5 (T |= a+ Z⇒ B+ from T ′ |= B+) For any type T , T |= a+ Z⇒ B+ iff, for each
occurrence of a inside T , the occurrence is part of a subterm T ′ of T such that T ′ |= B+.

Moreover, when T |= a+ Z⇒ B+ and a 6∈ B, then, for each occurrence of a inside T , the
occurrence is part of a subterm T1 � T2 of T such that T1 � T2 |= B+.

Proof. (⇒). Assume T |= a+ Z⇒ B+. We prove the thesis by induction and by cases on the
shape of T .

T = T1 + T2. Hence, T1 |= a+ Z⇒ B+ and T2 |= a+ Z⇒ B+. By induction, each occurrence of
a subterm a in T1 and in T2 is part of a T ′ with T ′ |= B+, as required.

T = T1 � T2. By Lemma 3.1, either T1 |= a+ Z⇒ B+ and T2 |= a+ Z⇒ B+, or T1 � T2 |= B+.
In the first case, we reason as in the case for T = T1 + T2. In the second case, T itself is the T ′

subterm with T ′ |= B+.
T = T ′ [m..n]: immediate by induction.
T = T ′!: T ′! |= a+ Z⇒ B+ implies that T ′ |= a+ Z⇒ B+, since ε |= a+ Z⇒ B+, and the thesis

follows by induction.
T = a: T |= a+ Z⇒ B+ implies that a ∈ B, hence we choose T ′ = T = a.
T = b 6= a and T = ε: a does not occur inside T , hence the thesis holds trivially.
(⇐). Assume that, for each occurrence of a inside T , the occurrence is part of a subterm T ′

of T such that T ′ |= B+. We want to prove that T |= a+ Z⇒ B+.
If T |= B+, by definition T |= a+ Z⇒ B+, hence we are done. If a 6∈ S(T), then T |= a+ Z⇒ B+

also holds trivially. Otherwise, T must be a composite type T1 � T2, T1!, or T1 [m..n], such that
each of the components T1 and T2 satisfies the theorem hypothesis, hence, by induction, each of
them satisfies Ti |= a+ Z⇒ B+, hence T |= a+ Z⇒ B+.

The second sentence of the statement can be proved in the same way.

We can now present the algorithm that we use to verify that, for each A+ Z⇒ B+ ∈ CC(U),
T |= A+ Z⇒ B+. CC(U) is defined as follows, where {F | ¬N(U)} denotes the singleton {F}
when N(U) is false, and denotes the empty set otherwise.

CC(ε) =def ∅ CC(a [m..n]) =def ∅
CC(U !) =def CC(U) CC(U1 + U2) =def CC(U1) ∪ CC(U2)

CC(U1 � U2) =def {S(U1)+ Z⇒ S(U2)+ | ¬N(U2)} ∪ {S(U2)+ Z⇒ S(U1)+ | ¬N(U1)}
∪ CC(U1) ∪ CC(U2)

7

The soundness of CC(U) is an immediate consequence of Theorem 3.5, if one observes that
S(T) ∈ SC(T) iff ¬N(T). Its completeness is far subtler, since, for each U1 � U2, we only
extract S(U1)+ Z⇒ S(U2)+, which looks much weaker than {S(U1)+ Z⇒ B+ | B ∈ SC(U2)}.
Informally, we can inductively assume that CC(U2) implies S(U2)+ Z⇒ B+ for any B ∈ SC(U2),
hence S(U1)+ Z⇒ S(U2)+ ∪ CC(U2) implies S(U1)+ Z⇒ B+.

We can now present the constraint implication algorithm (Figure 1). For space reasons, we
present a version that only works in absence of the T ! constructor, so that we can compute SC(T)
with no reference to SC!(T). This version is all we need to discuss the time bound; generalization
to the full language is easy.

The algorithm uses the auxiliary function CoCheck, which verifies that T |= A+ Z⇒ B+ by
first marking all subterms a of T that appear inside a subterm T ′ of T such that T ′ |= B+, and
then checking that each occurrence of each a ∈ A has been marked. The NodesOfSymbol[] array
associates each symbol a with the set of leaves in T that are labeled by a, and can be easily initial-
ized in time O(|T |). The marking process is performed by the auxiliary functions MarkBPlus
and MarkAll. The first marks the subterms T ′ where B ∈ SC(T ′), while MarkAll marks all
the descendants.

After preprocessing A and B so that membership can be checked in constant time, MarkB-
Plus can be computed in O(|T |+ |B|) time, since MarkBPlus and MarkAll never visit the
same subtree twice, hence CoCheck can be computed in O(|T | + |A| + |B|) time. CoImplies
invokes CoCheck once for each A+ Z⇒ B+ ∈ CC(U), i.e., at most twice for each � in U , hence
CoImplies has O((|T | + |U |) ∗ |U |) worst case time complexity, which is even better than the
algorithm that we defined in [9] for the pure conflict-free case.

3.2 Order Constraints

Let us define P(T) as the set of all pairs of symbols (a, b) such that exists a word in JT K where
an a comes before a b.

Definition 3.6 (Pairs) P(T) =def {(a, b) | ∃w1, w2, w3. w1 · a · w2 · b · w3 ∈ JT K}

Order constraints specify which pairs cannot appear in a word, hence P(T) is related to order
constraints as follows.

Property 3.7 T |= a ≺ b ⇔ a 6= b and (b, a) 6∈ P(T)

We verify whether a pair (b, a) ∈ P(T) by testing, for each instance of a and b in T , their
Lower Common Ancestor (LCA); to this aim, we will manipulate a decorated version of T , L(T),
where each instance of a leaf is decorated with a distinct index i, and is denoted as ai.

For example, in a1+b2 the LCA of a1 and b2 is +, meaning that a and b never appear together,
hence (b, a) 6∈ P(T). In a1&b2, the LCA is &, meaning that both (a, b) and (b, a) are in P(T).
The use of LCA is justified by Lemma 2.4: with any two types T1&T2, as soon as ai ∈ S(T1) and
bj ∈ S(T2), then T1 has a word with a and T2 has a word with b, hence (a, b) and (b, a) are in
P(T). In a type a1 · b2, order is relevant: (a, b) ∈ P(T) but (b, a) 6∈ P(T). We express this by
extending the usual definition of LCAL(T)[ai, bj], assuming that it returns a pair �d, where the
direction d is → if the leaf ai comes before bj in T , and is ← otherwise; we ignore the direction
when � 6= ·.

LCAL(T)[ai, bj] ∈ {&,·→} implies that (a, b) ∈ P(T), but (a, b) ∈ P(T) also holds when
LCAL(T)[ai, bj] ∈ {+,·←} provided that the LCA is in the scope of a [m..n] operator with n > 1,

8

MarkBPlus(Type T , Set B)
boolean result ;
case T when T1 [m..n]: result = MarkBPlus(B, T1);

when T1 � T2: result = MarkBPlus(B, T1) ∨ MarkBPlus(B, T2);
if result then MarkAll(T1); MarkAll(T2);

when T1 + T2: result = MarkBPlus(B, T1) ∧ MarkBPlus(B, T2);
when ε: result = false;
when a: result = a ∈ B;

marked [T] = result ;
return result ;

MarkAll(Type T):
if marked [T] then return; else marked [T] = true;
case T when T1! or T = T1 [m..n]: MarkAll(T1);

when T1 + T2 or T1 � T2: MarkAll(T1); MarkAll(T2);
when ε or a: return;

CoCheck(Type T , Set A, Set B)
Global Array <Type → boolean> marked = [false];
Global Array<Symbol → Set of Type> NodesOfSymbol = Prepare(T);
MarkBPlus(B, T);
every a in A, Ta in NodesOfSymbol [a] satisfy marked [Ta]

CoImplies(Type T , Type U):
every A+ Z⇒ B+ in CC(U) satisfy CoCheck(T,A,B)

Figure 1: Algorithm for implication of co-occurrence constraints.

as in (a + b) [1..2] or in (b · a) [1..2]; for this reason, in L(T), we mark as �r (for repeated) all
binary operators � in the scope of a [m..n] with n > 1, and use �1 for all the other operator
instances. Finally, if many occurrences of a and b appear in T , then (a, b) ∈ P(T) as soon as one
pair (ai, bj) satisfies the test we described. This is formalized here.

Definition 3.8 (L(T)) L(T) is obtained from T by:

• rewriting each a as ai, so that no two leaves get the same index;

• rewriting every instance of a binary operator � that is in the scope of at least one instance
of [m..n] (with n > 1) as �r; every other instance of a binary operator is rewritten as �1.

Property 3.9 (Pairs)

(a, b) ∈ P(T) ⇔ ∃ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+r,�r,&1, ·→1 }
(b, a) 6∈ P(T) ⇔ ∀ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+1, ·→1 }
T |= a ≺ b ⇔ a 6= b and ∀ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+1, ·→1 }

Property 3.9 allows the definition of the following constraint-extraction function.

Definition 3.10 (OCg(T))

OCg(T) =def {a ≺ b | a, b ∈ S(T), a 6= b, ∀ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+1, ·→1 }}

9

Property 3.11 (Completeness of OCg(T)) OCg(T) is complete for the set of constraints with
shape a ≺ b and {a, b} ⊆ S(T).

The order constraints component OC(U) of the exact constraint extraction function C(U) is
indeed OCg(U). More precisely, since no symbol appears twice, and no operator is in the scope
of a counting operator apart from a, OC(U) can be defined as follows, without any marking.

OC(U) =def {a ≺ b | a, b ∈ S(U), LCAU [a, b] ∈ {+, ·→}}

While OC(U) is only complete for constraints a ≺ b with {a, b} ⊆ S(U), the function C(U) is
complete for every constraint a ≺ b, because it also contains a component upper(S(U)) (intro-
duced in Section 3.4), which implies a ≺ b for all the pairs {a, b} such that {a, b} 6⊆ S(U): if a
cannot appear in a word of U , then both U |= a ≺ b and U |= b ≺ a hold trivially.

Property 3.9 also suggests an efficient algorithm to verify whether, for all F ∈ OC(U), we
have T |= F . The algorithm is in Figure 2. It first builds, for each type, its decoration and a data
structure to compute the LCA of any two leaves in constant time. This preprocessing phase can
be done in linear time using the algorithm in [2].3 The array NodesOfSymbolT maps each symbol
a to the list of its instances in T , while NodeOfSymbolU maps each symbol in S(U) to the only
corresponding leaf in U ; the array SymbolOfNodeT , in turn, maps each leaf node ai in T to the
corresponding symbol a. After preprocessing, we access LCAU once for each pair of leaves of U ,
and we save each pair (a, b) whose lowest common ancestor is {+1 or ·→1 }. Then, we scan each
pair of nodes in NodesOfSymbolT and, for each pair of distinct symbols (a, b), we record true if
all occurrences of (a, b) in T meet the LCA predicate, false otherwise. Finally, we scan each pair
of symbols (a, b) in filters and verify that all occurrences of (a, b) satisfy the LCA predicate. It is
easy to see that the algorithm complexity is O(|T |2 + |U |2). Hence, also in this case, the extension
from conflict-free inclusion to mixed inclusion adds no time complexity to the algorithm.

OrderImplies(Type T , Type U):
LCAT , NodesOfSymbolT , SymbolOfNodeT = PreprocessGeneralType(T);
LCAU , NodeOfSymbolU = PreprocessCFType(U);
Set filters = ∅
for each (a, b) in S(U)× S(U)

if(LCAU [NodeOfSymbolU (a),NodeOfSymbolU (b)] in {+1, ·→1 })
then filters .add((a, b))

Array filtered = [true]
for each n1 in NodesOfSymbolT

a = SymbolOfNode[n1]
for each n2 in NodesOfSymbolT

b = SymbolOfNode[n2]
filtered [(a, b)] = filtered [(a, b)] ∧ (LCAT [n1, n2] ∈ {+1, ·→1 })

for each (a, b) in filters
if (not filtered [(a, b)])
return false

return true

Figure 2: Algorithm for implication of order constraints.

3In this case, LCAi is not really a bidimensional array, it is a linear-space object with a constant-time access.

10

3.3 Cardinality Constraints

The cardinality constraints for a conflict-free type simply correspond to the instances of the count-
ing operator. In particular, the cardinality constraint component of C(U) is ZeroMinMax (U),
defined as follows; ZeroMinMax (U) is trivially complete for conflict-free types and for constraints
with shape a?[m..n] and a ∈ S(U) [9]:

ZeroMinMax (U) = {a?[m..n] | a [m..n] subterm of U}

General types are trickier, because of symbol repetition and generalized counting. In particular,
the lowest allowed cardinality for a in T may depend on the validity of a+ on some subterm of
T . Consider, for example, the type a [2..∗]· a [3..∗]: it clearly satisfies a?[5..∗]. However, the type
(a [2..∗] + ε) · (a [3..∗] + ε) only satisfies a?[2..∗]: since a is optional, we consider here min(2, 3)
rather than 2 + 3. Finally, (a [2..∗] + ε) · (a [3..∗]) satisfies a?[3..∗]: since a is optional in the
first subterm, we have to consider the bound of the second. In the same way, while a [3..∗] [4..∗]
satisfies a?[12..∗], the type (a [3..∗]+ε) [4..∗] only satisfies a?[3..∗]. Exploiting this observation, we
are able to define the following function Min∗(T, a), which, for a type T , computes the minimum
number of times that the symbol a appears in a word w of T such that w |= a+. The ∗ in
Min∗(T, a) indicates that, when a appears in no word of T , then Min∗(T, a) returns ∗; in the
definition below, we assume that all of n+ ∗, ∗+n, n×∗, ∗×n return ∗. The condition T |= a+

may be computed as a+ ∈ SC(T), but it may also be computed together with Min∗(T, a), as we
will do later on.

Definition 3.12 (Min∗(T, a))

Min∗(T1 + T2, a) =def min(Min∗(T1, a),Min∗(T2, a))
Min∗(T1 � T2, a) =def if T1 |= a+ ∧ T2 |= a+ then Min∗(T1, a) + Min∗(T2, a)

elsif T1 |= a+ ∧ T2 6|= a+ then Min∗(T1, a)
elsif T1 6|= a+ ∧ T2 |= a+ then Min∗(T2, a)
elsif T1 6|= a+ ∧ T2 6|= a+ then min(Min∗(T1, a),Min∗(T2, a))

Min∗(b, a) =def if b = a then 1 else ∗
Min∗(T [m..n] , a) =def if T |= a+ then Min∗(T, a)×m else Min∗(T, a)

Min∗(T !, a) =def Min∗(T, a)
Min∗(ε, a) =def ∗

Let us define |w|a as the number of occurrences of a in w, and SMin∗(T, a) as the semantic
counterpart to Min∗(T, a), as follows, where Ja+K are the words where a appears (notice that, by
Lemma 2.4, a ∈ S(T) iff JT K ∩ Ja+K is not empty).

SMin∗(T, a) =def minw∈(JT K∩Ja+K) |w|a if a ∈ S(T)
SMin∗(T, a) =def ∗ if a 6∈ S(T)

The following lemma is a bit tedious but very easy to prove.

Lemma 3.13 For any type T and symbol a: SMin∗(T, a) = Min∗(T, a)

The upper bound is easier, and is computed as follows.

11

Definition 3.14 (Max0(T, a))

Max0(T1 + T2, a) =def max(Max0(T1, a),Max0(T2, a))
Max0(T1 � T2, a) =def Max0(T1, a) + Max0(T2, a)

Max0(b, a) =def if b = a then 1 else 0
Max0(T [m..n] , a) =def Max0(T, a)× n

Max0(T !, a) =def Max0(T, a)
Max0(ε, a) =def 0

The semantic counterpart of Max0(T, a) is defined as follows.

Definition 3.15 (SMax0(T, a))

SMax0(T, a) =def maxw∈JT K |w|a if a ∈ S(T) and (maxw∈JT K |w|a) ∈ N
SMax0(T, a) =def ∗ if a ∈ S(T) and (maxw∈JT K |w|a) =∞
SMax0(T, a) =def 0 if a 6∈ S(T)

The following lemma is immediate.

Lemma 3.16 For any type T and symbol a: SMax0(T, a) = Max0(T, a)

As a consequence, cardinality constraint implication can be decided as follows.

Lemma 3.17 T |= a?[m..n] ⇔ m ≤ Min∗(T, a) ∧ Max0(T, a) ≤ n

We can also extend the ZeroMinMax (U) function to general types. The result is complete,
but we have no hope of exactness once we abandon the symbol-counting limitation. For example,
if you consider a type a [1..2] [1..2], our constraint language has no way to specify that aa and
aaaa both belong to the type while the intermediate word aaa does not (remember that F ∨ F
is not part of the language).

Definition 3.18 (Cardinality Constraints for General Types)

ZeroMinMax g(T) =def {a?[Min∗(T, a)..Max0(T, a)] | a ∈ S(T)}

Corollary 3.19 ZeroMinMax g(T) is complete for constraints with shape a?[m..n] and a ∈ S(T).

We can now introduce the algorithm that we use to verify that a general type T satisfies every
F in ZeroMinMax (U). It is listed in Figure 3; the function PlusMinMax computes, in one pass,
a boolean specifying whether T |= a+, the value of Min∗(T, a), and the value of Max0(T, a).

PlusMinMax (T, a) can be computed in time O(|T |). CardImplies invokes it on T once for
each symbol of U , hence it can be computed in time O(|U | × |T |).

3.4 Upper Bound and Lower Bound Constraints

Upper bound and lower bound constraints are defined below. The function SIf (U), in isolation,
is far from complete for the whole set of B+ constraints (which are specified by SC(U)), but it
becomes complete once united with CC(U). More precisely, if N(U), then SC(U) is empty, hence
SIf (U) is complete. Otherwise, SIf (U) = S(U)+. Since C(U) is complete for constraints with

12

CardImplies(Type T , Type U):
every a [m..n] in U satisfy let (, Min, Max) = PlusMinMax(T , a);

return Min ≥ m ∧Max ≤ n

PlusMinMax(Type T , Symbol a):
case T
when T1 � T2: case (PlusMinMax(T1, a), PlusMinMax(T2, a))

when ((true, Min1, Max 1), (true, Min2, Max 2)):
return(true, Min1 + Min2, Max 1 + Max 2);

when ((true, Min1, Max 1), (false,Min2, Max 2)):
return(true, Min1, Max 1 + Max 2);

when ((false, Min1, Max 1), (true, Min2, Max 2)):
return(true, Min2, Max 1 + Max 2);

when ((false, Min1, Max 1), (false, Min2, Max 2)):
return(false, min(Min1,Min2), Max 1 + Max 2);

when T1 + T2: let (Plus1, Min1, Max 1) = PlusMinMax(T1, a);
let (Plus2, Min2, Max 2) = PlusMinMax(T2, a);
return(Plus1 ∧Plus2, min(Min1,Min2), max(Max 1,Max 2));

when T1 [m..n]: let (Plus, Min, Max) = PlusMinMax(T1, a);
if Plus then return(true, Min ×m, Max ×n)

else return(false, Min, Max ×n)
when ε: return(false, *, 0)
when a: return(true, 1, 1)
when b 6= a: return(false, *, 0)

Figure 3: Algorithm for implication of cardinality constraints.

shape A+ Z⇒ B+, then, for any B ∈ SC(U), C(U) implies the weaker constraint S(U)+ Z⇒ B+,
which, together with SIf (U), implies B+.

Notice that the problem of constraint implication is greatly simplified by verifying the implica-
tion of lower and upper bounds at the same time, as we do here: the separate test for T |= S(U)+

would involve the computation of something along the lines of SC(T); however, by restricting
ourselves to the case when T |= upperS (U), we only have to check that N(T)⇒ N(U), as proved
below.

Definition 3.20 (Upper and Lower constraints)

Lower-bound: SIf (U) =def if ¬N(U) then {S(U)+} else ∅
Upper-bound: upperS (U) =def {upper(S(U))}

Theorem 3.21 (Implication of SIf (U) and upperS (U)) For any two types T and U :

T |= SIf (U) ∪ upperS (U) ⇔ (N(T)⇒ N(U)) ∧ S(T) ⊆ S(U)

Proof. (⇒) T |= upperS (U) implies S(T) ⊆ S(U), by Lemma 2.4. We prove now that ¬N(U)⇒
¬N(T). Assume ¬N(U); then T |= SIf (U) means T |= S(U)+, hence ε 6∈ JT K, hence ¬N(T).

(⇐) The implication S(T) ⊆ S(U) ⇒ T |= upperS (U) is trivial. If N(U) is true, then
T |= SIf (U) holds trivially. If ¬N(U), then, by N(T)⇒ N(U), N(T) is false as well, hence every
word of T contains a symbol from S(T), hence a symbol from S(U).

13

The corresponding function UpperLowerImplies simply executes the test of Theorem 3.21.

3.5 Summing up

We have recalled each of the five components of the function C(U), and, for each component Ci,
we defined a function that verifies, for any general T , whether T |= Ci(U). Since the union of
these five components is exact for conflict-free types, the following theorem holds.

Theorem 3.22 For any type T , for any conflict-free type U , JT K ⊆ JUK iff all of CoImplies(T ,
U), OrderImplies(T , U), CardImplies(T , U), UpperLowerImplies(T , U) return true.

CoImplies, OrderImplies, and CardImplies have quadratic time-complexity, while UpperLow-
erImplies is linear. The only case whose complexity is affected by the presence of general types in
the subtype position is that of cardinality constraints, where the presence of multiple occurrences
of a symbol and the nesting of [m..n] operators both concur in making the problem less trivial.

4 Related Work

The problem of inclusion of regular expressions with interleaving has been studied in many papers.
In [11], the complexity of membership, inclusion, and inequality was studied for several classes
of regular expressions with interleaving and intersection. In particular, interleaving is proved to
make inclusion EXPSPACE-complete.

Starting from the results of [11], Gelade et al. [8] studied the complexity of decision problems
for DTDs, single-type EDTDs, and EDTDs with interleaving and counting. By considering several
classes of regular expressions with interleaving and counting, they showed that their inclusion is
almost invariably EXPSPACE-complete, even when counting is restricted to terminal symbols
only; they also showed how these results extend to various kinds of schemas for XML documents.
We did not discuss here how to extend our results from REs to XML schema languages because
the problem is indeed solved in [8], where it is shown how an inclusion algorithm for REs can be
lifted to schema languages that use that class of REs without changing the complexity class.

As we specified many times, in [9] we defined a polynomial time algorithm for inclusion of
conflict-free types, but we were not able to extend the result to reach any more general class.

The properties of a commutative type language for XML data have been discussed in [7]. Here,
the authors essentially described the techniques they used while implementing a type-checker for
commutative XML types. Their type language resembles our language of conflict-free types, as
repetition types can be applied to element types only, and interleaving is supported. The paper
is focused on heuristics that improve scalability, but do not affect computational complexity.

To the best of our knowledge, the only paper dealing with asymmetric inclusion of XML
types is [6]. Here, Colazzo and Sartiani showed that complexity of inclusion can be lowered from
EXPSPACE to EXPTIME when a weaker form of conflict-freedom is satisfied by the supertype.

5 Conclusions

In [9] we introduced the idea of representing REs with interleaving and counting as sets of
constraints, and of using this representation as a way to check inclusion. Inclusion of such
extended REs has an appalling EXPSPACE complexity in general, while our approach produced
a cubic algorithm, later reduced to O(n2), for an important subclass. Unfortunately, while

14

the subclass fits well the common practice of XML schema definitions, it is far too restrictive to
capture the types that are typically inferred by a compiler. Subtype checking during type checking
is arguably the most important application of type inclusion, and is the one where efficiency is
most important.

We had hopes of extending our class of PTime comparable REs, since it does not contain
all the types that can be exactly defined with our constraints. However, any attempt to weaken
the restrictions on single occurrence or counting immediately allows the definition of types which
admit no exact description in the constraint language. The extension of the type language with
intersection does not suffer this problem, as constraints are closed by intersection. However, we
proved in [9] that even one instance of binary intersection is enough to make inclusion NP-hard,
because it makes the T |= F problem much harder.

In this paper we have described a way out of this impasse. By taking the lateral step of con-
sidering asymmetric inclusion, we have been able to get a swooping widening of the applicability
of our approach, arriving at relieving the subtype from any limitation. Moreover, the resulting
algorithm retains the quadratic complexity of the pure case, which is, frankly, quite amazing.

References

[1] Denilson Barbosa, Gregory Leighton, and Andrew Smith. Efficient incremental validation of XML
documents after composite updates. In XSym, volume 4156 of LNCS, pages 107–121. Springer, 2006.

[2] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H. Gonnet,
Daniel Panario, and Alfredo Viola, editors, LATIN, volume 1776 of Lecture Notes in Computer Sci-
ence, pages 88–94. Springer, 2000.

[3] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. Inference of concise DTDs from
XML data. In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, pages 115–126. ACM, 2006.

[4] Byron Choi. What are real DTDs like? In WebDB, pages 43–48, 2002.

[5] Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Efficient inclusion for a class of XML types with
interleaving and counting. Accepted for publication in Information Systems, 2008.

[6] Dario Colazzo and Carlo Sartiani. Efficient subtyping for unordered XML types. Technical report,
Dipartimento di Informatica - Università di Pisa, 2007.

[7] J. Nathan Foster, Benjamin C. Pierce, and Alan Schmitt. A logic your typechecker can count on:
Unordered tree types in practice. In PLAN-X, informal proceedings, January 2007.

[8] Wouter Gelade, Wim Martens, and Frank Neven. Optimizing schema languages for XML: Numerical
constraints and interleaving. In Proceedings of the 11th International Conference on Database Theory
- ICDT 2007, Barcelona, Spain, January 10-12, 2007.

[9] Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani. Efficient inclusion for a class of XML types
with interleaving and counting. In Proceedings of the 11th International Symposium on Database
Programming Languages, DBPL 2007, Vienna, Austria, September 23-24, 2007.

[10] Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani. Linear time membership for a class of XML
types with interleaving and counting. To Appear in ACM Conference on Information and Knowledge
Management (CIKM), 2008.

[11] Alain J. Mayer and Larry J. Stockmeyer. Word problems — this time with interleaving. Inf. Comput.,
115(2):293–311, 1994.

15

A Proofs of Section 2.1

Lemma 2.4 (Not empty) For any type T :

JT K 6= ∅ (1)
a ∈ S(T)⇒ ∃w ∈ JT K. a ∈ S(w) (2)

Proof. We prove both properties by mutual induction on the structure of T and by cases.
(1) The only non trivial case is T = T ′!. Here, since T ′ contains at least one symbol a, by (2)

and induction we have that there exists w ∈ JT K such that a ∈ S(w), hence w 6= ε, hence JT ′!K
contains w, hence JT ′!K 6= ∅.

(2) The only non trivial case is T = T1�T2 where only T1 or T2 contains a. Assume a ∈ S(T1).
By induction we have that ∃ w1 ∈ JT1K. a ∈ S(w1), and that T2 is not empty (by induction and
(1)). Hence, there exists a word w ∈ w1&w2, where w2 ∈ JT2K, w ∈ JT1 � T2K and a ∈ S(w).

B Proofs of Section 2.3

Theorem 2.7 If a type U is conflict-free, then any constraint-extraction function that is com-
plete for our constraint language is exact for U .

Proof. Hereafter, we consider A = {F ∈ F | U |= F}. So, if C() is a constraint-extraction
function that is complete for our constraint language, we have JC(U)K = JAK.

In Theorems 1 and 2 of [9] we proved that there exists a constraints-extraction function C′()
that is exact for each conflict-free type. In particular, we proved that, for each F ∈ C′(U), we
have U |= F . Hence, C′(U) ⊆ A. Now, we have

JC(U)K = JAK = JC′(U) ∪ (A \ C′(U)K = JC′(U)K ∩ JA \ C′(U)K (∗)

Since ∀F ∈ (A \ C′(U)). U |= F , we have JUK ⊆ JA \ C′(U)K, which, together with (∗) and
JUK = JC′(U)K (recall that C′() is exact for U), yields JC(U)K = JUK ∩ JA \ C′(U)K = JUK.

C Proofs of Section 3.1

Lemma 3.1 For any type T1 � T2:

T1 � T2 |= A+ ⇔ T1 |= A+ ∨ T2 |= A+

T1 � T2 |= A++ ⇔ T1 |= A+ ∨ T2 |= A+ ∨ (T1 |= A++ ∧ T2 |= A++)
T1 � T2 |= a+ Z⇒ A+ ⇔ (T1 |= a+ Z⇒ A+ ∧ T2 |= a+ Z⇒ A+) ∨ T1 � T2 |= A+

Proof. (⇐) is immediate.
For (⇒), assume that (a) T1 � T2 |= A+ and (b) T1 6|= A+; we want to prove that T2 |= A+.

By (b), ∃w1 ∈ JT1K such that w1 6|= A+. Assume w ∈ JT2K; from (a), we deduce w1 · w |= A+,
hence, by w1 6|= A+, we conclude that w |= A+.

For T1 � T2 |= A++, assume (a) T1 � T2 |= A++, (b) T1 6|= A+, and (c) T2 6|= A+; we want to
prove that T1 |= A++∧T2 |= A++. Let w1 ∈ JT1K; by (c), ∃w2 ∈ JT2K such that w2 6|= A+. By (a),
w1 · w2 |= A++. If w1 · w2 is not empty, then w2 6|= A+ implies that w1 |= A+, hence w1 |= A++.

16

If w1 · w2 is empty, then w1 is empty, hence w1 |= A++. Hence, we have proved that T1 |= A++.
T2 |= A++ is proved in the same way.

For T1 � T2 |= a+ Z⇒ A+, assume (a) T1 � T2 |= a+ Z⇒ A+ and (b) ¬(T1 |= a+ Z⇒ A+ ∧ T2 |=
a+ Z⇒ A+); we want to prove that (i) T1 |= A+ or (ii) T2 |= A+. By (b), either (iii) T1 6|= a+ Z⇒ A+

or (iv) T2 6|= a+ Z⇒ A+.
Assume (iii), hence ∃w1 ∈ JT1K such that w1 |= a+ and w1 6|= A+; we now prove that (ii)

follows. Assume w ∈ JT2K; from w1 |= a+ and (a), we deduce w1 · w |= A+, hence, by w1 6|= A+,
we conclude that w |= A+, hence (ii) holds. In the same way we prove that (iv) implies (i). From
T1 |= A+ ∨ T2 |= A+ we immediately deduce T1 � T2 |= A+: assume, wlog, T1 |= A+; any word
of T1 � T2 includes a word from T1, which contains some symbols from A.

Theorem 3.3 (Completeness of SC(T) and SC!(T)].) For any type T and A ⊆ Σ with
A 6= ∅:

A ∈ SC(T) ⇔ T |= A+ (3.1)
A ∈ SC!(T) ⇔ T |= A++ (3.2)

Proof. We prove 3.1 and 3.2 by mutual induction and by cases.
Proof of (3.1).

Case T = T1 � T2.

A ∈ SC(T1 � T2) ⇐⇒ A ∈ SC(T1) ∨ A ∈ SC(T2) by definition of SC(T1 � T2)
⇐⇒ T1 |= A+ ∨ T2 |= A+ by induction
⇐⇒ T1 � T2 |= A+ by Lemma 3.1

Case T = T1 +T2. We first observe that T1 |= A+ ∧ T2 |= A+ ⇐⇒ T1 +T2 |= A+ (*), which
we prove as follows. We have the following double implications: T1 |= A+ ∧ T2 |= A+ iff (for
i = 1, 2) ∀f ∈ JTiK.f |= A+ iff ∀f ∈ (JT1K ∪ JT2K).f |= A+ iff T1 + T2 |= A+. So,

A ∈ SC(T1 + T2) ⇐⇒ A ∈ SC(T1) ∧ A ∈ SC(T2) by definition of SC(T1 + T2)
⇐⇒ T1 |= A+ ∧ T2 |= A+ by induction
⇐⇒ T1 + T2 |= A+ by the above property (*)

Case T = T1 [m..n]. We first observe that T1 [m..n] |= A+ ⇐⇒ T1 |= A+ (**), which we prove
as follows. Assume T1 [m..n] |= A+, and, by aiming at a contradiction, assume T1 6|= A+. This
means that ∃f ∈ JT1K. T 6|= A+, hence, if fm = f1 · . . .· fm with fi = f , we have fm ∈ JT1 [m..n]K
and fm 6|= A+, which contradicts T1 [m..n] |= A+. Assume now that T1 |= A+ and, still by aiming
at a contradiction, that T1 [m..n] 6|= A+; this means that there exists f ∈ JT1 [m..n]K such that
f 6|= A+. Since f = f1 · . . . · fm with fi ∈ JT1K, we have that f1 6|= A+, hence the contradiction
T1 6|= A+. That said, we have now

A ∈ SC(T1 [m..n]) ⇐⇒ A ∈ SC(T1) by definition of SC(T1 [m..n])
⇐⇒ T1 |= A+ by induction
⇐⇒ T1 [m..n] |= A+ by the previous property (**)

Case T = T1!. By definition, we have SC(T1!) = SC!(T1). Hence, by induction, T1 |= A++,
hence ∀f ∈ (JT1K \ {ε}). f |= A+, that is ∀f ∈ JT1!K. f |= A+

Case T = a. The case is trivial since, for each A ∈ SC(T), we have a ∈ A, and since the only
word in T is a.

17

Case T = ε. The case is trivial since, for every A, A 6∈ SC(ε) and ε 6|= A
Proof of (3.2).

Case T = T1 � T2. The case it straightforward:

T1 � T2 |= A++ ⇐⇒ T1 |= A+ ∨ T2 |= A+

∨ (T1 |= A++ ∧ T2 |= A++) by Lemma 3.1
⇐⇒ A ∈ SC(T1) ∨ A ∈ SC(T2)

∨ (A ∈ SC!(T1) ∧ A ∈ SC!(T2)) by induction
⇐⇒ A ∈ SC!(T1 � T2) by definition of SC!(T1 � T2)

Case T = T1 + T2. The case is similar to the previous correspondent one. We first observe
that T1 |= A++ ∧ T2 |= A++ ⇐⇒ T1 + T2 |= A++ (*), which we prove as follows. We have the
following double implications: T1 |= A++ ∧ T2 |= A++ iff (for i = 1, 2) ∀f ∈ (JTiK \ {ε}).f |= A+

iff ∀f ∈ (JT1K ∪ JT2K) \ {ε}. f |= A+ iff T1 + T2 |= A++. So,

A ∈ SC!(T1 + T2) ⇐⇒ A ∈ SC!(T1) ∧ A ∈ SC!(T2) by definition of SC!(T1 + T2)
⇐⇒ T1 |= A++ ∧ T2 |= A++ by induction
⇐⇒ T1 + T2 |= A++ by the above property (*)

Case T = T [m..n]. Again, the case is similar to the previous correspondent one. We first
observe that T1 [m..n] |= A++ ⇐⇒ T1 |= A++ (**), which we prove as follows. Assume
T1 [m..n] |= A++, and, by aiming at a contradiction, assume T1 6|= A++. This means that
∃f ∈ JT1K. f 6= ε ∧ T 6|= A+, hence, if fm = f1· . . .· fm with fi = f , we have fm ∈ JT1 [m..n]K and
fm 6= ε and fm 6|= A+, which contradicts T1 [m..n] |= A++. Assume now that T1 |= A++ and, still
by aiming at a contradiction, that T1 [m..n] 6|= A++. This means that there exists f ∈ JT1 [m..n]K
such that f 6= ε and f 6|= A+. Since f = f1· . . .· fm with fi ∈ JT1K, we have that at least one fj is
such that fj 6= ε and fj 6|= A+, hence the contradiction T1 6|= A++. That proved, we have now

A ∈ SC!(T1 [m..n]) ⇐⇒ A ∈ SC!(T1) by definition of SC!(T1 [m..n])
⇐⇒ T1 |= A++ by induction
⇐⇒ T1 [m..n] |= A++ by the previous property (**)

Case T = T ′!. Simple induction.
Case T = a. Trivial since, for each A ∈ SC!(T), we have a ∈ A, and since the only word in T

is a.
Case T = ε. Trivial since, for each A in Σ such that A 6= ∅, we have A ∈ SC!(ε) as well, and

ε |= A++, which trivially holds since JT K \ {ε} = ∅.

Property 3.4 (Union) For any word w and constraint A+ Z⇒ B+:

w |= A+ Z⇒ B+ ⇔ ∀a ∈ A. w |= a+ Z⇒ B+

Proof. (⇒)
We distinguish two cases: S(w) ∩ A = ∅ and S(w) ∩ A 6= ∅. In the first case we have that

∀a ∈ A. S(w) ∩ {a} = ∅, which directly implies the thesis. In the second case, by hypothesis, we
have that S(w)∩B 6= ∅. So, if A1 = S(w)∩A and A2 = A\A1, we have ∀a ∈ Ai. w |= a+ Z⇒ B+,
for i = 1, 2, hence the thesis, since A = A1 ∪A2.

(⇐)

18

Again, we distinguish two cases: S(w)∩A = ∅ and S(w)∩A 6= ∅. In the first case, w |= A+ Z⇒
B+ trivially holds. In the second case, by hypothesis we have that there exists a ∈ S(w)∩A such
that w |= a+ Z⇒ B+. This means that A ∩ S(w) 6= ∅ and B ∩ S(w) 6= ∅, which directly implies
w |= A+ Z⇒ B+

D Proofs of Section 3.2

Property 3.7 T |= a ≺ b ⇔ a 6= b and (b, a) 6∈ P(T)

Proof. Recall that, by definition, for each formula a ≺ b we have a 6= b (see Section 2.2). The
proof proceeds as follows:

T |= a ≺ b ⇐⇒ ∀w ∈ JT K. w |= a ≺ b
⇐⇒ 6 ∃w ∈ JT K. w 6|= a ≺ b
⇐⇒ 6 ∃w ∈ JT K. w = w1· b· w2 · a· w3

⇐⇒ (b, a) 6∈ P(T)

Property 3.9 (Pairs)

1) (a, b) ∈ P(T) ⇔ ∃ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+r,�r,&1, ·→1 }
2) (b, a) 6∈ P(T) ⇔ ∀ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+1, ·→1 }
3) T |= a ≺ b ⇔ ∀ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+1, ·→1 }

Proof. (1)(⇒)
By induction on the structure of T and by case distinction.
Case T = T1 + T2, hence L(T) = L(T1) +1 L(T2). We have that (a, b) ∈ P(T) implies

(a, b) ∈ P(T1) or (a, b) ∈ P(T2). Assume the first, wlog, and the thesis follows by induction.
Case T = T1 · T2, hence L(T) = L(T1)· 1L(T2). Here, we have (a, b) ∈ P(T) iff (a, b) ∈ P(T1)

or (a, b) ∈ P(T2) or a ∈ S(T1) ∧ b ∈ S(T2). In the first two cases, we conclude by induction. In
the third case, we have at least one ai in T1 and one bj in T2, and their LCA is ·→1 .

Case T = T1&T2, hence L(T) = L(T1)&1L(T2). Here, we have (a, b) ∈ P(T) iff (a, b) ∈ P(T1)
or (a, b) ∈ P(T2) or a ∈ S(T1) ∧ b ∈ S(T2) or a ∈ S(T2) ∧ b ∈ S(T1). In the first two cases, we
conclude by induction. In the third case, we have at least one ai in T1 and one bj in T2, and their
LCA is &1. The fourth case is similar.

Case T = T1 [m..n]. If n = 1, then the case easily follows by induction. If n > 1, then the
LCA of any pair of symbols is in {+r,�r}.

The other cases are trivial.
(1)(⇐) ∃ai, bj ∈ L(T). LCAL(T)[ai, bj] ∈ {+r,�r,&1, ·→1 } ⇒ (a, b) ∈ P(T).
By induction on the structure of T and by case distinction.
Case T = T1 + T2, hence L(T) = L(T1) +1 L(T2), hence ai and bj are in the same side of

T (their LCA is not +1, by hypothesis), hence, by induction, that side contains the pair (a, b),
hence we conclude.

Case T = T1 · T2, hence L(T) = L(T1)· 1L(T2), hence either ai and bj are in the same side of
T or ai is in T1 and bj is in T2. In the first case, we conclude by induction, in the second case,
by Lemma 2.4, we have two words wa ∈ JT1K and wb ∈ JT2K with wa |= a+ and wb |= b+, hence
wa · wb is in JT K and contains the pair (a, b)

19

Case T = T1&T2, hence L(T) = L(T1)&1L(T2), hence either ai and bj are in the same side
of T or ai is in T1 and bj is in T2 or ai is in T2 and bj is in T1. In the first case we conclude by
induction, in the second and in the third case we reason as in the second case of T1 · T2.

Case T = T1 [m..n]. If n = 1, then the case easily follows by induction. Otherwise, L(T) is
not equal to (L(T1)) [m..n], since all operators have shape �r in L(T), while they may have shape
�1 in L(T1), hence we cannot conclude by induction. However, from ∃ai, bj ∈ L(T) we deduce,
by Lemma 2.4, that we have two words wa and wb in JT1K with wa |= a+ and wb |= b+, hence
wa · wb is in JT1 [m..n]K and contains the pair (a, b).

The other cases are trivial.

Property 2) follows immediately from 1); Property 3) follows from 2) and by Property 3.7.

Property 3.11 (Completeness of OCg(T)) OCg(T) is complete for the set of constraints with
shape a ≺ b and {a, b} ⊆ S(T).

Proof. By Property 3.9 and by definition of OCg(T) we have that

OCg(T) = {a ≺ b | {a, b} ⊆ S(T) ∧ T |= a ≺ b}

hence JOCg(T)K = J{a ≺ b | T |= a ≺ b}K.

E Proofs of Section 3.3

Lemma 3.13 For any type T and symbol a: SMin∗(T, a) = Min∗(T, a)

Proof. By induction on the structure of T and by case distinction.
Case T = T1 + T2. We have SMin∗(T, a) = min(SMin∗(T1, a), SMin∗(T2, a)), so the case easily

follows by induction.
Case T = T1 � T2. We distinguish four cases:

• T1 |= a+ ∧ T2 |= a+. Every word of T1 contains at least SMin∗(T1, a) a’s, and the
same for T2, hence every word of T contains at least SMin∗(T1, a) + SMin∗(T2, a), hence
SMin∗(T, a) = SMin∗(T1, a) + SMin∗(T2, a), and we conclude by induction.

• T1 |= a+ ∧ T2 6|= a+. Since every word of T1 contains at least SMin∗(T1, a) a’s, we have
that SMin∗(T, a) ≥ SMin∗(T1, a). Since we have a word w2 ∈ JT2K that contains no a’s, by
concatenating w2 with a word from T1 with SMin∗(T1, a) a’s we prove that SMin∗(T, a) ≤
SMin∗(T1, a), hence SMin∗(T, a) = SMin∗(T1, a), and we conclude by induction.

• T1 6|= a+ ∧ T2 |= a+. As in the case above.

• T1 6|= a+ ∧ T2 6|= a+. If a 6∈ S(T), then SMin∗(Ti, a) = Min∗(Ti, a) = ∗, for i = 1, 2, so the
case follows by induction, since min(∗, ∗) = ∗. If a ∈ S(T), we distinguish two sub-cases.
If a ∈ S(T1) and a ∈ S(T2), then minw∈(JT K∩Ja+K) |w|a= min(SMin∗(T1, a), SMin∗(T2, a)),
and we conclude by induction. If a appears in one subterm only, let’s say T1, then
SMin∗(T, a) = SMin∗(T1, a) = min(SMin∗(T1, a), ∗), hence, by induction SMin∗(T, a) =
min(Min∗(T1, a),Min∗(T2, a)).

20

Case T = T1 [m..n]. If a 6∈ S(T1), then both SMin∗(T, a) = ∗ and SMin∗(T1, a) = ∗, and the
thesis follows by induction, since m×∗ = ∗. If a ∈ S(T1), then we distinguish two sub-cases.
If T |= a+, then each T1 word contains at least SMin∗(T1, a) occurrences of a, hence each
word of T contains at least SMin∗(T1, a) × m occurrences of a, and the thesis follows by
induction. If T 6|= a+, then we have a word wa in T1 with SMin∗(T1, a) occurrences of a
and a word w′ with no occurrences of a; the concatenation of one wa with many w′ gives
us a word of T with SMin∗(T1, a) occurrences of a, and we have no way to find a word
in JT K ∩ Ja+K with less occurrences of a, hence SMin∗(T, a) = SMin∗(T1, a), and the thesis
follows by induction.

The other cases are trivial.

Lemma 3.16 For any type T and symbol a: SMax0(T, a) = Max0(T, a)

Proof. By induction on the structure of T and by case distinction.
Case T = T1 +T2. In the case that SMax0(T1 + T2, a) = ∗, we have that either SMax0(T1, a) =

∗ or SMax0(T2, a) = ∗. Assume, wlog, that SMax0(T1, a) = ∗. By induction we have Max0(T1, a) =
∗, and therefore Max0(T1 + T2, a) = ∗ by definition.

In the case that SMax0(T1 + T2, a) ∈ N, we have SMax0(Ti, a) ∈ N for i = 1, 2, and the
following equivalences are immediate:

SMax0(T1 + T2, a) = max(SMax0(T1, a), SMax0(T2, a))
= max(Max0(T1, a),Max0(T2, a)) by induction
= Max0(T1 + T2, a)

Case T = T1�T2. In the case that SMax0(T1 � T2, a) = ∗, we have that either SMax0(T1, a) =
∗ or SMax0(T2, a) = ∗. Assume, wlog, that SMax0(T1, a) = ∗. By induction we have Max0(T1, a) =
∗, and therefore Max0(T1 � T2, a) = ∗ by definition.

In the case that SMax0(T1 � T2, a) ∈ N, we have SMax0(Ti, a) ∈ N for i = 1, 2, and the
following equivalences are immediate:

SMax0(T1 � T2, a) = SMax0(T1, a) + SMax0(T2, a)
= Max0(T1, a) + Max0(T2, a) by induction
= Max0(T1 + T2, a)

The other cases are immediate.

Lemma 3.17 T |= a?[m..n] ⇔ m ≤ Min∗(T, a) ∧ Max0(T, a) ≤ n

Proof. By Lemmas 3.13 and 3.16, we can substitute Min∗(T, a) with SMin∗(T, a) and SMax0(T, a)
with SMax0(T, a).

(⇒) Let T |= a?[m..n]. If a 6∈ S(T), then SMin∗(T, a) = ∗ and SMax0(T, a) = 0, hence the
thesis. Assume a ∈ S(T); T |= a?[m..n] implies that the minimum number of times a appears in
any word of JT K∩ Ja+K is greater than m, hence m ≤ SMin∗(T, a), and similarly for SMax0(T, a).

(⇐) Assume m ≤ SMin∗(T, a) ∧ SMax0(T, a) ≤ n. If a 6∈ S(T), then T |= a?[m..n] holds
trivially, since no word in T may violate it. Assume a ∈ S(T). Then, SMin∗(T, a) counts the
minimum number of times that a appears in a word of JT K∩ Ja+K, hence m ≤ SMin∗(T, a) implies
that T |= a?[m..∗]. Similarly, SMax0(T, a) counts the maximum number of times that a appears
in a word of T , hence SMax0(T, a) ≤ n implies that T |= a?[1..n].

21

Corollary 3.19 ZeroMinMax g(T) is complete for constraints with shape a?[m..n] and a ∈
S(T).

Proof. Consider the set S = {a?[m..n] | T |= a?[m..n] ∧ a ∈ S(T)}. By Lemma 3.17 we have
that a?[m..n] ∈ S ⇐⇒ m ≤ Min∗(T, a) ∧ Max0(T, a) ≤ n. From this it follows that

JSK = ∩a?[m..n]∈SJa?[m..n]K = ∩a?[m..n]∈ZeroMinMaxg(T)Ja?[m..n]K = JZeroMinMax g(T)K

F Proofs of Section 3.5

Theorem 3.22 For any type T , for any conflict-free type U , JT K ⊆ JUK iff all of CoImplies(T ,
U), OrderImplies(T , U), CardImplies(T , U), UpperLowerImplies(T , U) return true.

Proof. We have that, for the conflict-free type U , the exact constraint characterization is given
by

C(U) = CC(U) ∪ OC(U) ∪ ZeroMinMax (U) ∪ upperS (U) ∪ SIf (U)

where each constraint extraction function is defined as illustrated in the body of the paper (and
in [9]). We have the following double implications:

CoImplies(T,U) returns true ⇐⇒ ∀A+ Z⇒ B+ ∈ CC(U). T |= A+ Z⇒ B+

by Theorems 3.5 and 3.4

OrderImplies(T,U returns true ⇐⇒ ∀a ≺ b ∈ OC(U). T |= a ≺ b
by Property 3.9

CardImplies(T,U) returns true ⇐⇒ ∀a?[m..n] ∈ ZeroMinMax (U).T |= a?[m..n]
by Lemma 3.17

UpperLowerImplies(T,U) returns true ⇐⇒ T |= SIf (U)
by Theorem 3.21

So we have that all of CoImplies(T , U), OrderImplies(T , U), CardImplies(T , U), and Up-
perLowerImplies(T , U) return true if and only if T |= C(U) if and only if (Mixed Subtyping
Theorem 2.8) JT K ⊆ JUK .

22

