Efficient Inclusion for a Class of XML Types
with Interleaving and Counting

Giorgio Ghelli', Dario Colazzo?*, and Carlo Sartiani'

! Dipartimento di Informatica - Universita di Pisa - Italy
{ghelli,sartiani}@di.unipi.it
2 Université Paris Sud, UMR CNRS 8623, Orsay F-91405 - France
dario.colazzo@lri.fr

Abstract. Inclusion between XML types is important but expensive,
and is much more expensive when unordered types are considered. We
prove here that inclusion for XML types with interleaving and counting
can be decided in polynomial time in presence of two important restric-
tions: no element appears twice in the same content model, and Kleene
star is only applied to disjunctions of single elements.

Our approach is based on the transformation of each such type into a set
of constraints that completely characterizes the type. We then provide a
complete deduction system to verify whether the constraints of one type
imply all the constraints of another one.

1 Introduction

XML schemas are an essential tool for the robustness of applications that in-
volve XML data manipulation, transformation, integration, and, crucially, data
exchange. To solve any static analysis problem that involves such types one must
first be able to reason about their inclusion and equivalence.

XML schema languages are designed to describe ordered data, but they usu-
ally offer some (limited) support to deal with cases where the order among some
elements is not constrained. These “unordered” mechanisms bring the language
out of the well-understood realm of tree-grammars and tree-automata, and have
been subject to little foundational study, with the important exception of a recent
work by Gelade, Martens, and Neven [1]. Here, the authors study a wide range of
schema languages, and show that the addition of interleaving and counting oper-
ators raises the complexity of inclusion checking from PSPACE (or EXPTIME,
for Extended DTDs) to EXPSPACE. These are completeness results, hence this
is really bad news. A previous result in [2] had already shown that the inclusion
of Regular Expressions with interleaving alone is complete in EXPSPACE, hence
showing that counting is not essential for the high cost. The paper [1] concludes
with: “It would therefore be desirable to find robust subclasses for which the
basic decision problems are in PTIME”. Such subclasses could be used either to
design a new schema language, or to design adaptive algorithms, that use the
PTIME algorithm when possible, and resort to the full algorithm when needed.
To this aim, it is important that (i) the subclass covers large classes of XML
types used in practice, (ii) it is easy to verify whether a schema belongs to the
subclass.

* Work of this author was partially funded by the French ACI young researcher project
“WebStand”.

Our Contribution In this paper we define a class of XML types with interleav-
ing and numerical constraints whose inclusion can be checked in polynomial
time. These types are based on two restrictions that we impose on the Regular
Expressions (REs) used to the define the element content models: each RE is
conflict-free (or single occurrence) meaning that no symbol appears twice, and
Kleene star is only applied to elements or to disjunctions of elements. These
restrictions are severe, but, as shown in [3] and [4], they are actually met by
most of the schemas that are used in practice.

Our approach is based on the transformation of each type into an equivalent
set of constraints. Consider, for instance, the following string type T = (a[1..3]-
b[2..2]) + ¢[1..2], and the following properties for a word w in T

1. lower-bound: at least one of a, b and ¢ appears in w;

2. cardinality: if @ is in w, it appears 1, 2 or 3 times; if b is there, it appears
twice; if ¢ is there, it appears once or twice;

3. upper-bound: no symbol out of {a,b,c} is in w;

4. exclusion: if one of a, b is in w, then c is not, and if ¢ is in w then neither of
a, bis in w;

5. co-occurrence: if a is in w, then b is in w, and vice versa;

6. order: no occurrence of ¢ may follow an occurrence of b.

3

It is easy to see that every w in T enjoys all of them. We will prove here
that the opposite implication is true as well: every word that satisfies the six
properties is indeed in 7', i.e., that constraint set is complete for T'.

We will generalize this observation, and will associate a complete set of con-
straints, in the six categories above, to any conflict-free type (we will actually
encode exclusion constraints as order constraints.) We will then define a poly-
nomial algorithm to verify whether, given T and U, the constraints of T imply
those for U, so that T is included in U. We will formalize the constraints using
a simple ad-hoc logic. We will describe the constraint implication algorithm by
first giving a sound and complete constraint deduction system, and then giving
an algorithm that exploits the deduction system.

The ability to transform a type into a complete set of constraints expressed in
a limited variable-free logic is used here to design an efficient inclusion algorithm.
We believe that it can also be exploited for many related tasks, such as PTIME
membership checking (which is N P-complete for REs with interleaving), and
path containment under a DTD. Quite surprisingly, binary type intersection,
which is usually simpler than type inclusion, turns out in this case to be NP-
hard; the constraint-based approach was important in our discovery of the proof
that we present here.

Paper Outline The paper is structured as follows. Section 2 describes the data
model, the type language, and the constraint language we are using. Section 3
shows how types can be characterized in terms of constraints, and how inclusion
can be encoded in terms of constraint implication. Section 4 describes a deduc-
tion system for type constraints. Section 5, then, sketches a polynomial time
algorithm for deciding type inclusion based on the deduction system of Section
4. In Section 6 we show that intersection is NP-hard. In Sections 7 and 8, finally,
we briefly revise some related works and draw our conclusions.

3 The term co-occurrence constraint has an unrelated meaning in [5]; we use it as
in [6].

2 Type Language and Constraint Language

2.1 The Type Language

Gelade, Martens, and Neven showed that, if inclusion for a given class of regular
expressions with interleaving and numerical constraints is in the complexity class
C, and C is closed under positive reductions (a property enjoyed by PTIME),
then the complexity of inclusion for DTDs and single-type EDTDs that use
the same class of regular expressions is in C too [7,1]. Hence, we can focus
our study on a class of regular expression over strings, and our PTIME result
will immediately imply the same complexity for the inclusion problem of the
corresponding classes of DTDs and single-type EDTDs. Single-type EDTDs are
the theoretical counterpart of XML Schema definitions (see [1]).

We adopt the usual definitions for string concatenation w; - ws, and for the
concatenation of two languages Ly - Lo. The shuffie, or interleaving, operator
w1 &ws is also standard, and is defined as follows.

Definition 1 (v&w, L1&Ls). The shuffle set of two words v,w € X*, or two
languages L1, Lo C X*, is defined as follows; notice that each v; or w; may be
the empty string €.

v&w =gef {v1- w1 .. Vn Wy
|v1 oo =0, wy ..o wy =w, v; € X% w; € X% n>0}
Li&Lo =def U, e, woer, W1&w2

Ezample 1. (ab)&(XY) contains the permutations of abXY where a comes be-
fore b and X comes before Y:

(ab)&(XY) = {abXY,aXbY,aXYb, XabY, XaYb, XY ab}

When v € wi&ws, we say that v is a shuffle of wy and ws; for example, wy-ws
and wsy- wy are shuffles of wy and ws.

We define N, = NU{x}, and extend the standard order among naturals with
n < x for each n € N,. We consider the following type language for strings over
an alphabet ¥, where a € X, m € N\{0}, n € N, \ {0}, and n > m (please
notice the specific domains for m and n):

Tu=e¢ | amm] | T+T | T-T | T&T

Note that expressions like a [0..n] are not allowed due to the condition on m;
of course, the type a [0..n] can be equivalently represented by a [1..n] + €.

Our type system generalizes Kleene star to counting, but it only allows sym-
bols to be counted, so that, for example, (a- b)* cannot be expressed. However,
it has been found that DTDs and XSD schemas use Kleene star almost exclu-
sively as ax or as (a + ...+ 2)* (see [3]), which can be easily expressed in our
system as: (a*&...&z*), where a* abbreviates (a[l..x] +¢€). The simple expres-
sions studied in [3] are a subclass of what can be expressed with our approach,
and [3] measured a 97% fraction of XSD schemas with simple expressions only.

4 We call them “types” because of our background, but they are actually a specific
family of REs with interleaving, counting, and some restrictions.

Moreover, most of the non-simple expressions that they present are also easy to
express in our system. Chain Regular Expressions [4] can also be expressed with
our approach (see Section 7).°

Definition 2 (S(w), S(T), Atoms(T)). For any string w, S(w) is the set of all
symbols appearing in w. For any type T, Atoms(T) is the set of all atoms a [m..n]
appearing in T, and S(T') is the set of all symbols appearing in T.

Semantics of types is defined as follows.

[e] = {e}
[a[m.n]] = {w | S(w) = {a}, |w| = m, |w| <n}
[Ty + T3] = [T U [T2]
[Ty - To] = [11]- [1%]
[T1&T3] = [T1]&[T7]
We will use ® to range over - and & when we need to specify common
properties, such as, for example: [T ® €] = [e ® T] = [T].
In this system, no type is empty. Some types contain the empty string e, and
are characterized as follows (N(7') is read as “T" is nullable”).

Definition 3. N(T') is a predicate on types, defined as follows:

N(e
N(a [m..n]
N(T+T'
NT®T

true

false

N(T) or N(T")
N(T) and N(T")

~— — — ~—

Lemma 1. € € [T] iff N(T).
We can now define the notion of conflict-free types.

Definition 4 (Conflict-free types). Given a type T, T is conflict-free if for
each subexpression (U + V) or (U V): S(U)NS(V) = 0.

Equivalently, a type T is conflict-free if, for any two distinct subterms a [m..n)
and a' [m’..n'] that occur in T', a is different from a’.

Ezample 2. Consider the following type: (a[l..1]&b[1..1]) + (a[1..1] &c[1..1]).
This type generates the language {ab, ba, ac,ca}. This type is not conflict-free,
since S(a[1..1]&b[1..1]) N S(a[l..1] &c[1..1]) = {a} # 0.

Consider now a [1..1] &(b[1..1] 4 ¢[1..1]); it generates the same language, but
is conflict-free since a [1..1] and (b[1..1] 4+ ¢[1..1]) have no common symbols.

Conflict-free DTDs have been considered many times before, because of their
good properties and because of the high percentage of actual schemas that satisfy
this constraint (see Section 7).

Hereafter, we will silently assume that every type is conflict-free, although
some of the properties we specify are valid for any type.

5 We are only discussing here our Kleene-star restriction, ignoring conflict-freedom for
a moment.

2.2 The Constraint Language

We verify inclusion between T and U by translating them into constraint sets
Cr and Cy and by then verifying that Cp implies Cy;. Constraints are expressed
using the following logic, where a,b € ¥ and A, B C X', m € N\{0}, n € N, \{0},
and n > m:

F 2= AT | A" = BT | a?lm.n] | upper(4) | a<b | FAF' | true
Satisfaction of a constraint F' by a word w, written w = F, is defined as follows.°

wE AT & S(w)NA#(,ie. some a € A appears in w
wEAY =BT wE AT orwE BT
w E a?[m..n] (n # %) < if a appears in w,
then it appears at least m times and at most n times
w = a?[m..x] & if a appears in w, then it appears at least m times
w = upper(A) & S(w) C A
w = a < b < there is no occurrence of ¢ in w that follows
an occurrence of b in w
wERAANFRSwkEFR and wE Fy
w = true < always

We will also use AT = true as an alternative notation for true. This should not
be too confusing, since the two things are logically equivalent, and will simplify
the notation for one crucial definition.

The atomic formulas are best understood through some examples.

dab |= {a,b,c}" ca = {a,b,c}* e AT w0t

dab }= upper({a,b,c}) ca = upper({a,b,c}) €= upper(A) e k= upper())
ca = b7[2..% cba = b?[2..%] cbab |= b7[2..x] bebab = b?[2..%]
cal=a<b caba = a < b aacbl=a<b eFEa<b

Observe that AT is monotone, i.e. w = AT and w is a subword of w’ imply
that w’ = A", while upper(A) and a < b are anti-monotone.
We use the following abbreviations:

at =g {a}”

a<>b =4 (a<b)A(b=<a)
A<B =g /\ a=<b
acA,beB

A<=B =45 [\ a==b
acA,beB

5 Notice that AT = b™ differs from the sibling constraint A || b of [8], since AT = b
means “if one symbol of A is in w then b is in w”, while A |} b means “if all symbols
of A are in w then b is in w”.

The next propositions specify that A <> B encodes mutual exclusion be-
tween sets of symbols.

Proposition 1. w = a <>b < a and b and are not both in S(w)
Proposition 2. wE A <> B < wl AT ABT

Definition 5. a € S(F) if one of the following is a subterm of F: a?[m..n],
a<b, AT, AT = BY, upper(A), where, in the last three cases, a € A or a € B.

The atomic operators are all mutually independent: only A' can force the
presence of a symbol independently of any other, only A* = B¥ induces a pos-
itive correlation between the presence of two symbols, only a?[m..n] can count,
only upper(A) is affected by the presence of a symbol that is not in S(F), and
only a < b is affected by order. However, combinations of the atomic operators
can be mutually related (see Proposition 2, for example).

3 Characterization of Types as Constraints

3.1 Constraint Extraction

We first extend satisfaction from words to types, as follows.
Definition 6. T F < Ywe [T]. wE F

To each type T, we associate a formula ST (T') that tests for the presence of
one of its symbols, as follows.

Definition 7. ST(T) = (S(T))"

The ST(T) formula allows us to express the exclusion constraints associated
with the type Ty + Ty: if S(T1)NS(T) = 0 and w € [Ty + Tz, then w = S*(T7)
is sufficient to deduce that w | ST (Ty), i.e. Ty + To | ~(ST(Th) A ST(Tv))
(which we actually express as Ty + Ts = S(T1) <> S(T)).

We would like to have a dual constraint for Ty- Ty, such as Ty- Ty = ST (T}) =
ST (T5), but this does not hold in case Ty contains the empty string; we will prove
that this weaker constraint holds: 71Ty = if not N(7%) then ST (T3) = ST (Tv).

The condition “if not N(T) then ...” will be expressed using the SIf(T') no-
tation that we define below.

We can now endow a type T with five sets of constraints. We start with
the lower-bound, cardinality, and upper-bound constraints (we introduced this
terminology in Section 1).

Definition 8 (Flat constraints).

Lower-bound: SIf(T) =gef ST(T) if not N(T')
SIf (T') =gef true if N(T')
Cardinality: ZeroMinMax(T') =acr (. .nje Atoms(r) @7 [M--1]
Upper-bound: upperS(T) =g upper(S(T))
Flat constraints: FC(T) =gef SIf(T') A ZeroMinMax(T') A upperS(T)

We can now add co-occurrence, order, and exclusion constraints, whose def-
inition is inductive over the type structure. Exclusion constraints are actually
encoded as order constraints.

Definition 9 (Nested constraints).
Co-occurrence:
CC(Ty + T) =aef CC(T1) NCC(T3)
CC(T1 ® Tz) =aer (S*(T1) = SIf(T2)) A (ST (T2) = SIf(T1)) A
CC(Th) NCC(T3)
CC(€) =qef CC(a[m..n]) =g4¢f true

Order and exclusion:

OC(Ty + Tz) =aep (S(Th) == S(T2)) N OC(Th) N OC(T3)
OC(Tl&TQ) =def OC(Tl) AN OC(TQ)

OC(T- Tz) =qer (S(T1) = S(T2)) N OC(T1) N OC(T2)
OC(€) =gey OC(a|m..n]) =g4ef true

Nested constraints:
NC(T) =def CC(T) A\ OC(T)

Notice that, when N(T%) is true, ST(Ty) = SIf(T3) is just true, because (A" =
true) is true, by definition. This notation is helpful to visualize, for example,
the fact that ST(T1) and ST(Ty) = SIf(T3) imply SIf(T»).

3.2 Correctness and Completeness of Constraints

We plan to prove the following theorem, that specifies that the constraint system
completely captures the semantics of conflict-free types.

Theorem 1. Given a conflict-free type T, it holds that:
we[T] & wE FC(T)ANNC(T)

We first prove that constraints are complete, i.e., whenever w satisfies all the
five groups of constraints associated with 7', then w € [T7].

Proposition 3 (ZeroMinMax(T)).

w |= ZeroMinMax (T + T3) = w |= ZeroMinMax(T7) A ZeroMinMax(T5)
w |= ZeroMinMax(T} @ Ty) = w |= ZeroMinMax(T7) A ZeroMinMax(T5)

Definition 10. We define w|g(ry as the string obtained from w by removing all
the symbols that are not in S(T).

We can now prove the crucial completeness theorem.

Theorem 2 (Completeness of constraints).

w = (FC(T) ANC(T)) = we[T]

Proof. For the sake of convenience, we will use ZMM-SIf(T') as a shortcut for
ZeroMinMax(T') A SIf (T'), so that we can rewrite the thesis to prove as

w = (upperS(T) A ZMM-SIf(T) ANC(T)) = we|[T]
We prove the following fact, by case inspection and structural induction on 7T
w = (ZMM-SIf(T) ANC(T)) = wlsr) € [T]

The theorem follows because w = upperS(T) implies that w = w|g(r).

We first observe that w|g(ry = € and w = SIf(T) imply the thesis w|g(r) €
[T]. Indeed, w|g(ry = € implies that w = ST(T), hence, the hypothesis w |=
SIf(T') implies that N(T') is true, which in turn implies that € € [T7], i.e. w|g(r) €

[77.

Having dealt with the w|gr) = € case, in the following we assume that
w|g(ry = ay - ...- an, where n # 0.
T=e¢:

Trivial, as w|g() = € and € € [¢].
T=am.n]:

Since N(T) is false, w = ZMM-SIf(T') implies that w | ZeroMinMax(T') A
ST(T), ie., w E ZeroMinMax(a [m..n]) A a™, ie.,, w E a?[m..n] A a*t, hence
w]s(afm..n)) € [a[m..n]].

T = T1 + T2 :

Let w|g(r)y = a1 - ...- an, and assume,without loss of generality, that a; €
S(Th).

By hypothesis we have that w | ZMM-SIf(T} + T5) A (S(T1) <> S(T2)) A
NC(T1) ANNC(Tz). As w|g(ry = ay - ... a, with a; € S(T1), we also have that
w): S+ (Tl)

This implies that w = SIf(Ty) (by definition of SIf()) and that w = S+ (T3)
(by Proposition 2). This, in turn, implies w|s(p,+1,) = w|s(r) (*). By Propo-
sition 3 and by w | ZMM-SIf(T} + T2) we obtain that w = ZeroMinMax(T}).
Putting all together, w = ZMM-SIf(Ty) ANC(Th).

By induction we have that w|g(r,) € [T1]; hence, by (*), we get w|g(r,+1,) €
[71], which, in turn, implies that w|sr, +7,) € [T1 + T3]

T = T1 . T2 :
We have two possible cases:

..-an and ay € S(TY);

1. w|S(T) = a1
=ay-...-a, and a; € S(T3).

2. w|S(T) 1

Case 1 (w|s(r) = a1 ... a, and a1 € S(T1)).
By hypothesis we have that:

Since w|g(ry = a1 - .. .- a, with a; € S(T1), we have that w |= ST (T1), which
implies that w = SIf(T1) (by definition of SIf()) and that w = SIf (T) (by hy-
pothesis). By Proposition 3 we conclude that w = ZMM-SIf (77) AZMM-SIf(T3).

Let us define wy; = w|g(ry) and wy = w|s(r,). As w = NC(T1) ANC(T3), by
induction we obtain that w; € [T1] and we € [T3].

By conflict-freedom, wy and ws do not contain any common symbols, hence,
from the constraint S(T1) < S(T2) we obtain that each symbol of w; precedes
each symbol of wy in w. As a consequence, w|s(r.1,) = wls(1,) W|s(m,) = Wi-ws.
Thus, w|S(T1.T2) S [[Tl- Tgﬂ.

Case 2 (w|g(r)y = a1 -...-a, and a; € S(T3)).
By hypothesis we have that:
A (ST(Tz) = SIf(Th))
A (S(Th) < S(Ty))
A NC(Ty) NNC(Ts)

Since w|g(ry = a1 - ... an and a; € S(T3), we obtain that w = ST (T3), which
implies that w |= SIf(T1) (by hypothesis) and that w = SIf (T») (by definition).
By Proposition 3 we conclude that w = ZMM-SIf(T1) A ZMM-SIf(T5). As w |=
NC(T1)ANC(T3), by induction we obtain that w|g(r,) € [T1] and w|g(z,) € [T2].

w = (S(T1) < S(T»)) and a; € S(T») imply that w = S*(T1), i.e., w|gr) =
e. Hence, w|s(r.m) = wls(ry) = € w|s(r,) = w|sry) - wls(r,)- Hence, by w|g () €
[71] and w|s(r,) € [12], we conclude that w|gr,.1,) € [T1- T2].

T = T1&T5 : similar, but simpler.]

In order to prove soundness, we use the following lemma that specifies that
the value of any formula F' over w does not change if any letter a that is not in
S(F) is added or deleted from w, provided that F' does not contain the upper(A)
operator. Recall that upper(A) is only used to express upper-bound constraints.

Soundness is stated by Theorem 3 below; for reasons of space, we omit the
proof and refer the reader to [9] for further details.

Theorem 3 (Soundness).

we [T] = wE FC(T) ANC(T)
Corollary 1. For any conflict-free type T':

w € [T] & wkE FC(T) ANC(T)

4 Deduction System

We introduce here a deduction system as a first step for the formalization of
a constraint implication algorithm. The system is partitioned into two separate
judgements, .. and +,., for deducing co-occurrence and order constraints, This
deduction system is not complete in general, but is powerful enough to decide
type inclusion (Theorem 10).

Each judgement -, will be defined, by a set of deduction rules with shape
Fy A...ANF, by F; the notation Fy A ... A Fy, By F{ A... A F) also means that
F|...F/] can be deduced from F} ... F,, through the repeated application of the
corresponding deduction rules.

From now on, we will often identify a set formula AT with the symbol set A;
the use will clarify the distinction. Hence, we will use metavariables A and B to
range over subsets of X' and also over set-formulas.

For reasons of space, we omit the proofs of the results of this section and
refer the reader to [9] for further details.

4.1 Co-Occurrence Deduction

We start by defining a deduction system that will be used for co-occurrence
constraints of the form AT = BT. The R-T-A rules correspond to the Arm-
strong system used to deduce functional constraints [10], after left-hand-sides
are switched with right-hand-sides. We will denote set union as juxtaposition:
AB =4, AUB and aA =4 {a}UA. The False rule specifies that, if an upper-
bound constraint excludes a, then we can deduce any B from the impossible
presence of a.

R: Fee A= AB

T: (A= B)A(B=C)F.,.A=C

A A=1DB Foe AC = BC
False:a ¢ A: upper(A) Feea = B

The backward correspondence between the R-T-A rules and Armstrong ax-
ioms can be easily explained: a functional dependency Xi,...,X,, = Y1,...,Y,,
over a relation R is an implication of conjunctions Vt,u € R.(P(X1) A ... A
P(X,)) = (PY1) A ... A P(Yy)), where P(X) is t¢.X = w.X. An implica-
tion {aq,... ,an}jL = {by,..., bm}+ is an implication of disjunctions Vw.(a; €
S(w)V...Va, € S(w)) = (by € S(w)V...Vb,, € S(w)), that becomes a back-
ward implication of conjunctions by contraposition: (Q(b1) A ... A Q(by)) =
(Qa1) A...AQ(ay)), where Q(a) is a € S(w). Hence, co-occurrence constraints
can be manipulated as functional dependencies, after the two sides have been
switched.

From these rules we can derive some additional rules, shown below.

Doun: A CA: A=DB Fee A’ = B
Up:BCB: A= B Foo A= B

Union : (A=C)AN(B=C)F. . AB=C
Decomp : AB = C Foe A= C

These rules are trivially sound.

Theorem 4 (Soundness of co-occurrence deduction). If w E F and
Fre F'thenwE=F'. If TEF and F k.. F', then T = F'.
The following lemma contains the core of the completeness proof.

Lemma 2. For each type T and for each symbol a € ST(T), if T |E a = B,
then CC(T) Fe. a = B, using the R-T-A rules only.

Theorem 5 (Completeness of co-occurrence deduction for subtypes).
If [T1] C [Tz], then upperS(T1) A CC(T1) Fee CC(T3).

4.2 Order Deduction

Order constraints can be deduced from upper bounds, as follows.

FalseL :b¢ A: upper(A) o b <V
FalseR:b ¢ A: upper(A) o b < b

Theorem 6 (Soundness of order deduction). If w = F and F +,. F', then
wEF.IfTEF and Fto F', then T = F'.

Lemma 3 (Completeness of order deduction). If a # b and {a,b} C S(T)
and T = a < b, then OC(T) Foe a < b.

Theorem 7 (Completeness of order deduction for subtypes). If [T1] C
[T2], then upperS(Ty) A OC(T}) Foe OC(T).

4.3 Flat Constraints Deduction

Flat constraints are manipulated with a different approach. In this case, we check
them together, and we directly discuss their soundness and completeness with
respect to a pair of types. We first introduce a system to deduce whether the
flat constraints of T imply all the flat constraints of T5.

Definition 11 (11 Fyia: T2).

T\ Friat To S gef
(a?[m..n] € Atoms(T1) = Im/ < m,n’ > n. a[m’.n'] € Atoms(1s))
A (N(Ty) = N(T»))

Checking all flat constraints together makes sense because the three of them,
in a sense, just check inclusion of Atoms(T}) into Atoms(T3). But there is another
strong reason: the design of a sound and complete deduction system for SIf(T')
alone is actually much trickier than expected, while the holistic check is simple,
sound, and complete, for the three of them, as formalized below.

Theorem 8 (Soundness of Fyiq:). If T Fyias Ts, then:
1. T1 ': SIf(TQ),

2. Ty = upperS(Tz);

3. Ty = ZeroMinMax(T5).

Theorem 9 (Completeness of f4¢). If [T1] C [T2], then Ti Fiar To.

4.4 Correctness and Completeness of Inclusion Deduction
We can now state the final theorem.

Theorem 10 (Correctness and completeness of inclusion deduction).

[T1] C [T2] < upperS(T1) ACC(T1) Fee CC(T2) A
upperS(T1) A OC(T1) Foe OC(To) A
T\ = fiar T

5 Inclusion Checking

Theorem 10 proves that language inclusion among conflict-free string types can
be decided through the deduction systems presented in the previous section.
From this theorem we can derive an inclusion checking algorithm. The algo-
rithm first verifies whether 7' t;4; U, in time O(n) in the size of T and U. The
algorithm, then, verifies the deduction of co-occurrence constraints by a simple
extension of the Beeri and Bernstein algorithm for functional constraints impli-
cation [10] (Section 5.1). The deduction for order constraints is much simpler: we
essentially verify that each constraint of OC(U) either is in OC(T') or it involves
a symbol that is not in S(T") (Section 5.2).

In the following we will only sketch the basic principles of our algorithm; for
more details, see [9].

5.1 Co-Occurrence Constraints

We present here an algorithm to verify whether upperS(T') A CC(T) . CC(U).
To this aim, it invokes a “backward closure” algorithm for the U; argument of
each S*(U;) = S*(U;) constraint generated by the occurrence of an ® oper-
ator inside U. The “backward closure” of S(U;) with respect to F' = CC(T)
(TBACKWARDCLOSE(S(U;))) is defined as the maximal R C S(T) such that
F .. R = S(U;), and is computed using a reversed version of the standard
Beeri-Bernstein algorithm, which is correct and complete for deduction rules R,
T, and A [10]. By Lemma 2, and by rules Union and Decomp, upperS(T) A
CC(T) bee ST(U;) = SH(U;) iff (S(U;) N S(T)) € TBACKWARDCLOSE(S(U;)).

By a standard argument [10], the backward closure algorithm is linear in
the total size of the rules. Since no symbol can appear in more than 2 x dg
co-occurrence rules, where dg is the nesting level of ® operators, each closure
invocation is in O(n * dg). Backward closure is invoked once, or less, for each
argument of each ® inside U, which means that the co-occurrence constraint
algorithm is in O(n *n * dg), i.e. in O(n?).

In practice, we traverse U bottom up and we compute the T-closure of U
subterms that are bigger and bigger. We can easily use dynamic programming
in order to reuse the results of closure on the subterms to speed up the closure
of a superterm. We do not study this optimization here.

5.2 Order Constraints

Order constraints correspond to the concatenation and union type operators. For
each pair of leaves a [m..n] and b[m/..n] in the syntax tree of T', let LCAr[a,b)
be their common ancestor that is farthest from the root (the Lowest Common
Ancestor). For each a and b in S(T'), a <= b € OC(T) iff LCAr]a,b] is labeled
by +: the if direction is clear; for the only if direction, observe that any + that is
lower than the LCA is not a common ancestor, and any + that is higher has both
a and b below the same child. Similarly, a < b € OC(T) iff LCAr[a,b] =+ or a
precedes b in T and LCAr[a,b] = -. As a consequence, upperS(T) A OC(T) b
OC(U) iff, for each a and b in S(U), such that a precedes b in U:

— if LCAyla,b] = + then either a & S(T') or b ¢ S(T) or LCArla,b] = +;

— if LCAyla,b] = - then either a & S(T) or b ¢ S(T) or LCAr[a,b] = + or
(LCArla,b] = - and a precedes b in T').

Hence, we can verify whether upperS(T)AOC(T) b, OC(U) via the following
algorithm. We first build an array LCAr[a,b] which associates each a and b in
S(T) with the operator that labels the LCA of a and b in T, and similarly for
U; this can be done in linear time [11]. We then scan all the ordered pairs a, b of
S(U), checking the condition above, which can be done with O(n?) constant-time
accesses to LCAr[-,_] and LCAy|-, -], which gives a O(n?) algorithm.

This inclusion-checking algorithm is presented here to prove that inclusion
is in PTIME, but we do not expect it to be optimal. Specifically, in the crucial
case of co-occurrence constraints, the set CC(T') has a very regular structure. For
example, for any two constraints L = R and L' = R/, if RN R’ # () then either
R C R or R C R, and similarly for L and L'. It seems plausible that better
solutions could be achieved by exploiting this regularity.

6 Complexity of Intersection

Intersection for subclasses of RE corresponds to automata product, while inclu-
sion corresponds to automata complement plus product, hence intersection is in
general cheaper than inclusion. We show here that, for conflict-free types, things
are quite different: while inclusion is in PTIME, intersection of two confict-free
expressions is NP-hard. This result is quite surprising, and it suggests that it
makes sense to study such types with an approach that is not based on automata.

Interestingly, NP-hardness does not depend on counting or Kleene star, but
our proof depends crucially on the & operator.

Theorem 11. Emptyness of the intersection of two conflict-free types is NP-
hard, even if the types do not use counting and concatenation.

Proof. (Hint) Consider m boolean variables z1,...,,, and a formula ¢ = (a} Vv

a?Vvai)A...A(al Va2 Vvad) where each literal aé- is either a variable z; or
a negated variable —x;; Satisfiability of ¢ can be encoded as the intersection
of two conflict-free types 17 and T» as exemplified below. Both types have one
symbol for each occurrence of a literal in ¢, hence their size is linear in |¢|.

¢ = (r1 Vo Vas) Az VaesVay) A(-xeV-oxsVozg) A(-xy Voxg Vay)
Ty = (al +a? +a3) & (al + a3 +ad) & (al + a3 +a3) & (al + a3 + a?)
Ty = ((a1?) + (a3? & aj?)) & ((ai?) + (a3?))

& ((a37&a3?) + (a3? & a3?)) & ((a3? & a3?) + (a3?))

¢ is satisfiable iff it has a witness, i.e. a choice of literal instances, one from each
factor, such that not two instances are contradictory, i.e. if x; is chosen in a
factor then —z; is not chosen in any other factor.

Any element of T3 corresponds to a choice of literal instances, one from each
factor. If the same list also belongs to 75, then it is not contradictory. Hence,
words in [T1] N [T2] correspond to witnesses for ¢.

7 Related Work

The properties of unordered XML types have been studied in several recent
papers. In [12], the authors discuss the techniques and heuristics they used in
implementing a type-checker, based on sheaves automata with Presburger arith-
metic, for unordered XML types. The type language is an extension of the lan-
guage we are considering here, and shares a similar restriction on the use of
repetition types. The main purpose of the paper is to address scalability prob-
lems that naturally arise when working on XML types; as a consequence, they
describe effective heuristics that improve scalability, but do not affect computa-
tional complexity.

Restrictions to RE languages that are similar to ours have been proposed
many times. For example, conflict-free REs appear as “conflict-free DTDs” in
the context of well-typed XML updates in [13], as “duplicate-free DTDs” in the
context of path inclusion in [8], and as “single occurrence REs” in the context
of DTD inference in [4]. The same restriction that we pose on Kleene-star can
be found, for example, in [12]. Chain Regular Expressions (CHARE’s) [4,1]
are also strictly related. They are defined as concatenations of factors, where
each factor has a shape (a; + ...+ ayn), (a1 + ...+ an)?, (a1 + ...+ a,)* or
(a1 +...+ap)". As we discussed in Section 2.1, the first three classes of factors
can be easily expressed in our language, using counting and interleaving. Factors
like (a1 + ...+ a,)™ cannot be expressed in our languages, but we could add
them as a third class of base types {a1,...,an}[1..%], besides a [m..n] and €, with
FC(A[l..x]) = (AT A upper(A)) and N(A[l..x]) = false. We did not consider
these base types just for minimality. Simple expressions [3] have a more general
syntax than CHAREs but the same expressive power, hence can still be managed
through our approach.

We have cited many times paper [1], where the complexity of type inclusion
is studied for many different dialects of REs with interleaving and/or counting,
showing that inclusion complexity is almost invariably EXPSPACE-complete.
In particular, this is shown to hold for chain-REs with counting, which are
concatenations of CHARE factors, as defined above, and counting factors (a; +
..+ ag)[m..n] (with n # * and m > 0), with no interleaving operator. In a
sense, this hints that the conflict-free restriction, rather than the Kleene-star
restriction, is crucial for our PTIME result. In the same paper, the authors
introduce a sublanguage of CHAREs with PTIME inclusion, but that fragment
is quite trivial, since it only includes counting factors (a; + ...+ ag)[m..n], with
the further restriction that m > 0 and n # %, hence cannot express neither
optionality nor unbounded repetition (neither * nor +).”

8 Conclusions

Inclusion for REs with interleaving, counting, or both, is EXPSPACE-complete,
even if we consider the restricted subclass of CHAREs (with counting) [2,1].
This result easily extends to XML types featuring these operators. We have
introduced here a restricted class of REs with interleaving and counting. Our

7 Observe that our language can express optionality and repetition, but cannot express
counting factors (a1 + ...+ ax)[m..n] with k& > 1, unless m = 0 and n = *.

restriction is severe, but it seems to match reasonably well the measured features
of actual DTDs and XSDs found on the web, and is extremely easy to define
and verify. For this class of REs, we have proved that inclusion is in PTIME,
a complexity that is surprising low, and trivially extends to DTDs and XSDs
that use REs of this class for their content models. We have shown how to use
classical algorithms to get a O(n®) upper bound, but we feel that this could
be easy lowered. We also proved that intersection of two conflict-free types has
not the same complexity as inclusion (unless P=NP) but is, quite surprisingly,
NP-hard.

Our result is based on the transformation of our REs into sets of constraints
which completely characterize the expressions and are easy to manipulate. We
believe that this constraint-based approach could be fruitfully used for other
analysis tasks, such as, for example, type normalization, path minimization under
a DTD, or a polynomial membership algorithm.

Acknowledgments We thanks the anonymous referees for their constructive
comments and suggestions.

References

1. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML:
Numerical constraints and interleaving. In: ICDT. (2007)
2. Mayer, A.J., Stockmeyer, L.J.: Word problems-this time with interleaving. Inf.
Comput. 115 (1994) 293-311
3. Bex, G.J., Neven, F., den Bussche, J.V.: DTDs versus XML schema: A practical
study. In Amer-Yahia, S., Gravano, L., eds.: WebDB. (2004) 79-84
4. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M.,
Kersten, M.L., Cha, S.K., Kim, Y.K., eds.: VLDB, ACM (2006) 115-126
5. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree
pattern queries. In: SIGMOD Conference. (2001) 497-508
6. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures Second Edition. Technical report, World Wide Web Consortium (2004)
W3C Recommendation.
7. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple
regular expressions. In: MFCS. Volume 3153 of LNCS, Springer (2004) 889-900
8. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: ICDT
(2003) 300-314
9. Ghelli, G., Colazzo, D., Sartiani, C.: Efficient inclusion for a class of XML types
with interleaving and counting. Technical report, Dipartimento di Informatica -
Universita di Pisa (2007)
10. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4 (1979) 30-59
11. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In Gonnet, G.H.,
Panario, D., Viola, A., eds.: LATIN. Volume 1776 of LNCS, Springer (2000) 88-94
12. Foster, J.N., Pierce, B.C., Schmitt, A.: A logic your typechecker can count on:
Unordered tree types in practice. In: PLAN-X, informal proceedings. (2007)
13. Barbosa, D., Mendelzon, A.O., Libkin, L., Mignet, L., Arenas, M.: Efficient incre-
mental validation of XML documents. In: ICDE, IEEE Computer Society (2004)
671-682

