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System kernel Fun is an abstract version of the sys-

tem Fun defined by Cardelli’s and Wegner’s seminal pa-

per [CW85], and is strictly related to system F<. Ex-

tensions of these two systems are currently the basis

of most proposals for strong type systems for object-

oriented languages.

We study here the problem of subtype checking for

system kernel Fun, presenting the following results. We

show that the standard kernel Fun subtype checking al-

gorithm has an exponential complexity, and generates

an exponential number of different sub problems. We

then present a new subtype checking algorithm which

has a polynomial complexity. In the process we study

how variable names can be managed by a kernel Fun

subtype checker which is not based on the De Bruijn

encoding, and we show how to perform kernel Fun sub-

type checking with a “constraint generating” technique.

The algorithm we give is described by a set of type

rules, which we prove to be equivalent to the standard

one. This new presentation of kernel Fun type system

is characterized by a “multiplicative” behaviour, and it

may open the way to new presentations for system F<—

as well.’
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1 Introduction

1.1 F< and kernel Fun—

The importance of a strong foundation for systems in-

tegrating parametric polymorphism with subtyping has

become increasingly evident in recent years, thanks to

the growing interest in the definition of strong type sys-

tems for object-oriented languages. Most of the type

systems which have been proposed for this purpose are

based on system F< and kernel Fun (see, for exam-

ple, [DT88], [CH088], [CCH089], [CHC90], [Mit90],

[CMMS94], [Ghe91], [Bru91], [PT94]. [MHF93], [GM94],

[Bru94], [ESTZ94], [HP95], [BSVG9S], [FM94], [EST95],

[AC94]). F< and kernel Fun are two different abstract

versions of the language Fun, introduced by Cardelli and

Wegner [CW85].

System F< enjoys many interesting properties: strong

normalization, the exist ence of a minimum type for ev-

ery term, transitivity and subsumption elimination, etc.

[Ghe90, CL91, BCGS91, CMMS94, CG92, CG94]. How-

ever, it also has some significant problems: F< sub-

typing, and F< type-checking, are semidecidab~ only

[CG92, Pie94]; F< types fail to form a semilattice [Ghe90,

GP92]; F< exten~ion with recursive types is not conser-

vative [Ghe93b]. The technical source of all of these

problems lies in the rule which F< uses to compare

bounded universal types. These ~roblems disappear

when bounded universal types are compared according

to the more restrictive rule defined for system Fun in

Cardelli’s and Wegner’s original paper [CW85]; the re-

sulting system is called kernel Fun.

System kernel Fun enjoys all the good properties of

F< mentioned above, and the missing ones too (semi-

lattice, decidability, conservativit y with recursion). For

this reason it has been used, instead of F<, as the ba-

sis of some higher order type systems with subtyping

([Com94, PS]), even if it is somehow less expressive than

system F<.

Thoug–h kernel Fun subtyping, which is the hard core
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of the type-checking procedure, is known to be decidable

(folk theorem, see [Ghe93a]), nothing was known about

the complexity of the subtyping procedure. In this pa-

per we show that the problem is polynomial, but that

the standard subtype checking algorithm is exponential,

and we actually present a polynomial algorithm. This

polynomial algorithm is rather different from the stan-

dard one, and is based on the adoption of a different

presentation of kernel Fun subtype rules. Though we

present this result in the context of the kernel Fun sys-

tem, the standard, exponential, subtype checking algo-

rithm is essentially the one that is currently used for ev-

ery type system which belongs to the family of Cardelli’s

and Wegner’s Fun, Hence, our result may be applied to

a wider class of type systems. We will not study this

point here, while we will show in the paper that our

algorithm can not be easily transferred to system F<;

this observation may give some more insight on the d~-

ferences between the two systems.

This study has been carried out in the attempt of

finding more efficient algorithms to type check the object-

oriented database programming language Fibonacci, re-

alized by the group lead by Antonio Albano in Piss

University [AG095], and some of the features of the al-

gorithm we present have already been included in the

Fibonacci type-checker.

However, the main interest of our result is, in our

opinion, that it shows that the standard subtype check-

ing algorithm is not the only reasonable one, and that

the standard approach used to write kernel Fun rules is

not the only possible one. Using linear logic jargon, the

main difference between the sets of rules which describe

the subtype-checking and the constraint-generating al-

gorithms is that the former manages environments in

an additive way, while the latter manages environments

in a multiplicative way [Gir87]. 1 From an algorithmic

point of view, this is simply a consequence of the fact

that environments are an input parameter (for the sub-

type checker) in the first case, and an output parameter

in the second case. However, it is intriguing to wonder

whether a logical interpretation of this difference exists,

and whether it may be possible, and worthwhile, to look

for a multiplicative presentation of s,ystem F~ itself.

1.2 Technical outline and plan of the paper

The definition of the polynomial algorithm proceeds in

three steps.

First, we define a specific form of the standard ker-

nel Fun subtype checking algorithm, “the a-free subtype

checking algorithm”, characterized by the fact that, dur-

1In linear logic, a binary rule w additive when the premises

have equal contexts, and is multiplicative when the context in
the consequence is a combination of the contexts m the premises.

ing the process of comparing two types, it never creates

new type variables, nor does it renames any type vari-

able. This aim is reached in three steps. First of all,

the algorithm starts with a judgement where no name

clashes exist between different variables. Secondly, a

comparison Vt <T. U < Vt’ < T. U’ is not reduced to

[t’/t]U< U’, but the algorithm collects the unifica-

tion t = t’in its “unification environment” E, and re-

duces the comparison E 1- Vt < T.U < Vt’ < T.U’ to

E, t = t’ 1- U < U’. Finally, when a variable is substi-

tuted by its bound during the subtype checking process,

this algorithm does not rename the variables which are

defined inside that bound. We prove that this algorithm

is equivalent to the standard algorithm. This is a crucial

point, since this result cannot be immediately extended

to F<: any subtype checking algorithm for F< must

creat~ new type variables in the process [Ghe95~

Then, we define a new “constraint generating” algo-

rit hm, characterized by the fact that, while the a-free

one takes a subtype judgement E 1- T1 < T2 and checks

it, the new one takes a pair of types T1 < T2 and re-

turns a set of constraints that must be satisfied by E

for E 1- T < U to hold. More specifically, to prove

that E + Vt<T. U < Vt ‘<T. U’, the a-free algorithm ex-

plores the two types U and U’ in parallel in a unification

environment E, t = t’ and, when it finds a subproblem

w < v, it answers by checking whether u = v is in the

unification environment. On the other hand, to analyze

the same Vt < T.U < Vt’ < T.U’ pair, the constraint

generating algorithm first explores U and U’ collecting

all the subproblems with shape u < v it finds (the

“constraints’) ), ignoring, in this phase, the unification

of t with t’. Only after this collection has been com-

pleted, the algorithm cancels those constraints, such as

t<t’,t’<t,that are solved by the unification oft and t’,

and returns the remaining ones. Hence, instead of hav-

ing the unification environment as input, this algorithm

gives a constraint set as output.

Finally, we show that a memorization technique can

be applied to the constraint generating algorithm to

make it polynomial. Without memorization, both al-

gorithms may take exponential time, as will be shown.

However, both algorithms work by reducing the analysis

of (E I-)T < U to the analysis of a set of subproblems

(E, !-)T, < U,, where T, and U, are subterms of T and

U (E, E, are only needed by the subtype checking al-

gorithm), without generating any new types during the

proof. If the size of T and U is n, then there are at most

nz different T,, U, pairs of subterms of T, U. Hence, if

the constraint algorithm remembers and reuses the set

2~emoizing ~ean~ ~torlng m a table the already solved sub

problems together with them solutlon, so that, ]f a subproblem

is met again, it can be solved by a table lookup.
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of constraints generated by each already checked sub-

problem, then it calls itself recursively no more than nz

times. The same optimization applied to the subtype-

checking algorithm would not make it polynomial, since

in this case we have to store the already visited triples

E, T, U, and a single judgement can generate, as we will

show, an exponential number of different E, T, U sub-

problems, due to the presence of an exponential number

of different environments. This is the reason behind the

switch from the “environment as input)’ to the “envi-

ronment as output” viewpoint.

We will describe the subtype checking and the con-

straint generating algorithms through two sets of sub-

type rules, and will prove their correctness and com-

pleteness by showing that these two sets of rules are

equivalent, and are both equivalent to the standard, non

algorithmic, set of subtype rules for kernel Fun.

In Section 2 we define kernel Fun by giving its stan-

dard nameless presentation, where “nameless” means

that variable names are irrelevant since a conversion

can always be applied. In Section 3 we introduce a type

system which models the a-free subtype checking algo-

rithm, characterized by the fact that it neither renames

type variables nor generates new types, and we prove

its equivalence to the nameless one. In Section 4 we

introduce the type system which models the constraint

generating algorithm, and prove its equivalence to the

previous systems. In Section 5 we int reduce the memo-

ization technique which makes the constraint generating

algorithm polynomial, and we also show that the stan-

dard algorithm is exponential and would remain expo-

nential even if the memorization technique were applied

to it. In Section 6 we comment on related work. In Sec-

tion 7 we draw some conclusions, and make suggestions

for future work.

Though we have carried out all the proofs in full

detail, we can only give the outline of the main proofs

in the paper, for space reasons.

2 The nameless rules for kernel Fun

2.1 The system

In this section we report the standard presentation of

system kernel Fun, which is characterized by the irrel-

evance of variable names. We formalize this feature

with an explicit rule which allows a renaming to be

freely performed during a subtyping proof. We consider

the following syntax for kernel Fun types and subtyping

judgments.

T ::= t I T+T I Vt<T.T I Top

r ::= () I r,t<T

P ,:= (r) I (r, {T}) I (r, {T,T})

J ::= rl-g@EnvlrEgTTypelrE~T <T

Pre-judgements P are used to denote “judgments

which have not yet been proved”; for an introduction

to the other syntactic categories, and to the language,

see [CW85, Ghe90, CG92, CMMS94].

In this standard nameless presentation, the names

of bound variables are irrelevant, i.e. whenever a judge-

ment J is provable, so is any J’ which is a-equivalent

to J. This fact is usually assumed in the notation. For

example, it is often stipulated that any term (or type,

or judgement) actually denotes its whole a equivalence

class, or that variable names are only a readable version

of the corresponding De Bruijn indexes. In this paper,

however, we have to deal with renaming explicitly, since

the fact that kernel Fun subtype checking can be per-

formed without a renaming is one of our results and

is the basis of the application of the memorization tech-

nique. It is interesting to note that this is not true for

FS, where some use of a renaming cannot be avoided

(if F< subtyping were checkable without a renaming, it

would be decidable; see [Ghe95] ). For this reason, we

will give an explicit rule which allows a renaming.

We now give the traditional presentation of kernel

Fun, defined by the following set of rules. In this set of

rules variable names only stand for themselves; the free-

dom of a renaming is explicitly stated by rule (a <).3

We do not report the good formation rules for types

and environments, which state that, in a well-formed

judgement, no type variable is free and no type vari-

able is defined in the scope of another variable with the

same name; the scope of the variable t in Vt < T.U is

U, while the scope of t in I“, t<T, I’” &g U < U’, is

I’”, T, U (see [CMMS94]). We also need the following

definitions and notations. A pre-judgement (17) is well

formed when r t-g QEnv; (r, {T}) is well formed when

17 kg T Type; (I’, {T, U}) is well formed when both

r Fc T Type and r i-g U Type hold. PI =. Pz means

that the pre-judgements PI and Pz are a equivalent and

are both well-formed, while TI =. Tz means that TI and

Tz are two a equivalent types. If 17- tl<Tl,...,t~<Tn,

then def(I’) s {tl,...,tn}.If r = I“,t<T,r” and

t ~ def(r”), then I’(t)denotes the bound T of t.Here

are the rules.

3kernel Fun is presented here without transitivity y, as it has

been presented in [C W85]. The equivalence of this presentation

with the one with transitivity, and with reflexivity defined on

every type, can be proved either by adapting the proof in [CG92],

or by a much simpler induction.
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I’, t<T, I“ I-G &Env

r,tgr, r’ EGt s t
(Refl<)

17 Fg T Type

17 EgT <Top
(Top<)

t#u tcdef(17) rkg r(t)< u

rt-Gt~u
— (VZK)

r +g T s u (r, {T, u}) =a (r’, {z+, u’})

r’ I-G T’ < U’
(a<)

Rule (V<) is the essential rule which distinguishes ker-

nel Fun from F<, and which makes kernel Fun subtyping

decidable.

The freedom of applying a renaming whenever it

is needed makes some rules, namely (V<) and ( Var<),

easier to write. For example, in this formulation, rule

(V<) apparently requires that two comparable quanti-

fied types have the same bound variable with exactly

the same bound. But the rule can also be used to com-

pare types with different bounds and variables, such as:

Vt<(Vu<Top.u),t < Vt’<(Vu’<Top.u’) .Top by com-

bining it with a renaming. More subtly, without cr,

(Var<) cannot be used to prove provable judgernents

‘T Kg t < U“ where r(t) is not well formed in r’, such

as: t< Vu< Top.u, u< Top l-g t < Vv<Top, v, This

use of the Q rule should not be overlooked.

2.2 The UBD variant

The algorithm we will define in Section 3 can avoid vari-

able renaming thanks to the presence of the “unifica-

tion environment”, but also because it analyzes a spe-

cific class of pre-judgements. These we will call “valid

pre-judgements”, an d they enjoy the properties that (a)

no name clash is possible in a vrdid pre-judgement, (b)

the backward application of any subtyping rule reduces

a valid pre-judgement to another valid pre-judgement4

and (c) two variables with the same name have the same

bound. To make it easier to compare the standard sys-

tem with the one in the next section, we define here

a variant of the standard system which enjoys prop-

erties (a), (b), and (c), by first defining what a valid

pre-judgements is.

4Informally, the backward apphcation of a rule to a Judgement

is the process of unifying the Judgement with the conclusion of

the rule, and substituting the judgement with the rule premises,
instantiated by the umfication.

A valid pre-judgement (r), (I’, {T}), (r, {T, U}) should

be, first of all, well-formed (i.e. no variable should be de-

fined in the scope of a different variable with the same

name), but this is not enough, since this property is not

preserved by the backward application of rule (Var<).

Consider for example, the following judgement (Vt .U

abbreviates Vt<Top. U):

t<vu.u, u<Top k~ t < VU’.U’

becomes, by (Var<):

t<b%.u, u~Top +g VU.U < ‘du’.u’.

(Notice that the original judgement is well-formed and

provable, but we need the cr rule to prove it.) Hence we

have to resort to a stronger requirement. We say that a

pre-judgement satisfies the UraiDef property when it is

well-formed and it is still well-formed after the repeated

substitution of each variable by its bound. This prop-

erty is strong enough to guarantee against name clashes,

and the subtype checker always transforms a UniDef

pre-judgement into a set of UraiDef pre-judgements.5

It can be proved that the UniDef property can be

checked in polynomial time. Finally, property (c), which

we will call UniBourad, is defined as follows.

Definition 2.1 (f?*()) B*() applied to a judgement or

to a pre-judgement collects ail variable definitions, with

their bounds, contained in the judgernent or pre-judgement.

For example,

f$*(t<Vu<Top.Top +g Vu<t.u < Vv<t,v)

= {t<Vu<Top.Top, u<Top, u<t, v<t}.

Definition 2.2 (UniBound ()) A pre-judgement belongs

to UniBound ifl whenever two different variables have

the same name, they have the same bound.

Unbound ~ ({t<Tl,t<T2}~ B*(P)+ TI = 2’2)

Notice that the UniBound and UniDef properties do

not imply each other, and their combination gives us

our validity condition.

Definition 2.3 ( UBD) A pre-judgement P satisfies UBD

ifl UniDef(P) and UniBound (P) both hold.

A judgement is provable in the UBD system iff it is

provable in the nameless system by a proof where euery

judgement satisfies UBD.

5The simpler and stronger property that no two variables in

the same judgement have the same name, regardless of them

scope, would guarantee against name clashes, but is not pre-

served by (Var< ), which would transform, e g., t<VU .U +g t <

U into t< Vt4.u l-g Vt4.U < U, which only satisfies the f7ntDef

property.
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We now prove that no subtyping is lost in the FG sys-

tem if only UBD judgments are allowed, i.e. that if a

judgement J is a-equivalent to a UBD judgement J’,

then J is provable in the nameless system iff J’ is prov-

able in the UBD system.

Theorem 2.4 Let E~BD mean (just for this theorem)

“provable in a system where only UBD judgments are

well-formed”; then:

(I’, {T, U}) =~ (r’, {T’, U’}), UBD(17’, T’, U’)

+(r+gT<usr’t-gBDT’ <u’).

Proof Outline The (-+=) part is trivial. The (+)

part can be proved by induction on the size of the proof

of I’ !-G T < U, and by cases on the last applied

r-ale. Cases (Top<), (+<) and (Var<) are solved by

showing that, if (I’, {T, U}) =e (r’, {T’, U’}), then the

premises of the last rule applied to prove r RG T < U

are n equivalent to UBD judgments which can be used

to prove I’ +G T < U. Case (V<) is diflerent, since

in this case T and U are two universal types with the

same variable name and bound, while this may not be

true for T’ and U’. Hence, we first inductively prove an

UBD judgement (F’, {T”, U“}) which is a equivalent

to (r, {T, U}) and which has equal variable names and

bounds, and then prove I“ F~BD T’ < U’ by apply-

ing (a <), in the UBD system, to I’” Fg T“ < U“. In

case (CY<), if (I’, {T, U}) has been proved by (a S) from

(1?”, {T”, U“}), then provability of r’ E~BD T’ < U’

follows by induction with no need to use (CS<) in the

UBD system. ❑

The proof above shows that, in the UBD system, the a

rule can be eliminated by substituting rule (V<) with

the following one:

r t-g Vt’<T’. U’ Type T + T’

r,t<T l-g u < [t=t’](u’)

r t-G Vt<T.U < Vt’<T’. U’
(V<.*)

Without the UBD restriction, we claim that it would

also be necessary to substitute rule (Var<) as follows,

where the empty substitution [ ] (17(t)) renames any vari-

able which is defined inside I’(t).

t # U t G def(17) r Eg [ ](r(t)) < U

rtot<u
(va@cY)

Hence, the UBD restriction can be seen as a technique

to avoid a renaming when the (Var<) rule is applied. In

the next section we will introduce a technique to avoid

a renaming when (V<) is applied.

From now on we will forget about the standard name-

less system and will only consider its UBD restriction.

3 The a-free subtype checking algorithm

3.1 The system

In this section we introduce what we call “the a-free

subtype checking algorithm”, where “subtype checking”

distinguishes it from the “constraint generating” one,

which will be presented in the next section.

This algorithm is characterized by three main fea-

tures, the fact that it is only defined on UBD judgm-

ents, the fact that it has a priori knowledge of the

bounds of all the variables, and the presence of the

“unification environment’). These features are related

to the behaviour of some real subtype checking algo-

rithms, and they are also needed to obtain the prop-

erty that the algorithm never creates nor renames types

during subtype checking, which is essential for the poly-

nomial variant we will describe later. We now discuss

informally how these features are related to real subtype

checkers and to the non-creation property, and how they

are captured in our formalization.

● UBD judgments: the input for a subtype checker

●

is generally produced by a parser which allocates

a new data structure for every variable definition,

and represents the instances of that variable by

a pointer to that data structure. Hence, no two

different variables may have the same name (i.e.

the same memory address). When the subtype

checker applies rule (Var< ), it may break this strong

property (see footnote 5), but it maintains the

weaker UBD invariant. Hence, the assumption

that the judgement we have to check satisfies UBD

is usually satisfied by a real type checker, and,

moreover, any judgement may be transformed, if

needed, into an a equivalent UBD judgement in

polynomial time, by giving fresh names to all its

variables; hence the UBD assumption does not re-

strict the validity of our analysis. We impose the

UBD condition since the UniDef property is es-

sential to eliminate the use of the a rule which

is related to the (Var<) rule (see Section 2.2 and

Theorem 3.4); the UniBound condition allows us

to describe the global bounds environment B, de-

scribed below, simply as a mapping from variable

names to types.

A priori knowledge of the variable bounds: in a

real type checker a variable is typically implemented

by a structure which contains a pointer to its bound,

and this connection is often established when the

parse tree is built, i.e. before the subtype-checker

starts. Moreover, our subtype checker never cre-

ates new varibles nor renames their bounds, hence

this association never changes during type check-
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●

ing. This is formdlzed by substituting the stack-

like environment I’ with a ‘(bounds environment”

B which is not changed by the subtyping rules

and which contains, right from the beginning, the

bounds of all the type variables which are involved

in the judgement being checked (this fact is en-

forced by rules (Var<) and (V<)).

Unification environments: in order to avoid C(sub-

stitutions, when two types Vt<T. U and Vt’~T’. U’

have to be compared, the algorithm compares U

and U’ in a “unification environment)’ t= t’which

tells it to consider t and t’to be equal. This al-

lows it to avoid the renaming [t= t’](U’),which

is performed by the standard algorithm. lb our

knowledge, this technique is only used in the sub-

type checker of the database language Fibonacci.

We can now give the syntax of the subtyping judgm-

ents which describe this algorithm. The & subscript

under the } symbols distinguishes these rules from the

other systems in the paper, while the B superscript is a

rule metavariable, which we put in this de-emphasizing

position because it is, as we explained above, just a

read-only variable.

T ::= tlT+TIVt<T.T ITop

B ::= () ] B,t<T

E ::= () I E,t=t

x ::= () I X,t

J ::= B +S B-Env I E @ &-Env

I X l-~ X-Env

lX1-~TTypel El-f T<U

A pre-judgement is well-formed only if it satisfies the

UBD property. All the rules trivially preserve the UniDef

invariant, while the good formation and UniBound prop-

erties are explicitly enforced by the hypothesis of the

rules when it is needed. We remark that the (V <~) rule

of system F< does not preserve the UniDef invariant,—
and this is the technical reason which prevents us from

making a trivial extension of the l-~ rules to system

F<. We now give the complete set of rules we consider

fo~ kernel Fun.

Notation 3.1 (clef(B), left(E), right (E), swap(E))

def(tl <TI, . ... tn<Tn) =def tl,....tn

left(tl =~1, . . ..tn=~n) =def tl, . . ..tn

right(tl =u1, t. ..> n =Un) ‘clef ~1,...,~n

swap(tl =u1, . . . . tn=&) =def ttl=tl,.. .,%?=tn

Notation 3.2 (B(t)) B(t) is defined as T, when
B= . . ..t<T . . . . .

Notation 3.3 (T= U) E k~ T = U stands for

Ek~T~UA swap(E) l-~U <T.

Subtyping rules:

E,t=u, E’ l-~ f-Env

E,t=u, E’ k; t ~ U
(Refl~)

E F: &-Env left(E) +: T Type

Et-g T< Top
(Top<)

(t=U) @ E t c def(ll) tc left(E)

Observe that the conditions with shape: E l-~ &-Env,

X 1-~ T Type, t c X, which are found in the subtyping

rules are not actually checked by a real subtype checker,

since they are guaranteed by the tool which builds the

subtype checker input, but they are still needed in our

formal presentation to formalize which properties must

be guaranteed by that input provider.

3.2 Equivalence of the nameless and the type check-

ing systems

We want now to prove that the two systems are equiv-

alent, which may be formulated as follows (recall that

Fg refers here to the UBD variant):

To make this statement precise we will define what Er

and r~,~ are (Theorems 3.7, 3.10).

To prove that the two systems are equivalent, we

need the standard subproof, weakening, and strength-

ening lemmas, plus the crucial lemma which states that,

if any judgement J is provable in the E system, than any

a variant Y of J is provable.

Lemma 3.4 The E-system is a invariant:

(B, E, {T, u}) =a (Bl, EI, {Tl, Ul})
“ T1 < Ul).+( EF; T< UWEIFE

Before proving that I’-subtyping implies Esubtyping,

we prove the same thing for good formations.

Notation 3.5 (clef(r)) If def(l?) = (tl,. ... t~) then

def2(1’) s(tl=tl,... t~=t~).
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Lemma 3.6 (r good formation a E good form.)

1. r l-g @Env, B l-c B-Env, B ~ L?*(r)

+ clef(r) l-$ X-Env, def2(I’) t-~ ~-Env

2. r t-g T Type, B l-t B-Env, B ~ B*(r, T)

+- def(I’) +: T Type

Theorem 3.7 (17 subtyping implies E subtyping)

r ~g T s U, B l-t &?-Env, B ~ B*(I’, T, U)

* de~(r) t-~ T s U

Proof Outline By induction on the proof of r Kg
T < U and by cases on the last applied rule. Some

care is needed when the last rule w (a <); in this case,

@ pro vabdity follows by Lemma 3..4. We also heavily

exploit Lemma 3.6. ❑

The next definition specifies how a variable environment

X can be upgraded to an environment 17by associating

each variable in X with its bound in a specified bounds

environment B.

Definition 3.8 (B n X) Bn(tl, . . ..t~) =def t]<
B(t]), . . . ,&<B(trz)

Definition 3.9 We say that an environment is strongly

well-formed in B if, whenever two variables are unijied

by E, their bounds in B are unified too, in the following

sense:6

E is strongly well formed in B zff

E @ f-Env, Vt=t’ c E. (B(t) =~ [EJ(B(t’)),

[swap(E)] (B(t)) =0 B(t’))

The next theorem completes the proof of the equivalence

between the named and the nameless system.

Theorem 3.10 (E provability + 17 provability)

If E is strongly well formed in B, then:

(1)X @ X-Env ~ B~ X t-g @Env

E k: E-Env # B n left(E) l-g @Env,

B n right(E) l-g @Env (2)

1?n X EG &Env, X k! T Type

* Bn X1-~ TType (3)

EF; T<U

+- Bnleft(E) l-g T < [E](U), (41)

B n right(E) t-g [swap(E)](T) < U (4r)

eB(t) =. [d(B($’)) is actually equivalent
to [swap(E)] (B(t)) =m B(t’),but this redundant formulation

reheves us from having to prove this fact.

Proof Outline (2) ts a coro!kary of (1), and (3) is

standard. (1) and (~) are proved together by induction

on the size of the proof of the judgement, and by cases

on the last applied rule. In case (Top<) of (Jr), some

care is needed to prove that left(E) k; T Type implies

B n right(E) t-g [swap(E)](T) Type, needed to prove

that B n right(E) EG [swap(E)](T) < Top. In case

(Var<) of (Jr), the strong good formation hypothesis

and the (a <) rule are needed to prove that t =t’ l-~ t <

U amphes Bn t’t-gt’< U. In case (V<), E l-~ W<

T.U < Vt’<T’.U’ is proved from E kg T = T’, E, t =

t’ !+ U < U’. We jirst exploit an irreflexivity lemma

to show that E k: T = T’ (where = means < A >

) inductively implies T =~ [E](T’), [swap(E)](T) =a

T’. This implies that E, t = t’ 1-~ U < U’ is strongly

well formed, hence we can prove by induction that B n
(left(E), t) Eg U < [E, t = t’](U’), which implies, by

(V<), B n left(E) i-g Vt<T.U < Vt<T.[E, t =t’](U’).

The thesis follows by rule (CY<). ❑

4 The constraint based rules

4.1 The system

In this section we describe a different approach to the

subtype-checking process. Instead of providing the en-

vironments B, E and the compared types T, U as input,

obtaining only success or failure, we provide B, T, U

alone, and obtain as an answer a set of constraints

Z=t]<ul,..., tn < u~ which specifies the minimal

subtyping relation between variables which should be

implied by E to make E K: T ~ U true. Thus, as

we will detail later, a single problem can only generate

a polynomitd amount of different subproblems. Hence,

by combining the algorithm described in this section

with a memoization technique, we can finally obtain a

polynomial algorithm for kernel Fun subtype checking.

Formally, we define this constraint generating algorithm

by a t-~ entailment relation, with the following syntax.

The actual algorithm works by backward applications

of these rules; the Z constraint set in the subtyping

judgement is the only output variable.

B ::= () I B,t<T

x ::= () I X,t

z ::= () I X,t<t I -Lt>t

J ::= B k~ t5-Env I X k: ,-Y-Env I Z F: S-Env

lX+~TTypelZt-~T<T

Notice that the good formation judgments which do

not need to be modified are borrowed from the a-free

subtype checking system.

Claim 4.1 (Theorems 4.7, 4.8) l-~ and l-~ are equiv-

140



alent; formally, if T and U are well formed in B, then:

The k: relation is defined below; as usual, the crucial

rule is (V<); the –B operator is defined later.

Notation 4.2 (swap(~)) swap(tl<ul, . . . . tn>un) =def

ul~tl,,..,Un<tn

notVar( U) t G def(l?) Z l-~ B(t)< U

x~:t<u
— (Var<)

E+;T’<T Z’@T <T’

x“ @ u < u’

X“ ‘B (t=t’) #l {t<T, t’<T’} ~ B
(}/<)

swa.p(~),~’, (~” ‘B (t=t’))

kg Vt<T.U < Vt’<T’ .U’

notVar( U) in rule (Var<) means that U is not a type

variable. We make the following observations.

(Atom<) is the rule which generates the constraints,

which are then transmitted by the other rules and elim-

inated by rule (V<).

Rule (V<) analyses U < U’ without considering

the t= t’unification; then, once the corresponding con-

straints Z” have been collected, it removes those which

are implied by t= t’.The operation (Z –B (t = t’))

gives, informally, the constraints which remain after one

knows that t=t’,and ~ ‘B (t=t’)=1 means that, if t

is equated in the environment to t’,thenZ cannot hold.

Thanks to rule (Top<), it is possible that Z l-~

T < U, even if T or U are not well formed, hence the

subproof property Z l-~ T < [J + clef(Z) }:

T Type is not valid.

Using linear logic jargon, note that the additive be-

havior of environments in E-rules (same context in the

consequence and in the premises) and their multiplica-

tive behavior in X-rules (the context in the consequence

is a combination of the contexts in the premises) shows

that environments are input variables in the first case,

and output variables in the second case.

We now define the operation Z –B (t = t’), first on a

single constraint cr, and then on a constraint list X.

Definition 4.3 (Z ‘B (t=t’)) Sing/e constraint (u–B

(t=t’)):

(t<t’)‘B (t=t’)= () (1)

v’ # t’,t~u c B

+ (t<V’) ‘B (t=t’) = 2@ (2)

v’ # t’,t<T c B, notVar( 2’)

* (t<?J’) ‘B (t=t’)=1 (3)

v#t + (Z@) ‘B (t=t’) =1 (4)

v#t, v’ #t’ +- (V<v’) -~ (t=t’) = V<v’ (5)

(v~v’) -B (t=t’) = SWap((V’<V) ‘B (t’=t)) (6)

Constraint list:

() ‘B (t=t’) = ()

{

-L
if ~ ‘B (t=t’)=-L

Or ~ ‘B (t=t’) =1

(~, C7)‘B (t=t’) =

~ ‘B (t=t’),U–B (t=t’)

otherwise

Note that, while the order of pairs inside an equality

environment is essential, the order of the constraints in

a constraint list is irrelevant. This set of rules defines a

terminating algorithm.

Lemma 4.4 The algorithm dejirzed by the rules we have

given atways terminates on a judgement E t-~ T < U

such that (a) T and U are ground terms and (b) there

exists E such that E @ &-Env, left(E) @ T Type,

right(E) i-g U Type.

Proof Outline See [Ghe90, KS9.2, Ghe93a]. ❑

4.2 Equivalence with the subtype checking system

To prove the equivalence between the two systems, we

first need a lemma which specifies that the Z –B (t = t’)

operation behaves as expected.

Definition 4.5 (E @ E Type, E l-~ Z) E +: ~ Type

means that left(E) @ tType for each t in left(~), and

the same for right(E), right(~). E t-g X means that

E l-~ &-Env and that E t-~ t ~ u for each t<u pair

in E. Note that it is never the cose that E i-~ 1.

Lemma 4.6 E, t=t’ l-~ Z

~ (E, t=t’ l-~ Z Type, E ~~ z –B (t=t’))

We can now prove the equivalence between the two sys-

tems.
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Theorem 4.7 (Z subtyping implies E subtyping)

X@?T< U,. EI-; E,

left(E) l-~ T Type, right(E) +~ U Type

*E@T<U

Proof Outline We prove the thesis by induction on

the size of the proof of Z k: T < U and by cases on

the last applied rule. The interesting case is case (V <),

where, from swap(~), ~’, (~’’–B(t=))))l-gVt<T. U <

Vt’ < T’.U’, E h: swap(~), Z’, (Z” –B (t = t’)), and

E1-~T’< T, E’l-~T<T’, E” k-$ U< U’we

must deduce that E @ T = T’, (immediate) and that

E, t = t’ k: U < U’. To this aim, we need to prove

that E, t = t! l-~ E“, which follows, by Lemma 4.6,

from E k: Z“ ‘B (t = t’), once we have proved that

E, t =t’ 1-~ E“ Type, which is long but standard. ❑

Theorem 4.8 (E subtyping implies Z subtyping)

E@ T< U~(3E. Ek; Z, Et-~ T<U)

Proof Outline We prove it by induction on the size

of the proof of E k; T < U and by cases on the last

applied rule. The interesting case is case (V<), Suppose

that E @ Vt<T. U < Vt’<T’. U’ has been proved start-

ing from E k; T = T’j E,t=t’ l-~ U < U’. By in-

duction, there exist X, Z’, X“ such that swap(E) t-~ Z,

E b: E’, E,t=t’ F: X“, and Z F; T’ < T, Z’ @

T < T’, E“ l-~ U < U’. By Lemma 4.6, E k;

swap(~), Z’, (Z” —B (t= t’)).The thesis follows by ap-

plying rule (V<). O

5 The polynomial algorithm

5.1 The standard algorithm is exponential

Before presenting our polynomial algorithm, we show

that the standard subtype checking algorithm has an

exponential behaviour, and that, moreover, it may re-

duce a problem to an exponential number of diflerent

sub problems. To this aim, we define a family of envi-

ronments B, and of judgments J,m such that the size of

J: only grows polynomially with n, while the number of

different subproblems it generates grows exponentially

(in this section we will write Vt.U as an abbreviation for

Vt<Top.U).

Definition 5.1

To ——

T,+l ——

u, =

B] =

Bt+2 =

E, =

J;(E, o) =

J#(E, i + 1) =

J#(E, z) =

to

t,+l-+Vx,+l .T,

the same as T,,

substituting Uj to t3 and y~ to x~

to<Top, UO<TOP, tl <To, U1 <Uo

B,+l, t,+z<T, - Vx,+l.t,+l,

UC+2<U, + Vyt+l .Ut+l

Uo=to, . . ..u. =tt

E R:” UO < TO

E @’ U, ~ Vy,+l .U,+l

< t,+l--+VZ,+l.T,

the same as J;(E, z), swapping Uj

with t~ and y~ with XJ

Let ns say that Sub(j) is the number of different

subproblems, belonging to the {J: (E, i)}n,, or to the

{J:(E, i)}n,, families, generated by the standard algo-

rithm while it is checking judgement J. We now show by

induction that, for each i<n, Sub(J~(En, i)) contains 2;

different judgments. In the base case, Sub(J$(E~, 1))

contains 2 judgments, J#(swap(E~), O) and J~((Em, Y1 =

ZI ), O) (here b means “is reduced by the algorithm to”):

J;(En, 1) ~ En @“ UO -+ ‘dyI.Ul < tl -+ VZI.TO

b By (+<): { swap(En) l-~’ tl< UO)

En @ Vyl .UI < VZI .~o }

b { by (Var<): swap(E~) E:” To < UO,

by (V<): En, y]=z] @ ul < To }

b { swap(E~) @n TO < UO,

by (Var<): E~,yl=zl l-~” CJO < TO }

In the same way we can show that Sub(J~(En, z + 2)) is

equal to Sub(J~(swap(E~), i+l))USub(J~((E~, Y,+2 =

X,+2),2 + 1)). To complete the proof we now show

that the two sets are disjoint, by observing that no

judgement generated (by the standard algorithm) from

J#(swap(En), i + 1)may contain y,+2 = Z,+2 or X,+2 =

Y,+2 in the unification environment, while all judgm-

ents generated from J~((E~, w+2= Zi+z), ~+ 1) con-
tain one of those two pairs. This completes the proof

that the size of Sub(J~(En) n)) is 2n.

Observe now that the input size, i.e. the size of a

judgement J$(swap(Ew), n) which generates 2“ subprob-

lems, is polynomial (quadratic) in n. The dominating

component of that size is given by Bn: since the size of

T, and U, grows linearly with i, the size of B, grows as

Z2, dominating the growth of E, and of the compared

types, which is linear.

Notice that the same judgement would be checked in

exponential time by the constraint generating algorithm

too. However, we will show that the constraint generat-

ing algorithm would only generate a polynomial amount
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of different subproblems, hence it is easy to modify it in

order to give it a polynomial complexity.

5.2 The polynomial algorithm

The non memoizing, hence exponential, constraint gen-

erating algorithm can be described by the following SML

program. The program does not explicitly enforce the

assumption that, whenever two different Var or All

terms are associated with two {name, bound} tuples

with the same name, the tuples also have the same

bound (and are actually represented by the same mem-

ory location, though this is not relevant here). We may

explicitly check this fact if we do not trust the input

provider, but this check would not affect the complex-

ity of the type checking. Also note that there exists

no central B environment, but every variable carries its

own bound. Apart from this, the algorithm below ex-

actly mimics the rules we defined, provided that the

swap, append, and minus operations are defined as in

Section 4 (#f r denotes the contents of the f field of

the r record).

datatype Type =

Var of {name: string, bound: Type}

I Top

I All of {name: string, bound: Type} *Type

I Arrow of Type * Type;

type VarPair = {name: string, bound: Type};

datatype Constraint = Less of VarPair*VarPair

I Greater of VarPair*VarPair;

,..
fun getSigma (Var(t)) (Var(u)) = [Less(t,u)]

\ getSigma T (Top)= [ ]

\ getSigma (Var({name,bound})) T

= getSigma bound T

/ getSigma (All(t,T)) (All(u,U)) =

let val sigma= get Sigma (#bound u) (#bound t)

val sigmal = get Sigma (#bound t) (#bound u)

val sigma2 = getSigma T U

in append [ (swap sigma), sigmal, minus sigma2 (t)u) ]

end

[ getSigma (ArrcIw(T,TT)) (Arrmv(U,UU)) =

let vaf sigma = getSigma U T

val sigmal = getSigma TT UU

in append [ (swap sigma), sigmal ]

end;

Let us now define the notion of a type being a subterm

of another one as the minimal transitive relation such

that: bound is a subterm of Var ( {name ,bonnd} ); bound

and T are subterms of All ( {name ,bound}, T); T and U

are subterms of Arrow (T ,U). The constraint generat-

ing algorithm enjoys the following “subterm property”:

for every subproblem “getSigma TT UU” generated by

a problem “get Sigma T U“, TT and UU are subte~rms of

the types T and U. We can define the input size of a

problem getSigma TT uu to be the nnmber of different

occurrences of subterms of TT and UU. Hence, if n is the

size of the problem get Sigma TT UU, its analysis gen-

erates no more than nz different subproblems, one for

every different pair of subterms of TT and UU. Hence,

if the algorithm is modified so that it remembers every

already generated subproblem, it will call itself recur-

sively no more than nz times.’

The modified algorithm is shown below. It first uses

lookForOldSolut ion to search in the memory data struc-

ture for the constraint set generated by a previous analy-

sis of the same subproblem, and calls newGetSigma only

the first time it meets a pair of types. newGetSigma

is identical to get Sigma, bnt every direct recursive call

to getSigma T U is substituted by a call to checkSigma

T U. The function rememberSolution stores the T, U,

result triple in the memory data structure.

fun checkSigma T U =

case lookForOldSolution T U (memory)

of Solved(result) => result

I Unsolved=>

let vaf result = newGetSigma T U

in (rememberSolution T U result memory;

result )

end

and newGetSigma (Var(t)) (Var(u)) = . . .

Notice that every branch of the algorithm only performs

polynomial operations. The criticfl ones are the append

and minus operations. append should be implemented

as a set union, rather than a list concatenation, to pre-

vent constraint lists from becoming too long. Thus, the

length of any constraint list is bound by the input size,

hence both append and minus can be executed in poly-

nomial time. This completes the proof of the fact that

onr algorithm runs in polynomial time.

Once the asymptotic complexity has been fixed, we

should now look for more realistic implementations. The

“better” algorithm we are currently experimenting with

differs from the one presented above because we check

and update the memory structure only when we apply

the (Var<) rule. The net result is that, for most judge-

ments, where memoiz ation gives little advantage, we

save a lot of costly lookForOldSolution and remember

operations, while exponent ial judgments are still checked

in polynomial time.

TpJO~hln~would change ,f we suppose that the algOrlthm Input

1s not a tree but a graph, so that common subterms can be

shared, since in this case the upper bound for the number of

recursive calls would stall be nz, where n M the number of nodes

m the graph.
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6 Related Work

The complexity of subtype checking problem has not

been studied in the literature, to our knowledge, essen-

tially because most interesting subtype checking prob-

lems are either obviously polynomial, as happens with

first order systems ([Car84]), or undecidable, as happens

for system F< [Pie94, Ghe95]. When decidable variants

of F< have been defined, proving their decidability has

been-the main interest focus ([Bru94, CP94]). We sus-

pect, however, that our results may be easily transferred

to those systems.

A lot of work has been performed about the complex-

ity of type inference problems, usually in the context of

ML-like systems, sometimes enriched wit h subtyping, as

in, e.g., [LM92]. However, the problem of type inference

in quite different from the subtype checking problem we

face here, and there is no apparent relation between the

results from this field and our result.

7 Conclusions

We have presented a polynomial algorithm to perform

kernel Fun subtype checking.

In the process, we have formalized a technique to

compare universal types wit bout operating substitutions,

and have proved the soundness and completeness of this

technique. In particular, we have shown that, when ap-

plied to kernel Fun, this technique allows subtyping to

be checked without creating new types and without re-

naming type variables (Theorems 3.7, 3.10). Apart from

allowing polynomial subtype checking, this property is

also important when kernel Fun is extended with recur-

sive types. Subtype checking among recursive types is,

in fact, based on the comparison of subtype judgments

wit h the previously explored ones [AC 93]. If no new

types are generated, this process is guaranteed to ter-

minat e, and judgement comparison can be implemented

as a pointer comparison. These facts imply that system

kernel Fun can be extended with recursive types along

the lines of [AC93] without meeting the subtle problems

raised by recursive types in system F< [Ghe93b].

We have also shown that the standard subtype check-

ing algorithm for system kernel Fun is exponential, and

may actually generate an exponential number of dif-

ferent subproblems. These properties of the algorithm

were previously unknown.

Finally, we have developed a type theory where “vari-

able names are taken seriously”. The traditional ap-

proach, which essentially ignores variable names, is still

the best when fundamental studies are carried out. How-

ever, the lack of studies about variable name manage-

ment in the subtype checking process is a problem for

those who would like to implement a subtype checker

without using De Bruijn indexes.
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