Termination of system F-bounded
(Note)

Giorgio Ghellt

1 Introduction

System F-bounded is a second order lambda calculus with subtyping. It extends systsr{@ardelli Wegner

85, Curien Ghelli 92, Ghelli 90, Cardelli et al. 91]) in that bounds of typed quantification may contain the
bounded variable. In object-oriented terms, this feature allows one to write functions which accept parameters
belonging to all the classes which inherit from one class. F-bounded quantification was introduced in [Canning
et al. 89] and is currently included in many proposals for strongly typed object-oriented languages (e.g., [Bruce
93, Mitchell 90, Katiyar et al. 94]).

A typedA-calculus isstrongly normalizingor terminating when no infinite reduction chain starts from a
typed term of that calculus. Termination is related to the possibility of solving some recursive type equations.
For example, in a system with subtyping, if the disequation systemd—f, a—p <y, a—=p <y—=p'}2
has a solution, then the non-terminating tedox:¢.x(x))(Ax:a.x(x)):B" is well typed. Some recursive
disequations (e.gx < a—f) can already be solved in. by exploiting the Top type (e.g¢t=Top—). F-
bounded quantification introduces a new class of solutions, involving type variables=eveghen t< t—§).

This raises the question of whether the addition of F-bounded quantification may allow non-terminating terms to
be written. In this note we prove that such terms cannot, in fact, be written.

Our proof is based on the computability method [Girard 72], and our approach is similar to the one used in
[Mitchell 86] to prove termination for F, and, more closely, to the proof of termination givEn in [Ghelli
90]. We first show that the type erasure of each well-typed F-bounded term is strongly normalizing. To this
aim, we define an interpretation of F-bounded types such that each type is interpreted with a superset of the typ
erasures of all F-bounded terms with that type, and this superset is small enough to be contained in the set SI
of strongly normalizing\.-terms:I" - a: T=> typeErasure(ag [I' - Tl and [I" - T € SN. From this, we derive
strong normalization for system F-bounded.

System F-bounded is introduced in Section 2. Strong normalization is proved in Section 3.

2 System F-bounded

We adopt the following syntax for F-bounded types, terms, environments, and judgements.

PreTypes A:=t | Top | A=A | VicA A

PreTermes a:=x |AxA. a | a(@) |At<A. a | a{A}

Pre-Type Environments C:=(0) |T, A

Pre-Value Environments A :=() | A, XA

Pre-Name Environments E :=() | E,t

Pre-Judgments J:=EF¢ |THO |TAFO |EFA | THFA<SA |T,AFa A

To give a good formalization of system F-bounded, some care is needed to prevent the environment formatior
problemI’, t<A F ¢ from being reduced by the rules to the type formation profilesA - A, which in turn

may need a proof df, <A I ¢. We deal with this problem by putting in the environment of each judgement
the minimum amount of information needed by that judgement. Specifically, well formation of a type only
depends on the type variables which have been defined, and does not depend on their bound. Hence, in ot
formalizationT’, t<A F ¢ (read:T, t<A is a well-formed environment) is reduced to vR)s(H A (read: A is a

1Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, 1-56125, Pisa, ltaly, ghelli@di.unipi.it.

This work was carried out with the partial support of E.C., Esprit Basic Research Action 6309 FIDE2, of the Italian
National Research Council, “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo” grant No. 92.01561.PF69,
and of the Ministero dell'Universita e della Ricerca Scientifica e Tecnologica.

2Which, in most systems, is equivalent to the more familiara—p < o.

1 - DRAFT - Fri, Aug 5, 1994

well-formed type), where varkj is the set of variables definedlin This approach is very well suited to our
termination proof.

Free type variables:
Types: FTV() = {t}; FTV(Top) = {}; FTV(A —A") = FTV(A) U FTV(AY);
FTV(VtsA. A) = (FTV(A) U FTV(A)) \ {t}

Value Environments: FTV(()) = {}; FTV(A, x:A) = FTV(A) U FTV(A)
Type Environments: FTV(() = {}; FTV(T, tzA) = FTV(I') U FTV(A)

Name environment, type environment, and value environment formation

(Z NameEnv) () - ¢ (NameEnv) E+ ¢ ®E3
E, tH- 9
(D TypeEnv) () F ¢ (TypeEnv) T'+¢ vars(), tF A I
IAFO

(D ValueEnv) T' ¢ (Valueenv) T', A ¢ vars{)F A x¢A
r,LOF¢ I'A xAFE¢

Type formation

(var Form) E, t,E'F ¢ (Top Form) EF ¢
E,t,E'Ft EF Top
(—=Form) EFA EFB (Vv Form) E,tHFA E,tHB

E-A—B E Vt<A.B

Subtypes

(Ids) TH¢ vars{)FA (Transs) THFA<B I'+B<C
'HFA<A 'HAs<C
(Vars) T, <A, I'E ¢ (Tops) T'HO vars)F A
I' <A, T"HFt< A I'FA<Top
(—-<) THFA<A T'FB<B (V) T, =AFt<A' T,AFB<B*%

I'-A'—B<A—B ' Vi<A'.B < Vt<A.B'

Term formation

(Var) T, A, x:A,A'F9 (Subsump) I'; AFa:A T'HFA<B
A XA A E XA I' A+ a:B
(—=Intro) T'A, xA+Db:B (—= Elim) T AFf:A—=B TI,Ala A
I AFAX:A.b: A—B I'A+f(a): B
(VIntro) T, A, A-b:B ¥FTV(A) (VEIm) T AFf VicAB TFA <A[t<A"

I' A At<A.b: Vi<A.B I, A+ f{A}: Bt <AT

Reduction rules:

®B) (Ax:Ab)(@) —> blx<—a]
Q) Ax:A.b(X) — b x¢FV(b)
B2) (AtsAb){A} —> b[t<A]
M2 At<A.b{t} — b t¢FV(b)

Remark: By the rules, once a variable x or t is defined in an environment, it can neither be defined in the same
environment once more, nor be defined By, A or V in the right hand side of the judgment.

SWe write €T if t<A is a component dF, for some A; similarly for A and ¢E.
4See [Katiyar 92] for a discussion of this rule.

2 - DRAFT - Fri, Aug 5, 1994

3 Strong normalization of F-bounded terms
3.1 Saturated sets

Before giving the strong normalization proof, the notion of saturated sets must be introduced.

Notation (A, SN,#?): A is the set of all (untyped)-terms (defined, as usual, as a ::=hxla | aa).
SN is the set of apn) strongly normalizing\-terms.
P(A) is the set of all subsets of A.

Definition (Saturated sgtA set RC A is saturated when:

Sap RC SN
Say ae SN, (b[x\a]h...b)e R = (Ax.b)ah...b,eR
Sat by,...,b,e SN = xb;...b,eR.

Notation (SAT): SAT is the set of all saturated sets. Note that SARSN) C P(A).
Remark NotEmpty: By Sa, if R € SAT, then, for any variable x,&R, hence RJ.
Lemma SN: SNe SAT.

Proof: We prove that Saand Sat hold for SN.

Saf: aSN, b[x—alb;...b,e SN = (Ax.b)ab...b,e SN

Proof of Sat: Let depth(a) be the maximum length ofg reduction chain starting from a terne &N. We
prove Sat by induction on depth(bgcalb,...b,)+depth(a). Let b[x-a]b,...b, € SN and consider any
reduction chain starting fromi.x.b)ak...b,. The first step of this chain is one of the following:

1) (Ax.b)ah...b, —>g b[x<—a]b,...b,

2) (Ax.b)ah...b, —>, cab...b, with b=cx and gFV(c)
3) (Ax.b)ah...b, — (Ax.b"ah...b, with b—>b'

4) (Ax.b)ah...b...b, — (Ax.b)ah...b...b, 1<i<sn, h—> by

5) (\x.b)ah...b, —> (Ax.b)a'h...b, with a—>a'

We show that in any case the reduced term is in SN. If depthdb...b,)+depth(a)=0, only the first two
cases are possible, and in those cases the inductive hypothesis is not needed.
1) b[x<—a]by...b, € SN by hypothesis.
2) By b=cx and ¥FV(b), cahy...b, = b[x<—a]b,...b,. b[x<—a]b,...b, € SN by hypothesis.
3) b—>b' implies b[¥—a]b;...b, —> b'[x<—a]b,...b,. Hence b'[x—a]b,...b, e SN.
Since depth(b'x-a]b,...b,)+depth(a) < depth(bp«a]b,...b,)+depth(a), then, by induction:
b'[x<—a]b;...b,e SN= (Ax.b")ah...b, e SN.
4) The same as 3), but substitute b' with b andith b'.
5) a—>a' implies that b[x-a]b;...b, reduces to b-a'lb;...b, in 0-n steps. Hence, bfxa'lb;...b, € SN.
Since depth(b[x-a'lb;...b,)+depth(a’) < depth(bgca]b,...b,)+depth(a), then, by induction:
b[x<—a']b,...b,e SN= (Ax.b)a'h...b, € SN.
The addendum depth(a) is important when x is not free in b.

Sap: by,...,b,e SN = xb;...b,e SN

Proof of Sat: By induction ony;-; ,depth(h). If >;=1 ,depth()=0, xb...b, € SN since it is in normal form.
Otherwise, consider any reduction chain starting from.xfy,: xb;...b;...b, —> xb;...b...b, —> ... : bj
is a reduct of h hence he SN, and depth(}'< depth(h. We can now apply induction tq,b.,bi,...,b, to
obtain that xh...b}...b, € SN, hence xh..b;...b,e SN. O

3 - DRAFT - Fri, Aug 5, 1994

Lemma Intersect: (IZ0 andViel. S € SAT) = (Nig §) € SAT
Proof: Sab: Mig §C SN: letj be an element of M, § € §C SN.
Sat: ae SN, bpx—aJb...bpe Ny § = @Ax.b)ah...bpe Ny S:

let ae SN, b[x—a]b;...b,e M, S; by def. of\: Viel. b[x<—a]b,...b,e §
by Sat of S: Viel. (A\x.b)ah...b,e S
by def. of\: (Ax.b)ah...b,e N S.

Sab: by,...,bhbe SN = xb...b,e Ny S

let by,...,b, € SN; by Say on S: Viel. b[x<—a]b;...b, e S
by def. of \: b[x<-a]b;...b,e V(g S. O

Notation: Mingat = MesaT L-

Remark MinSAT: Mingat is a well defined saturated set: it is well defined since, by lemma SN, SAT is not
empty. It is saturated by Lemma Intersect.

3.2 The theorem

Definition (type erasure) typeErasure(x)
typeErasure(x:A. a)

X
AX. typeErasure(a)

typeErasure(a(@’)) = typeErasure(a)(typeErasure(a’))
typeErasure{t<A. a) = typeErasure(a)
typeErasure(a{A}) = typeErasure(a).

Notation (IT], AL, ED: [b<Aq .. <A = AL o XAl = [t = 10,

Notation (S"): As usual, for any set S, we definé=$...(S°xS3))x... xS,), where 8 is an arbitrary
singleton {s}, to deal smoothly with the nullary case. Similarly, we defing .<s> = <...<s,$>,...,.8>.

Notation (A% SAT9): A% is an arbitrary singleton ({x}) used as a unit in products of subsets 8imilarly,
SATYis an arbitrary singleton ({MinSAT}) used as a unit for products of subsets of SAT.

Notation (axs): If A is a value environment A4, ..., x,:A, andd is a tuple <g...,§>CA", thenA<0 is
the substitution [¥—ay,....X;<a,], and & is the result of applying<- to a.

Lemma: The type erasure of any F-bounded term is a terminatbegm.

Proof: We define five “semantic functions” which interpret any provable type environment, value environment,
type, subtype, or term formation judgement. We prove that the interpretation of each provable judgement
satisfies an associated “soundness condition”. These conditions fimpsgrong normalization for any
type-erased F-bounded term.

Informally: a type is interpreted by a setieferms; a type environmengfl,,... t,<T, by a set of n-
tuples of sets, where each n-tuple specifies a possible way of associating a set with each type variable; i
value environment is interpreted by a set of tuplek-tfrms, where each tuple specifies a well-typed
assignments df-terms to the value variables; a value is interpreted by its type erasure.

The soundness properties specify, informally, that: any type is a saturated set; each term belongs to its
type; no environment interpretation may be empty (empty environments would make the other soundness
conditions useless, since those conditions are quantified on variables ranging over environment
interpretations).

We give here either the interpretation, or the domain of the interpretation, for each judgement, and all
the soundness conditions. The missing interpretations, and the proof of the soundness properties, will be
given in Sections 3.3 - 3.7.

(TypeEnv) Domain: [I'F ¢]C (PA)FI (Definition: Section 3.3)
SoundnessT" F ¢] C SATI and[T" |- 0] # &

(ValueEnv) Definition: Vyell' F 01 [T, Xi:Aq,.... X Ap F 0y = AOIvars) - Ajlyx...xIvarsC) - ALy
SoundnessYyell - 1. [T, X{:Aq,..., XA F Oy # O,
V<a,...,a€ll, Xp:Aq, X Ap = Oly. g € [varsC) F Aly

4 - DRAFT - Fri, Aug 5, 1994

(Type) Domain: VyeSATEL[EF Alye P(A) (Definition: Section 3.5)
SoundnessYyeSATEL [E - Aly e SAT

(Subtype) Definition: Vyell F ¢1.[T" - A < Bly = dvars() + Aly,Ivars() + Bly>
SoundnessYyell' - ol. mIl' - A < Bly C [T+ A < Bly

(Term) Definition: Vyell I ¢l. VOell', A - Oly. [T, A+ a: Alyd = typeErasure(a) s
SoundnessYyell' F oI. VOell', A+ Oly. [T, A+ a: Alyd € [vars) - Aly

We prove that the interpretation of any provable judgement satisfies soundness by induction on its proof
tree, by showing that, for each rule, if the interpretation of the premises is sound, the interpretation of the
consequences is sound too. This proof will be carried out rule by rule in the next five sections.

Assuming that the soundness of the interpretation will be proved, we can now prove the lemma. Let a
be an F-bounded term typed in an environniemf. By Remark NotEmpty and definition (ValueEnv), for
any yelI" - 0], the tuple ofA-terms varsf) belongs tdI', A F ¢ly. Take ayeell’ F ¢] (this exists by
soundness condition (TypeEnv)). By soundness condition (Term), typeErasure(a) = typeEfasugi®)
[vars() - Alyo; by soundness condition (Typ&ars) - Alyg is saturated hence, by SaypeErasure(a)
is strongly normalizing. o

Theorem: F-bounded is strongly normalizing.

Proof: Consider 8-n-2-n2 reduction chain R starting from an F-bounded term and the chain typeErasure(R)
consisting of all the type erasures of the elements of RrAstep corresponds in typeErasure(R) to each
-n step in R, while two identical terms correspond in typeErasure(R) to each pair of terms relgt@d by a
12 step in R. Hence, if we collapse all sequences of identical terms in typeErasure(R), we still®btain a
reduction chain “collapse(typeErasure(R))AnSince eaclp2-n2 step deletes A symbol without creating
any newA, any sequence @2-n2 reductions in R has a finite length. Hence, if R and typeErasure(R) were
infinite, then collapse(typeErasure(R)) would be infinite too. Since collapse(typeErasure(R)) is finite by the
previous Lemma, then R is finite too.o

In the next section we give the missing interpretations and we prove that each rule, when applied to judgement:
with a sound interpretation, yields a judgement with a sound interpretation, completing the proof of the
theorem.

3.3 Interpretation and soundness of type environment judgements

Interpretation: (< TypeEnv) [()F ¢] = SAT® (a singleton)
(TypeEnv) [T, A F 0] ={<y,.>|y€ell'F 0], ve SAT, 1 Clvars(), t+ Al<y,.>}

Note that no circularity is hidden in the conditiofs [vars({), t+ Al<y,.>, which is just a set inclusion with
appearing on both siddsars(), t+ Al<y,.> is well defined since € [T" I- ¢] C (SAT(A))" by induction, and
€ SAT by construction.

Soundness: [+ 0] C SATH andIT F 0] # &
(D TypeEnv): SAP C SAT? and SAP # J are both true by definition.
(TypeEnv): T'F ¢, vars),tFA, [= I, tAF9

Hyp.: [T+ 0]1C SATI, [T+ 0l #J, V<y,w>e SATIHL [vars(), t+ Al<y,1> € SAT
Th.: [T, €A | 0] C SATII @
[T, A0l £ D (b)

Proof: (Q)IT, tcA F 0] = {<y,\> |y e [T F 0], v € SAT,...} C SATI*sincey e SATI andy e SAT.
(b) [T, t<A F 0] # &: By Hyp. 3yeell F 0l. Leti=Mingat. By Hyp.,[vars[), t+ Al<yog,Mingat> € SAT,
by Lemma MinSAT, Mirat C Ivars('), tF Al<yo,Mingat>, hence g,Mingar>€ [T, A 0], o

5 - DRAFT - Fri, Aug 5, 1994

3.4 Interpretation and soundness of value environment judgements
Interpretation: [T, Xp:Aq,...,. XA Oy = A0 x [vars@) = Aqly x ... x [vars(C) - Ay

In this case the cartesian product is used, rather than the “dependent product” used to interpret type environmen
since the bounds in a value environment do not depend on the previous value variables.

Soundness: Yyell' F ol. A%[vars() F Alyx...xIvarsC) - A, lyAO # & @
V<a,...,a>eA%[vars) - Ajlyx...xIvars(C) - A.ly. a € [vars) F Aly (9)]

Proof: (a): Each factor of the product is not empty[grs() F A;lly e SAT and by Remark NotEmpty.
(b): By definition of cartesian producta

3.5 Interpretation and soundness of type judgements

Interpretation: (Var Form) V<iq,...,tn.>€SAT. [ty,...,t, F tI<tq,...,1p> =y
(Top Form)VyeSATEL [E + Toply = SN
(— Form) VyeSATEL[EFA—Bly ={beA|aelE+ Aly=>b(a)e [E - Bly}
(V Form) VYESATlEl. [E+ Vi<A.Bly = (MieSAT(CIE, th Al<y,> [E, t + Bl<y,.>

Type variables are interpreted by the type environment. Top is the set of all strongly normatiings. A
functional typelA—B] contains all terms which, applied to a terniAd, yeld a term idBI; note that we mean
a bare syntactic application, with no evaluation. Quantification is interpreted by intersection.

Soundness: VyeSATEL [E - Aly e SAT.

(varForm) E,t,E'F¢ = E,t,E'Ft

V<iy,...,lp>€ SAT. [ty,...,t, F til<iq,...,.,> =; belongs to SAT by construction.o

(TopForm) E,t,E'F¢ = E,t,E'l Top
VyeSATEL [E F Toply = SN belongs to SAT by Lemma SNo

(—Form) EFA, EFB = ElA—B

Soundness: Hyp.: VyeSATEL [E - Ally e SAT and[E I Bly e SAT.
Th.: VyeSATEL[E - A—Bly € SAT.

Sat: [EF A—Bly C SN.

Let fe [E - A—Bly. Consider any variable x;e[E - Aly by Sa$, hence f(xk [E - Bly by definition
of [E - A—Bly. f(x) e SN by Sai, hence £ SN.

Sat: ae SN, (b[x\a]h...b,)) e [EF A—Bly = (x.b)ah...b,e [E+ A—Bly

Let: ae SN, (b[x\a]h...b,) € [E - A—=Bly

By def. of[E+ A—Bly: VaelE F Aly. (b[x\a]b,...b,)a'e [E - Bly
By Sat for [E I Bly: VaelE F Aly. ((Ax.b)ah...b,)a'e [E I Bly
By def. of[E+ A—=Bly: (Ax.b)ah...b,e [E+ A—Bly

Sap: by,...,b,e SN = xb,...b,e [E+- A—Bly

Let: by,...,b,e SN
By Sa for [E + Bly: VaeSN. xb...b,ae [E F Bly
By [E F Ally C SN: VeaelE - Aly. xb,...b,ae [E - Bly

By def. of[EF- A—Bly: xb;...b,e [E-A—Bly. ©

6 - DRAFT - Fri, Aug 5, 1994

(VY Form) E,tFA, E,t-B = EF Vit<AB

Soundness: Hyp.: V<y,1>eSATEML[E, t+ Al<y,.> e SAT andlE, t+ Bl<y,.> € SAT
Th.: VYESATlEl [[E F VtSAB]]y =def mleSAT’LQ[[E, tF Al<y,> [[E, tH Bﬂ<’Y,l,> € SAT

Proof: {L | .eSAT, |C[E, t+ Al<y,.>} is not empty: by Hyp.¥yeSATEL [E, t - Al<y,Mingar> € SAT, hence
Mingat C [E, t - Al<y,Mingat>. We can now apply lemma Intersect, by observing that Bach-
Bl<y,.> is saturated by Hyp., to conclude thiat- Vt<A.Bly e SAT. o

We now present some lemmas about type interpretation which will be used in the next sections.
Lemma Weakening: If t¢FTV(A): VyeSATElL 1eSAT, y'eSATEL [E, t, E'+ Al<y,.,y'> =[E, E' - Al<y,y'>.

Proof: By induction and by cases on the shape of A. Cases A=u (#ifrand A=Top are immediate. Cases
A=A'—A" and A=VYu<A'.A" are immediate by induction.o

Lemma ValueEnvWeakening: If t¢FTV(A) and ¢gFTV(I™):
VyeSATEL (eSAT, y'eSATEL [T, t<A, T, A+ 0I<y,i,y> =T, T, A - 0l<y,y'>.
Proof: It is a corollary of Lemma Weakening, since:
[T, <A, T, XA . XA B Oy =ges AIvars(), t, varsl') F Aqlyx...xIvars([), t, varsU') - Aply. o

Lemma TypeSubst: For any type formation judgemeht + B[t<—A] where t does not appear, for any way
of splittingI™ into two partsl, I such thafvars() - Al i.e. such tha¥t'evars("). t¢FTV(A):

VyeSATI y'eSATIIL [vars(), vars() - B[t<—A]l<y,y> =lIvars(), t, vars{") - Bl<y,IvarsC) + Aly,y">

Proof: By induction and by cases on the shape of B. Cases B=u @t)thnd B=Top are corollaries of Lemma
Weakening.

B=t: [vars(), vars{") - tft<A]I<y,y">
=[vars(), varst") Al<y,y">
by Lemma Weakeningvarsa_‘) F A]]<Y>
Zpy def. (var Formvars(), t, vars{") - tl<yIvars(C) - Aly,y">.
B=Vt'<sB'.B": [vars{), vars{") - (Vt'<B'.B")[t<A]I<y,y">
Zpy def. Form)(WeSAT Clvars(), varsC), t - Blt—A]lyy > LVarsC), varst), t' = B [t <—A]l<y,y",1>
by ind. mLeSAT,LQ[[vars(I‘), t, vars("), t'F Bl<y,IvarsT) - Aly,y',v> HV&TS(FL t, Varsf'), tH B"]]<Y,[[V8I’S(F) F AHY:Y|7L>
Zpy det. ¢ Form)[vars(), t, vars{™) - Vt'<sB'.B"I<y,Ivars(C) F Aly,y>.

B=B'—B": similar but easier. o

3.6 Interpretation and soundness of subtype judgements
Interpretation: Vyell' 01 [T+ A < Bly = vars() - Aly,Ivars’) - Bly>

Soundness: Vyell' - ¢]. iy’ - A < Bly € lI" - A < Bly,
i.e. Vyell + ol. [vars() - Aly C [vars() + Bly

(Var<) [VA T'Ho = T, A T'Ft<A

Soundness: VyeSATI, 1eSAT, y'eSATIL, <y,1,y'> e [T, €A, T + 0]
= [vars(), t, vars{) - tl<y,.,y'> C Ivars(), t, vars") F Al<y,.,y">

Let: <y,uy>ell, A, T 9] @
By definition € Env): <y,.> € [I7, t<A | 9] (b)
By the same definition: L Clvars(), t+- Al<y,.> ©
By definition (Var Form): v = [vars(), t, varsl™) F tl<y,.,y'> @
By Lemma Weakening: [vars(), t+ Al<y,.> =[vars(), t, vars") - Al<y,.,y"> (e)

Substituting (d) and (e) in (c):[Ivars(), t, vars(") F tl<y,.,y"> C lvars(), t, vars{") F Al<y,.y>. o

7 - DRAFT - Fri, Aug 5, 1994

(Tops) T'H9o, vars)FA = T'HFA<Top

Soundness: Hyp.: [T'F1C SATI, [T 12 &, VyeSATIL [vars() - Ally e SAT
Th.: Vyell + 0. IvarsQ) - Aly C [vars() - Toply = SN

By Hyp.,Ivars@) I Aly € SAT; hencelvarsC) - Aly C SN by Sat ©

(<) TFA<A, T+B<B = I'FA—=B<A—B

Soundness: Hyp.: Vyell - 1. [vars() F Aly C [varsT) + A'ly, @
Vyell' 1. [vars() + Bly C [vars() - B'ly (b)
Th.: Vvell +- 1. Vfelvars@') - A'—Bly. f e [vars(") - A—=B'ly
Let: yell'F1], felvarsC) F A'—Bly
By def. (= Form): aelvars() - A'ly = f(a) e lvars() - Bly
By (a): ae [vars) F Aly = f(a) € [vars{) - Bly
By (b): ae[varsQ) - Aly = f(a) e [vars() - Bly

By def. (= Form): felvarsC)FA—BTy. o

(V) T, AFt<A, T,AFB<B — T Vi<A.B< Vi<A.B'

Soundness: Hyp.: V<y,.>€ll, t<A F 0. [vars(), t+ tl<y,.> C Ivars([), t+ A'l<y,.>
V<y,>€ell, <A F 0. Ivars(), t+ Bl<y,.> C Ivars(), t+ B'l<y,.>
Th.: Vyell -]. Vfelvars() + Vi<A'.Bly. f e [vars() - Vi<A.B'ly

Applying definitions € Env) and ¥ Form) we can rewrite Hyp. and Th., respectively, as:

Hyp.: Vyell F 1. VieSAT. 1 C [vars(), t - Al<y,.> = [vars(), t+ tl<y,1> C [vars(), tF A'l<y,.> (a)
Vvell' F 1. VieSAT. v C [vars(), tF Al<y,u> = [vars(), t+ Bl<y,.> C [vars[), t+ B'l<y,.> (b)

Th.: Vyell' - . VfeA. (VieSAT. L C vars(), t - A'l<y,u> = f € [vars(), t+ Bl<y,.> (©
= (VeSAT. L C [vars(), t+ Al<y,.> = f e [vars(), t+ B'l<y,.>)) @
Assuming (a), (b), and (c), we prove that (d) holds.
Proof: Let: feA,yell'F] e SAT (e
Let: L CIvars(), t+ Al<y,> ®
By (e) and (f), and (a): Ivars(), t+ tl<y,.> C [vars(), t- A'l<y,.> @
By def. (Var Form) and (g): « C [vars(), t+ A'l<y,.> (h)
By (e) and (h), and (c): f € [vars(), t+ Bl<y,.> 0]

By (), (e) and (f), and (b): felvars(), tk- B'l<y,.>. o

Id and Trans subtyping: soundness of these rules follows from reflexivity and transitivity of set inclusion.
(d<=) k%, vars)FA = TI'FA<A
(Transs) THA<B, T'HFB<C = T'HFA<C.

3.7 Interpretation and soundness of term judgements
Interpretation: Yyell - 0l VOelT', A = ¢ly. [T, A+ a: Alyd = typeErasure(a)_s
Soundness: Vyell' I 0l VOell', A F ¢ly. typeErasure(a)s € [vars) - Aly

(Var) [, XA X AnE O = T, Xt Aq, X0 A B XA

Soundness: Hyp.: Vyell F 0], V<a,...,a>€ll, X{:Aq,.... %A Oy, g € [vars() F Aily
Th.: Vyelll F 0l V<a,...,a>€ll, X:Aq, ... Xp:An F Oly.
typeErasure(}x,<—ay,....x,<—a, € lvarsC) - Aily. ©

8 - DRAFT - Fri, Aug 5, 1994

(—=Intro) TI,A xAFb:B = I',AFAx:Ab: A—B
Here the first saturation condition is used.

Soundness: Hyp.: Vyell' F 0], V<6,a>€[l’, A, x:A = 0ly. typeErasure(l), x.a)-<s,a>€ [vars(C) - Bly
Th.: Vyell' F 0]. VOell', A F ¢ly. typeErasur@(x:A.b)ps € [varsC) - A—=Bly

By def. (= Form), Th. may be rewritten as:

Th.: Vyell F 01. V8ell', A+ 0ly. Veelvars) F Aly. (typeErasure(x:A.b)xs)(a) e [vars() + Bly
Proof: Let: vell'- 0L, 8 ell, AF ¢ly, ae [vars(C) + Aly

By def. (ValueEnv): <d,a>€ell, A, x:AF Oy

By Hyp.: typeErasure(l) x.a)—<s o€ [varst) - Bly

Splitting the substitution:typeErasure(h)_s[x<—a] € [vars’) - Bly

By cond. Sat (Ax.typeErasure(l)_s)(a) = (typeErasur@k:A.b)r.s)(@) € [vars) - Bly. o

(= Elim) T,AFf:A—B, TI''AtaaA = T,Arf(a):B

Soundness: Hyp.: Vyell + ¢]. VOell', A+ 0ly. typeErasure(f._s € [varsT) - A—Bly
Vvell' - 0]. VOell', A+ 0ly. typeErasure(a)s € [vars() F Aly
Th.: Vvell - ¢1. VOell', A+ Oly. typeErasure(f(a))_s € [vars() - Bly

Proof: By Hyp. and def.{> Form), typeErasure(f)_s(typeErasure(a)_s) € [vars{) + Bly.
The thesis follows, since typeErasure(f(a) = typeErasure(f._s(typeErasure(a)_s). ©

(V Intro) I A, AFEb: B, ¥FTV(A) = TI,AF At<sA.b: Vi<A.B

Soundness: Hyp.: V<y,.>€ll, t<A I 0]. VOell', t<A, A F 0I<y,.>. typeErasure(R) s € [vars(), t+ Bl<y,.>
Th.: Vyell' - 01 VOell', A+ Oly. typeErasure{t<A.b),._s € [vars() F Vi<A.Bly

Applying definitions € Env) and ¥ Form) we can rewrite Hyp. and Th., respectively, as:

Hyp.: Vyell 0] VieSAT. L C [vars(), t+ Al<y,.>

= VOell, <A, A+ Ol<y,u>. typeErasure(R)_s € [vars(), t+ Bl<y,.>
Th.: Vyell' F 0L VOell', A F 0ly. VieSAT. v C [vars(), t - Al<y,.>

= typeErasure{t<A.b),._s = typeErasure(l) s € [vars{), t - Bl<y,1>

Proof: Letyell' ¢l 0 €lll, A ¢ly, 1e SAT,L C Ivars([), t+ Al<y,.>.
By Lemma ValueEnvWeakening, singETV(A), d e [T, A0y = d e [T, t<A, A+ <y, 1>.
We obtain typeErasure(h) € [vars(), t - Bl<y,.> by applying Hyp. ta, 1, andd. o

(V Elim) T,AFf VisAB, TFA<At<A] = T,AF f{A}: Bt <A

Soundness: Hyp.: Vyell F ¢]. VOell', A F ¢ly. typeErasure(R._s € [vars’) - Vt<A.Bly
Vyell' F 0. [vars(C) - A'ly C [vars() - Alt<-A"ly
Th.: Vyell 9] VOell', A+ ¢ly. typeErasure(f{A s € [vars{) - B[t<—A]ly

We apply definition ¥ Form) to the first line, and Lemma TypeSubst to the second and third lines:

Hyp.: Vyell' F ¢]. V8ell', A+ Oly. VieSAT.
L C [vars(), t+ Al<y,.> = typeErasure(f._s = typeErasure(f{A})\.s € [vars), t+ Bl<y,.> (a)
Vyell - ol. [vars) F A'ly C [vars(), t+ Al<y,IvarsC) - A'ly> (b)
Th.: Vyell' F 0]. VOell', A+ ¢Oly. typeErasure(f{A\ s € [vars(), t - Bl<y,Ivars) - A'ly>

By (b),Ivars) - A'ly can bev in (a), yielding: typeErasure(f{AN._s € [vars(), t - Bl<y,Ivars) - A'ly>. o

(Subsump) I' AFa:A, THFA<B = I,AF a:B

Hyp.: Vyell' 0l. VOell', A+ 0ly. typeErasure(a)_s € [varsC) - Aly
Vyell F ¢1. [vars() - Aly C [vars() - Bly
Th.: Vyell' 0l VOelT, A+ 0ly. typeErasure(a)s € [varsC) F Bly. o©

9 - DRAFT - Fri, Aug 5, 1994

References

[Bruce 93] K. B. Bruce, “Safe type checking in a statically typed object-oriented programming language”, in
POPL '93 1993.

[Canning et al. 89] P. Canning, W. Cook, W. Hill, J.C. Mitchell, and W. Olthoff, “F-bounded quantification
for object-oriented programming”, iunctional Programming and Computer Architectu2&3-280, 1989.

[Cardelli et al. 91] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov, “An extension of system F with
subtyping”, inIntl. Conference on Theoretical Aspects of Computer Soffwaeadai, Japan, LNCS 526,
1991. To appear in Information & Computation.

[Cardelli Wegner 85] L. Cardelli and P. Wegner, “On understanding types, data abstraction and polymorphism”,
ACM Computing Surveyd7 (4), 1985.

[Curien Ghelli 92] P.-L. Curien and G. Ghelli, “Coherence of Subsumption,iMmbimum Typing and Type
Checking”, Mathematical Structures in Computer Scien2g), 1992.

[Ghelli 90] G. Ghelli, ‘Proof Theoretic Studies about a Minimal Type System Integrating Inclusion and
Parametric Polymorphistn PhD Thesis, TD-6/90, Dipartimento di Informatica dell’'Universita di Pisa, Italy,
1990.

[Girard 72] J.Y. Girard, hterprétation fonctionnelle et élimination des coupures dans I'arithmétique d’ordre
supérieuf, Thése de Doctorat d’Etat, Paris, 1972.

[Katiyar 92] D. Katiyar, “Subtyping F-bounded types”, ANSA Workshop on F-bounded quantification,
Cambridge 1992. Position paper.

[Katiyar et al. 94] D. Katiyar, D. Luckham, and J. Mitchell, “A type system for prototyping languages”, in
POPL '94 1994.

[Mitchell 86] J.C. Mitchell, “A type-inference approach to reduction properties and semantics of polymorphic
expressions (summary)”, tilth ACM Conf. on Lisp and Functional Programmirig86.

[Mitchell 90] J.C. Mitchell, “Towards a typed foundation for method specialization and inheritan€&ORh
'90, 1990.

10 - DRAFT - Fri, Aug 5, 1994

