Diver gence of F< type checking

Giorgio Ghellit

Abstract

System E is an extension of second-ordgmped lambda calculus, where a
subtype hierarchy among typesdsfined, and bounded second-order lambda
abstraction is allowed. This languageashasis for much of the current research
on integration of typed functional languages with subtypes and inheritance. An
algorithm to perform type checking fog Expressions has been known since the
language Funwas defined. The algorithm has been proved complete, by the
author and P.-L.Curien, which means that it is a semi-decision procedure for
the type-checking problem. In this paper we show that this algorithm is not a
decision procedure, bgxhibiting a term which makes it diverge. This result was
the basis of Pierce’s proof of undecidability of typing far. We study the
behavior of the algorithnio show that our diverging judgement is in some sense
contained in any judgement which makes the algorithm divédgethe basif

this result, and of other results in the paper, we claim thatctiences that the
algorithm will loop while type-checking a “real program” are negligible. Hence,
the undecidability of Etype-checking should nbke considered as a reason to
prevent the adoption of Fas a basis for defining programmirgnguages of
practical interest. Finally, we show the undecidability of an important subsystem
of F_.

1 Introduction

The languag€éFun’ was introduced in [Cardelli Wegner 85] to formalize the
relationships between subtyping, polymorphisnheritance and modules in a strongly
typed languagef-un in its entirety is very rich, but a subsystem of it, called has
been recognized as a minimal kernel which collects the main technical substance of the
recursion-free part of the languagkechnically, systenf_ is an extension of the
second-ordek-calculus defined by Girard and Reynolds, [Girard 72] [Reynolds 74], with
subtypes, bounded second-order abstraction, and a maximunT appehich allows
unbounded quantificatior_ was formalized in [Curien Ghelli 92], by modifying the
system defined irjBruce Longo 90]. Extensions &fun andF_ are the basis of most
current research on thategration of the capabilities of object-oriented languages and
functional languages in a strongly typed context (see, e.g., [Canning Hill Olthoff 88]

IDipartimento di Informatica, Universita di Pisa, Corso ltalia 40, I-56125, Pisa, ltaly, ghelli@di.unipi.it.
This work was carried out with the partial support of E.C., Esprit Basic Research Action 6309 FIDE2, of
the Italian National Research Council, “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo” grant
No. 92.01561.PF69, and of the Ministero dell'Universita e della Ricerca Scientifica e Tecnologica.

[Cook 89] [Canning et al 89] [Mitche®0] [Danforth Tomlinson 88] [Cardelli Martini
Mitchell Scedrov 91][Ghelli 91] [Bruce 91] [Cardelli Mitchell 91] [Mitchell et al 91]
[Bruce 92] [Hofmann Pierce 94Bruce 93] [Ghelli 93a] [Gunter Mitchell 93] [Pierce
Turner 93)).

An algorithm to assign a type &very well-typed=un term and to check whether a type

is a subtype of another was already known when the language was presented, and can be
attributed to Luca Cardelli. In [Curien Ghelli 92] this typing algorithm was formalized for

F< and proved correct and complete. In the same paper the algorithm is shown to be the
“natural” one with respecto a notion of “normal form” of type-checking proofs.
Correctness and completeness mean that the algositboessfully terminates on all and

only the typable terms, but do not imply that it terminates on non-typable terms. The
termination of subtypechecking would immediately imply the termination of type
checking, but it was not even known whether subtype checking terminates or not.

In this paper we show that there are terms which make that algorithm diverge,
contradicting thefaulted termination proof given in [Ghelli 90]. Then we study the
features which characterize those judgements which make the algorithm diverge (the
“diverging judgements”).

The basic aim of this study was to settle a basis on which to determine whether the
F < typing problem is decidable. We weseccessful in this, since our result was actually
the basis of Benjamin Pierce’s prooff undecidability ofF . [Pierce 93]. Even though
this part of the problem has been closed, our analysiseotlgorithm behavior is still
useful to understand whatakes the problem difficult. This kind of information may be
used to desigrdecidable variants of the language; such variants have been recently
proposed, for example, in [Katiyar Sankar 92] and [Castagna Pierce 94].

Another reason to study diverging judgements is to understand whathemay
appear in “real programs”. Here we claim that diverging judgements are artificial ones,
which do not arise “naturally” imeal programming, and we substantiate this claim by
defining a set of features which must be shabgdall diverging judgements. The
awkwardness ofhese constraints supports our belief that the undecidabilfy of not
a problem of practical concern, hence thatcan be safely used as a basis for designing
programming languages.

Finally, diverging judgements are related to the addition of recursive types o
[Ghelli 93a] we showed that, surprisingly enough, type-level recursion is not conservative
over F. subtyping. This means that there are sbmanprovable subtyping judgements
which become provabléoy transitivity) when recursive types (regular infinite trees) are
added td~.. One of these judgements is in fact the diverging judgement introduced here.
In [Ghelli 93a] we also show that the set of non-recursive judgements which become
provable by adding recursive types is (properly) included in the set of diverging
judgements. This result shows that, even though diverging judgements are defined here
terms of the behavior of a specific algorithtney have a wider role iR, which should
be better understood.

In this paper, we also show the undecidability of an important varighg,afystem
Fbg. Other variants are discussed in [Ghelli 93b].

This paper is structured &sllows. Section 2 introduces the language and the algorithm.
In Section 3 we show a judgement which makes the standard type checking algorithm for

F. diverge. Section 4 studies the features of any diverging judgment, showing the
minimality of the onepresented in Section 2. Finally in Section 5 we prove that type
checking the subsysteRbq of F< is as hard as typechecking the whéle

2 Thelanguage and the algorithm
2.1 Thelanguage

The languagé-_ was defined in [Curien Ghelli 92], as a more essential version of
Cardelli and Wegner'sunlanguage. The syntax B is defined as follows:

Types T :=t]| Top| T=T | VI<T. T

Terms a = x| top| Ax:T.a| a(a) | At<T. a| a{T}
Environments I .= | I tsT | I',xT

Judgements J =TFa:T|T'FT=<T

At<T.ais the second-order abstraction of the expressaowith respect to the type
variablet; the bound<T means thabnly subtypes ofl are accepted as parameters.
a{T} is the corresponding application of a function to a type.

The typeTopis a supertype of all types, useful for codifying an unbounded second-
order lambda abstraction A44<Top.g topis a “canonical” term of typ&op.

Vt<T,.T, is the type of a functiomt<T;.a, with T,, the type ofa, generally
depending on.

A judgementl'-a: T means that has typeT with respect to the environmeht,
which collects informatiorabout the free variables afandT; I'~T<U means thail
is a subtype oU, i.e. that an expression of typecan be used in any context where an
expression of typ& can be used, again with respecfto

The constants’, A, A bind their variable in their second argument, as usual;
similarly a definitiont<A in the environmenbindst in the following part of the
judgement; thescopeof a variable is the part of the judgement where that variable is
bound. In a quantified typ€t<A.B and in an environment t<A... we say thatA is a
bound(i.e. an upper limit) fot, and that is bounded by.

Throughout the paper we always distinguish between “a variable®sandccurrence
of a variable”. The use of these terms is best explained by an example: in the judgement

t<TopF Vust.t—u < Top

there are twovariables (t and u), two occurrencesof the variablet and one
occurrenceof the variableu; these three occurrences are underlined (a more formal
definition of occurrence is in Section 4). Two variablesdifierentwhen there is one
a-variant of the judgement where they have different namesj(iivalence is defined as
usual). For example, in the following judgement we htree different variables with
the same namie and we have two bound occurrences of each variable:

t<Topr t — (Vi<Top. t=t) <t — (Vt<Top. t=t)

A judgement is well formed if all variable occurrences are bound andifédirent
variables have different names; hence the above judgement is not well¥ormed

2 Names of variables may be seas,usual, as a readable denotation of their DeBruijn indexes [DeBruijn
72]; however, in this context, carefully managing names of variables helps to avoid some pitfalls.

The typing rules of the language are grouped together in Appendix A for refeférse

rules are implicative formulae which may be read as Horn clauses, which define a type-
checking algorithm in a Prolog style, by specifying how to reduce the type-chemking
subtype-checking problem in the consequence to the type-checking or subtype-checking
problems in the premises. But two of these ru{@sibsumpand(Trans) would make

any Prolog interpreter diverge, since they reduce a problem to the same problem
(Subsump)or to a pair of more general problefisans) In proof-theoretic terms they

both resemble a “cutule”. In [Curien Ghelli 92] any provable subtyping or typing
judgement was proved to admit a single “noriiman” cut-free proof, and an alternative

set of rules was defined which produadksand only the “normal form” proofs df<.

The operational interpretation of these “algorithmic rules” (reported in Appendix B)
defines a pair of deterministic algorithms:

* a type checking (otype assignmehptalgorithm I'a:A, which computesA from
I' anda;

* a subtype checking algorithmh'A<B, which, givenI", A and B, either is
successful or fails.

Both algorithms work as follows: the input problem is compared with the conclusion of
all the rules, the only matchingle is used to reduce the problem to the subproblems in
the premises of the rulend finally these subproblems are solved in the specified order,
by recursively applying the same algorithm (see also Section 2.2). The algorithm
terminates with success when all the subproblems match the terminalAtgles,
AlgTops, AlgVar andAlgTop; it terminates with failure when no rulmatches a
subproblem (e.gl'+Topst), or when an outputype does not match the expected
shapé. Note that thisalgorithm is deterministic (without backtracking), since for each
judgement there is at most one applicable rule. This determinism was achieved by
reducing the scope of transitivity, which can only be applied to type variables
(AlgTrang, and the scope of subsumption, which can only be used within function

application AlgApp, AlgAppR

The correctness and completeness of the abty@ithm are proved in [Curien Ghelli
92]. Correctness means that if the algorithm answ&rgo aquestion‘I'a:?’ then
I'a:A is provable in the system; this can be proved easily, sirecalgorithm merely
applies rules which are derivable within the system.

Completeness means thatlif-a:A is provable in the system, tladgorithm applied
to the inputl’,a terminates, with a correct answer (actually it returns the minimum
correct type). But note that in [Curien Ghelli 92] the fact that the algorithm termioates,
typable termsis not proved by studying its computational behavior, but only indirectly,
as a consequence thfe fact that any provable judgement has a finite “canonical” proof,
and that each step of the algorithm builds a piece of this finite proof.

Correctness and completeness of the type checking algorithmotdionply that the
problem isdecidable, since the algorithm may still diverge on non-typable terms.
Decidability of type checking would follow immediately from decidability of subtype
checking, sincea rule forI'-a:? only invokes the same algorithm applied to strict

3More precisely, when in rule@lgApp)and(AlgApp2) the minimum non variable supertyge(T)
of the typeT of the applied terrh does not matciA—B or Vt<A.B, respectively (see Appendix B).

subterms ofa and the subtype checking algorithm. For this reason, in theofetste
paper we will only study the subtype checking algorithm, which is the hard ladrtygle
checking.

2.2 The subtype checking algorithm

In this section we formally describe the subtype-checking algorithm, withahpeof a
term rewriting relation =", which reduces a judgement to iétecedents in the
applicable subtyping rule.

From now on we study a simplified type systathout the— type constructor, since it
does not add any complexity to the subtype relation: in facdt, A—=B' < A—B s
provable if and only ifl" - VE<A.B'< V&'<A'.B is provable, wher& and &' are
fresh type variables.

In our study of the algorithm we want to be able to follow the evolution of a variable
through different'—p>" rewriting steps. To this aim, when two different variables are
unified by the backward application of tf<) rule:

(VS) T'FAsA T, t<AfF B[t/] <B'
T'F VisA B< V{<AB

instead of applying the substituti@{t'/t], we will record the unification of andt' in
the environment and lea®andB' as they are, by writing’, (t=t)<A' - B' <B.

For a similar reason, we duplicate therelation into two relations]'-A<B and
I'-B=A, such thaf"+A<B < I'-B=A. This allows thgV <) rule to be rewritten as
follows (recall that “—" denotes the backward application of a rule):

(V) T'F VisAB'sSVtsAB — { I'FA2A, T,(=t)sA'F B'sB }

In this way, the residual& andB' of the left hand side of theomparisonVt<A.B'are
still on the left hand side, and similarly for the right haidk. This notation is exploited,
in particular in Sectior}.5, to study the*>" reduction invariant properties of each
side of the comparison. Hereafter we will usually only give definitions and examples in
terms of thel '-A<B case; the other case is always defined symmetrically.

To summarise, the syntax of the types and judgements managed by the algorithm is:

Types A = Top|t] VisAA
Environments r .= (| T, ({=t)<A
Judgements J = I'FA<A | T'FA=A| true | false

In well-formed judgements all variables dveund, and different variables have different
names.

The reduction relation=>" is defined by thefollowing term rewriting rules, plus the
symmetric rules obtained by exchangiAgB with B=A (I'-t=u, read T unifies t
and u”, means that eithet isu, or (u=t)<AisinI’, or (t=u)sAisinI’; “=" is
only defined on variables):

(Ihs-top) I'-A<Top — true

(Ihs-varld)I"'+t=u = ['Fust —> true

(Ihs-expX'#C=u, C£Top = I' Fus<C —> I FreshNamed((u))=<C
(Ihs-¥dom) I'-Vit<sAB'sVt<sAB — I'FA=A
(Ihs-V cod) I'-Vi<sAB'sVt<sA'B — I, (t=t)sA'-B'<B

(Ihs-false)when nothing else applieb: A<B —»> false

The above rules will be called “left hand side rules”; the “right hand side rules” are
obtained by inverting the comparisons, like in {Hes-exp)rule below (hereafter, we
will omit the lhs-/rhs- prefix when it is not needed):

(rhs-expXl'#C=u, C£Top = I' - C2>u —> I} C=FreshNamed((u))

In the (exp) rule, I'(u) is the bound ofu defined inI"; FreshNamed (u)) renames

all the variablesdefined insidelI" (u) with unused variable names, to preserve the
invariant that different variables in a judgement have different rfaniés will write
(exp)(A) to denote an(exp) step which expandshe variable toA (i.e,, A is
FreshNamed((u)). After the execution of &7 cod) step, the definitiong/t and V't'

of the variableg andt' disappear from theomparison and appear, @st') <A', in the
environment. For this reason, we will often say thatvVaod) step “moves the
definitions oft andt' into the environment”.

The only two normal form terms of the above systemtere andfalse Each
judgement which differs frontrue andfalsecan be reduced by exactly one rule, with
the only exception of judgements of the fofi- Vi<A.B'< Vt'<A'.B, reduced by the
two V rules.(Vdom)is the only rule which inverts the directiaf the comparison.
When there exists one infinite reduction chain which starts from a judgemeatsay
thatJ is adiverging judgement

The subtype-checking algorithm works by maintaining a “to-do list” of subtyping
judgements to be proved, which initially only contains the inpdggement. At each step,
one of the to-do judgements is substituted with its immediate antecedent(s), by applying
the “—>" rewrite rules. A judgement which reducestttoe is simply removed from the
list. If a judgement in the to-do list reducesfatse the algorithm stops and reports a
failure, meaning thathe original judgement was not provable. The algorithm stops with
success when the list is emptied.

This algorithm explores the sef all the “—>" chains which start from a judgement
J; it stops eithemvhen it meets one chain which terminates wWalse or when all
chains are built, and all of them terminate withe. If both infinite chains and chains
ending withfalse start from a judgement, then the algorithm may either diverge
stop, depending on how it manages its to-do list. HowevewNiexhibit a judgemend
which is diverging but does not rewrite fadse when applied to such a judgement, the
algorithm necessarily diverges. For this reason, in the rest pkibper we will ignore the
problem of the choice of the judgement to be rewritten at each stetpwe will focus

4In our examples waise Greek letters for variables defined inside a bound in the environment to
emphasize the fact that these names must be changed any time the bound is copied into the comparison:

o, USVEstEFusA —>(exp) ..., EVEstE - VvstvsA

on the exploration of a single rewriting chain, and on the existence of infinite rewriting
chains.

Notation Hereafter we will use these abbreviations:

Vt.A abbreviates Vit<Top.A
-A abbreviates Vt<A.Top wheret is a fresh variable

These abbreviated terms can be reduced by the following derived rules:

(Vdom’) TF-A<-A > T FA2A
(Vcod') I ViB'sVtsA'B —» T, (=t)sA'F B'<B

2.3 Executing judgement rewriting

The judgement rewriting process can be seen as an interleaving of scanning and
substitution steps performed on the compared types.ptig of view will be useful, in
particular, in Sections 3 and 4.4.

We can represent each compatgge by a tree plus a pointer which specifies which
subtree is being considered (see FiglireThen, V) step moves the pointer down the
two trees, while arfexp) step substitutea leaf which is a variable with a copy of its
bound, renamed byreshNamesFor example, the following reduction sequence:

F Vis(VzsA.2) .C> Vi'g(Vz'<sA'B').C —> (Y dom)
F VzsAz<s VzZ'<sA'B' —>(Vcod)
z=7<A'f-z<B' —>(exp)

z=7'<A' - FreshNames(A¥ B'
can be visualized as in Figure 1 (the dashed pointer points to the smaller side).

vt vt

\
ZAC \7/ C Ydom \7’2 C C \7’cod
NS AE@- — K A§
A A i L B)
Vvt vt vt vt

exp(FN(A)

Vz/\C %C > C Vz/\C'

NEURvEY A

Figure 1. Subtype checking means scanning+substituting.

SThe simplest, and most efficierapproach is to explore the rewriting chains in a depth-first way,
holding the to-do list in thetack. By exploring the different chains in a breadth first way, i.e. by cycling
between all judgements in the to-do list, divergence would be avoided on judgements which both diverge
and rewrite tdalse However, breadth-first exploration would not be worthwhile in praciicejew of the

claim that divergent judgements do not arise in real programs.

3 A diverging judgement

SinceFun was defined, the algorithm in Section 2.1 was consideréx the natural one

to type-check it. It was believed to be a decision procedure, and some researchers tried to
prove this fact.The problem was apparently settled by the author, who produced a
“proof” of termination of the algorithm. This “proof” was published in [Ghelli 90] and
checked by a few people, until Pierre-Louis Curien and, independently, John Reynolds,
discovered a subtle bug in it. The attempts to remove thatfinafly produced a
surprising result: the algorithm is notdacision procedure, and a diverging judgement

can be written.

A minimal diverging judgement is:
VoS(Vg.-leSg.-E) = Vo < Vusvpo-vp

This judgement produces no chain ending vidlse and produces only one infinite
rewriting chain. The first few judgements in this chain are listed below:

B=VE§.-Vy<E.-§

1) v<B F v < Vuisvo-vo (Ihs-exp)
2) Vp<B - Vvi-Yuosvy-vy £ Vusvp-\p (Ihs-¥cod'’)
3) vsB, u=visvg F -Vuosvy-vp < v (lhs-¥Ydom’)
4) vpsB, y=vis\vp = Vuosvi-vq =\ (rhs-exp)
5) VoSB, W=V1=\p = VUZS\/]_.-V]_ = VVZ.-VU3SV2.-V2 (rhS-VCOd‘)
6) Vo<B, y=v1sVg, b=Vosvy F -vq > -Yugsvy.-vp (rhs-Ydom’)
7) VoSB, W=V1sVg, b=VosVqy F Vi < VU3SV2.-V2 (th-eXp)
8) VosB, u=visvp, h=vosvy F Vg < Vugsvo.-vy (Ihs-exp)

We will now try to describe informally whatappens; all the ideas sketched here will be
formalized in Section 4.

We say that a variablerefers tou if eitheru appears free in the bound pfor if
t refers to some& which in turn refers ta; e.g., inV vsu.Vtsv.t, t refers to bothv
andu (this is made formal in Section 4.5). The typing rules enforce that no variable can
refer to itself; this implies, apparently, thance a variable has been expanded in both
sides of the comparison, it cannot appear in the comparison anymore. This was the main
assumption supporting the idea that the algorithm should always terminate.

However, expandedariables can be reintroduced into a comparison, due to the
(Vcod) rule which changeshe bound of the variable on the smaller side. Consider
Figure 2, where the first three steps of the infinite chain are depicted; in the four
comparisons, the variabteccurrences which refer tg are underlined; the environment
is depicted on top of the compared types.

Vo < & ~OWsE. —& Vo < OE. ~OséE. —&

Toay, ~aVu exp T-aVvi TaVy v cod'
Vv . > -V —>
v 4 v
V1
V1
Vo SOE -Oysé. -& Vo S OE —-Oywsé. -&
(W=v) <Vvg (W=v) <Vvg

Y Vi Yvq Vi
~ Vdom' o/>
A V, - > v - Vv -
14 07\/> T~ T
A \—/O
'l i Vi)
V1 V1

Figure 2. The first three steps of the infinite rewriting chain.

In the first stepvg is substituted by a bound which does not refefptdiowever, when

the (Vcod') step unifiesu; with v1, the bound oW, becomesg, hence the left hand
side now contains two referencesvip The next(Ydom') step inverts the roles of the
two sides and recreates, essentially, the initial situation,wyitleferred by both sides.
Note the different roles of the twa's in Yuisvp.-vo: the first one is moved in the
environment and is needed to make referencéo vg; the second one is the one which
will be expanded. Exactlthe same roles will be played by the two occurrenceg of
Vvq.-Vupsvy.-vq. This is the basis for an infinite series of expansions of the same
variable.

Although this minimal diverging judgement exhibits a kind of cyclicity which seems
easy to detect, the reader can verify that this pattern could be enriched in increasingly
complex ways. Actually, Piercelsndecidability result implies that there is no general
way to detect whether the algorithm enters an infinite loop [Pierce 93].

The rest of this paper analyses the behavior ofstit#gype checking algorithm. This
analysis defines a set of constraints on the shape of divergiggments, which show

that all of these judgements must share a ratbemplex structure, and that the diverging
judgement above exhibits, in some sense, the typical behavior of any diverging
judgement. This “uniqueness” of the diverginglgement means that any attempt at
designing a decidable variantfef can be focussed on avoiding this kind of divergence.

4 Thebehavior of the subtype checking algorithm

4.1 Overview

In this section we study the properties of diverging judgements, to show that they all
share the basifeatures of our minimal case, as will be elaborated. In fact, these studies
were first performed without knowing whether a diverging judgement existed or not, and
their final result was the design of the judgement presented in the previous section.

We first show (Section 4.2) that in a rewriting chain nothing new is ever created:
every type occurring imny judgement in the chain is equal, up to variable renaming, to
some type occurring in the first judgement of the chain. We then associate a polarity with
every occurrence of a type in a judgement, shdw that reduction preserves polarity.
These facts imply that every infinite rewriting chain eventually compares infinitely many
times the same pairs of typ@sp to variable renaming). Hence, the complexity of the
problem essentially comes from the possibility of an unlimited growth of the
environment.

In Section 4.3 we prove that, in any diverging judgement, a variable exists which is
expanded infinitely many times. This is a key result, artiesbasis of most of the other
results of Section 4. It is proved by first showing that: (a) in an infinite rewrdiragn
infinitely many new variables are created; (b) that new variadnlesalways created by
expanding variables withsrictly bigger bound.

In Section 4.4 walefine a reduction invariant, called the inversion depth, defined as
the maximum nestindevel of bounds inside bounds. We show that a judgement may
diverge only if this nesting level is at least three. Thithes first result supporting our
claim that “only weird judgements diverge”.

In Section 4.5 we go bad the result that in a diverging judgement there is one
variable which is expanded infinitely many times, afekcribe the conditions which
make this possible. To this aim, we first formalize the notion of reachability informally
introduced in Section 3. Then we show that, when a variable is expanded on one side, it is
not reachable from that side in the resulting judgement, but it may become reachable
again by obtaining a reference to that variable from the other side. To this aim, the
(Vcod) rule must be used in a very specific way, which is described in this section. This
way of using th€ Y cod)rule isthe second piece of evidence that we give for the “only-
weird-judgements-diverge” claim.

Finally Section 4.6 shows that the shape of our minimal judgemsetypical for
diverging judgements. More precisely, we show that every occurrence in the bound of our
diverging judgement derives from the need to regain a reference to an expanded variable.
This implies that any diverging judgement must always contain, buried under other
details, the same pieces as our minimal one, all of them playing the same roles.

4.2 Basic properties and definitions

In this section we show that in a rewriting chain essentially the same pairs of types are
always compared.

We first collect some definitions (occurrence, closed form of a judgement, occurrence
with respect to a judgement, polarity) which will be used in the next subsections.

Definition 4.1 pccurrencg An occurrenceu is a string of 0’'s and 1's, used to refer to

a subtermA/u of a typeA as follows € is the empty sequence; “.” denotes
concatenation):

Ale = A
(Vt<A.B)/(Ou) = Alu
(Vt<sA.B)/(1u) = Blu

Intuitively, u specifies a path to be followed to extrad¢tt from A: a Odirects into

10

the bound and a 1 directs into the codomain; the subterm is found when the path ends.
The valid occurrences of a typedre all those occurrencessuch thafl/u is

defined.A[B/u] denotesthe result of substituting the subterm at the occurrence

of A with B; A[B/t] (variable substitution) means substituti®y at all the

occurrences df In both cases, we will explicitly handle variable renaming.

Definition 4.2 ¢losed form of a judgeménEor any judgement
t'1=t1<A,. .t EtsAF T U
the judgement
F VW VELTIE] < VisAgL. L Y EsAL UL

is calledthe closed fornof J.
The compared typegt',...Vt',. T[ti/t;] and Vi;<Aq..... V<AL UL/t will be
denoted respectively by I"".T andVI'.U (wherel" ist'1=t{<Aq,...,t;=th<Ap).

Fact 4.3: The closed formf a judgemend is equivalent ta), from the point of view of
provability and ofdivergence, since iteduces tal in n (Vcod') steps, where is
the length of the environment.

The next definition extends the notion of occurrence from a type to a whole judgement,
by defining the occurrence of a type in a judgendeat its occurrencen one side of the
comparison of the closed form &f

Definition 4.4 pccurrence w.r.t. a judgemgnGiven a judgement’ - T<U or I" -
U2>T (wherel’ = (t'1=t1)<Aq,...,(t=tn)<A,) and any occurrence of a subterm in
Aq,...,AnU, itsoccurrence w.r.t. the judgemerd its occurrence i’ I'.U, while
for any occurrence of a subterm Tnits occurrence w.r.t. the judgememd its
occurrence i/ I'".T; in the first case we say that it occurs on the larger side of the
judgement, in the second caseat it occurs on the smaller side. Thalid
occurrencesof a judgement are those occurrengesuch that some subterotcurs
in u w.r.t. the judgement.

Definition 4.5 polarity): The polarity of an occurrence of a type in a judgement is
inductively defined as follows; in the judgements:

(t'1=t=Aq,....(t=tpsAL - T<sU (t=t)sAL -t)AL F U ST

the occurrences &,... A, and T are negative and the occurrence df is
positive If the occurrence of a typg€t<A.B has a given polarity (positive or
negative), the occurrence Bfhas the same polarity, while the occurrenéeA has
the opposite polarity.

We can now prove the first two propositions. Proposition 4.6 says that &ypesot
created during a reductiochain, but they are just “moved around”. Proposition 4.7
specifies that, when they are moved around, their polarity is preserved.

Proposition 4.6: All the new bounds inserted into the environment and &lipae which
are compared in a reduction chain starting f(og¥t,)<Aq,...,t=t)sA - T < U

11

are similar to subterms &j,..., A, T, U, whereT similar to U means thaf and
U only differ in the names of their free and bound varidbles

Proof: The first property is preserved by each rule(¥erules substitute the compared
types with two subterms and, in ti& cod) case, add a subterm of one of the
compared types to thenvironment; théexp)rule copies into the comparison a type
which isa-equal, hence similar, to a bound in the environm&he thesis follows,
since being similar to a subterm is a transitive relatidd.

Proposition 4.7: For each reduction sequeflig., (wherel may be{0..n} or w),
each type in each is similar to one type appearingJdgpwith the same polarity.

Proof: This can be checked rule by rule. For example(\ladom) rule applied to a
comparisonVt<A.B' < Vt'<A'.B copies the bound\', which is negative since
Vt'<A'.B is positive, in the environment, and all the bounds in the environment are
negative by definition. The expansion rule substitutes a negative variable with a
bound from the environment, negative by definitiofl

Lemma4.8: For each reduction sequefdg;.; (wherel may be{0..n} or w), such
that both a(lhs-exp) and a(rhs-exp) steps appear in the initial subsequence
{Jitiefo..my all the new bounds inserted into the environment at any step, and all the
types which are compared in a judgem&mnwith |>m, are similar to subterms of a
negative boundvhich appears idg (i.e., this bound may either be Apor a bound
which is a negative subterm of Ap of T or ofU).

Proof: Any negative bound which is put in the environment kY @d) step is similar
to a negative bound i#y by Proposition 4.7. The rest of the proposition follows from
the fact that after @hs-exp)(A)step, and before the nefths-exp) step, the left
hand side of the comparison is a subterm\p&ndA is similar to a bound in the
environment (likewise for the right hand side)]

These propositions show that detecting rewriting divergence is only difficult because of
the unlimited growthof the environment, since the comparison always regards the same
(modulo similarity) pairs of types.

4.3 Variablecreation in diverging judgements

The diverging sequence thae have presented always goes back to expand the same
variable vy, even though infinitely many different variablag éndv; for iew) are
created. In this section we prove that this is a feature of every diverging judgement.

Before proving this result, we hav® relate variables appearing in different
judgements in a precise way.

Definition 4.9 {ariable identificatiol: If J—>J', and one variable id has the same
name as one variable Iy we consider them aBeing the same variable. If one
variablet is in J' but notin J, we say that has beercreatedby the rewriting
step.

New variables can be creatbg (exp)(T) steps only, and they are all and only the
variables defined inside the boumdFor example, the step below createsn the left

6Formally: T similar_toU < tq,...5,Uq,...ty exist such thatv'ty...t,.T =4 Yup...u.U.

12

hand side:

(t=tYsVE.Top - t A. —>(exp)(Vx.Top)
(t=t)<VE.Top + VxTop =< A

IA

Let us now examine the evolution of the bound of a variable along a reduction chain.

Definition 4.10: A variabld is properly definedw.r.t. a judgement] if the bound oft
is in a negative occurrence &if otherwiset is improperly defined The bound of a
properly defined variable is ifgroper bound

Remark 4.11: One variablgealong a reduction chain, evolves as follows:

» Itis created inside the comparison with a gicegation boundit maintains that
bound, with its polarity, up to the step where its definiti{dt) occupies
occurrencee on one side of the comparison.

* If the next(V) step is(Vdom) the variable simply disappears from the
judgement. If the nex{V) step is(Vcod), the variable is unified with one
variablet' from the other siddts definition is moved fronthe comparison into
the environment, and:

i) If t was improperlydefined, i.e. ift was defined at occurrenee on the
smaller side of the comparison, then, after tiieod) step,t changes its
bound, acquiring the negative bound'ofind becomes properly defined.

i) If t was already properly defined, i.e.tifvas defined at occurrenege on
the larger side of the comparison, titechanges neither its bound nor the
polarity of its bound.

In both cases, in the next stepsvhich is now defined in the environmemtill

remain properly defined, and its bound will no longer change.

Hence, in a fixedewriting chain, every variable has exactly one creation bound and

at most one proper bound, which may either be its creation bound or may be acquired

after being unified to a properly defined variable.

By the previous remark, the following notion ofeation bound-deptlandproper
bound-depths well defined, and every variable in a giveimain has exactly one creation
bound-depth and has either one proper bound-depth or no proper bound-depth at all.

Definition 4.12: Thedepthof a typeis the length of its longest valid occurrence. In a
rewriting chain of judgements, tleeeationbound-depthof a variable is the depth of
its creation bound, while th@roper bound-deptis the depth of its proper bound.

Proposition 4.13: Iran infinite reduction there are an infinite numbe(lbs-exp)steps,
an infinite number ofrhs-exp)steps, an infiniteaumber of(lhs-V) steps (where a
(V) step is either &¥cod)or a (Vdom) and an infinite number dirhs-Y) steps.
In an infinite reduction, infinitely many different variables are created on both sides.

Proof: There can be nafinite sequence of consecutiy&) steps since each of them
strictly decreases the dimensiontbe types compared. A sequence of consecutive
(exp) steps always has the forth*-ty<A —> ... — I'-t,<sA —> I'-B<A with
t,<B', .1t ..., Sty contained in the environment; whehe environment has
lengthn, at mostn consecutivgexp) steps are possible. Hence any infinite chain

13

formed by an infinite interleaving of finite groups(&f) and(exp)steps.

Both an infinite numbepof (Ihs-exp)and of(rhs-exp)steps must be performed
in any infinite chain, since anjy’) step strictly reduces the size of both compared
types. An infinite number ofV) stepsare performed on each side, since any
sequence oflhs-exp)steps is terminated by (éhs-Y) step, and similarly on the
right hand side.

In any infinite reduction chain, the last expansion of any sequence of expansion
steps like the one exemplified above always copié®undB with shapeVt<T.U,
since the next step is(&) step. Hence, an infinite number of variabége created
on both sides of the comparisori]

Lemma 4.14: A variable witkereation bound-depth is created by expanding a variable
whose proper bound-depth is at least.

Proof: A variablet with a bound is createdby expanding a variable whose proper
boundA contains a subterm similar tt<B; hence, if the depth @& is n, then the
depth ofAis at leash+1. [

Lemma 4.15: In any infinite reduction, kfvariables have a creation bound satisfying a
propertyQ, then at mos2k variables have a proper bound satisfyiig

Proof: Intuitively, any creation bound may become the proper badirat most two
variables. More formally, let:

Cre={t| Ais the creation bound tfandQ(A)}

Pro={t|Ais the proper bound bBndQ(A)}

C&P = {t | teCreand the creation bound bfs proper}

UniC&P = {t |t is unified by gV cod)step to one variablein C&P}

By Remark 4.11, a variabtds in Pro iff either it has been created with a proper
bound satisfyingQ (teC&P) or it has been unified with a variable in such a
situation eUniC&P). Moreover, every variable @&P is unified to at most one
variable inUniC&P, hence#UniC&P < #C&P (where#Sis the cardinality ofa set

S). To sum up:

#Pro = #C&P + #UniC&P < #C&P + #C&P < #Cre + #Cre = 2k

Proposition 4.16: In any infinite reduction there is one variable which is expanded an
infinite number of times.

Proof: By Proposition 4.13, in an infinite reduction sequence, an infinite number of
different variables are created. lrebe the maximum such that an infinite number
of different variablesof creation bound-depth are createdn exists, since by
Proposition 4.13 an infinite number of variables are actually created, and by
Proposition 4.6 there is an upper limit to the bound-depths of all these variables. By
the definition ofn, there is only a finite humbek of different variables with
creation bound-depth greatdrann. By Lemma 4.15, at mostk/ariables may
have a proper bound-depth greater thaBSince an infinite number of variables with
creation bound-depth are created, then, by Lemma 4.14, thd@& less) variables
with proper bound-depth greater thanare (collectively) expanded an infinite

14

number of times to create these infinitely many variables, which means teasht
one of the R variables is expanded an infinite number of timds.

Proposition 4.16 states that there is one variable which is expanded an infinite number of
times, and Proposition 4.13 states that an infinite number of variables are created, but up
to this point there is no reason to believe that this infinite number of different variables
are used (i.e. appear in their scope), that their definition is moved into the environment by
the (Y cod) rule, and that they are expanded, as happens in our diverging judgement. In
Section 4.5 we will show that this is always the case.

4.4 Theinversion depth of a diverging judgement

We have seethat, in every diverging judgement, there is one variable which reappears
(an infinite number of times) on one side of the comparison after it has been expanded on
that side. In this and in the next subsection we study how a vanetyle@eappear. In this
section we show that a minimum “inversion depth” is needed for its bound; in the next
section we focus on a specific way of using(ttieod)rule.

Definition 4.17 (nversion depth, odd/even occurrenceBheinversicn depth of an
occurrencev is the number of 0’s in it; an occurrence is odd/even if its inversion
depth isodd/even. Thenversion deptlof a type is the maximunmversion depttof
all of its valid occurrencés The inversion depthof a judgemenf -A<B is the
maximum inversion depth of all the valid occurrenoéshe judgement (Definition
4.4), i.e. the maximum between the inversion depti8I6tA andV 1 .B.

Inversionrefers to the fact that if we follow the path encoded by an occurseateng
a type, each 0 iv corresponds to a polarity inversioiihe inversion depth of a
judgement is a measure of its complexity, and it never increases during reduction.

Proposition 4.18: Rewriting does not increase the inversion depth of a judgement.

Proof: Suppose that is the inversion depth of the judgement. The maximuwersion
depth of a bound in the environment is then, at medt, hence ar(exp) step puts
into the comparison a type whose depth is at mektA (V' cod) rule applied to a
comparison of deptim puts in the environmerd bound of maximum depth-1,
which cannot make the inversion depth of the judgement biggernth&mally
(VYdom)just decreases the inversion depth of the types comparéd.

The following lemma shows that a bound with inversion depth 2 is needed to change the
direction of the comparison twice.

Lemma 4.19: If a sequence of rewriting steps contédhsexp)(A) (rhs-exp)(B) and
(Ihs-exp)(C)(in this order,but possibly separated by other steps), an{lhg-
exp)(A)is the las{lhs-exp)step beforgrhs-exp)(B) then the inversion depth &f
is at least 2.

Proof: Let the path between tw@xp) steps be the occurrence representing the
movements made by the pointer along the compared {@Baesion 2.3); formally, let
it be the sequence which contains one 0 (resp. Dnéor each(¥dom) (resp.

"This notion is similar to theank of functional types.

15

(Vcod)) step performed after the first expansion and before the second one. Observe
that:

a) The path between a right hand si@xp) and a left hand sidéexp) or vice
versa, is always odd (i.e. it contains an odd number of Q’s).

b) If (Ihs-exp)(T)is the first left expansion whicfollows (Ihs-exp)(T) if u is the
path betweerflhs-exp)(T)and(lhs-exp)(T') thenT/u is the variable substituted
by T', henceu is a valid occurrence df.

Let (Ihs-exp)(C')be the first left expansion which followshs-exp)(B) By (a), the
path u between(lhs-exp)(A)and(Ihs-exp)(C')has an inversion depth of at least 2,
since it is the concatenation of the two odd paths fiibstexp)(A)o (rhs-exp)(B)
and from(rhs-exp)(B)to (Ihs-exp)(C") by (b) u is a valid occurrence @ hence
the inversion depth A is at least 2. [J

Propositions 4.13, 4.18 and Lemma 4.19 together force a lower boutie anversion
depth of a diverging judgement.

Proposition 4.20: The inversion depth of a diverging judgement is at least 3.

Proof: By Proposition 4.13, any infinite chain starting from the diverging judgement
contains three expansion stegetisfying the conditions of Lemma 4.19. When the
first step is executed, the typeof Lemma4.19 is a renamed copy of a bound in the
environment; since the inversion depth of this boisndt least 2, the inversion depth
of the whole judgement is at least 3. By Proposition 4.18 (depth never increases), the
inversion depth of the original judgement is also at leastB.

Proposition 4.20 gives an elementary characterizatibra subset of the subtyping
judgements which is decidable and expressive: types with an inversion depth strictly
greater than two are, in practical use, fare

The reader can check that the inversampth of our diverging judgement is three;
hence our judgement is minimal with respect to that parameter.

4.5 Regaining referencesto expanded variables

The key feature of diverging judgements is the existence of a variable which, after being
expanded, appears back on the same side to be expanded once again, actually infinitely
many times again (Proposition 4.16). We shiogre that this would not be possible
without the unification performed by t{& cod) rule, and thathis unification must be
exploited in quite a special way to reach this effect.

To this aim, we first define when a variabereachable from another one, from a
specific side of the comparison, or from the whole comparison. We show that this
definition captures the idea of reachability, i.e. that only if a variable is reachable from
the comparison, may lle expanded in some future step. Then we show that, when a
variablez is expanded on one sidé the comparison, then no references to that variable
remain on that side, which implies that a reference faust be reobtained in order to
expandz once againWe finally show how(Y cod) must beexploited to regain that

8Types with ahigh inversion depth arise wher 5 used to encode, for example, products or existential
types (see [Cardelliongo 92] [Ghelli 90] [Cardelli Martini Mitchell Scedrov 91]). However, if products

and existentials are regarded as primitive type constructors, they do not add anything to the whole inversion
depth of a judgement.

16

reference. This result is uséd show, in the next section, the minimality of our
judgement.

We first define the reachability relation.

Definition 4.21 (egative freg A variablet is negative freen an occurrence of a type
T w.r.t. J, if a negative (w.r.tJ) free occurrence ot is inside the occurrence of
type T.9

When the occurrence df is understood, we just say thais negative freeni T. For
example, we say that, ikTop - Top—t <t—=Topt is negative free in botfop—t
andt—Top

Definition 4.22 (eachability): With respect to a fixed judgemedt the variableu is
immediately reachabléom a properly defined, written t R; u, iff uis negative
free in theproper bound oft. The strict reachability relatioR;* is the transitive
closure of immediate reachabiliB; t R;* u meanst=u or t Rj* u. If t R;* u we
say that is areferenceto u.

We are only interested in negative variables and in proper bounds, since only negative
variables can be expanded, and can only be substituted by proper bounds.

We now extend the notion of reachability to the comparison of a judgemdnis If
(t'1=t)sA1...(Th=th) <AL, letdef(I') be the set of the variables definedIi i.e. the
set{t'1,ty,....,th,t}. For’=F'+°T 1<’ andXT def(I'), ReachVarg(J,Tj) contains
those variables iX which are reachable from side of the comparison, i.e. from some
negative free variable dfj, andReachVarg(J) contains those variables ¥awhich are
reachable from eithéF, or To.

Definition 4.23: Let) =T T1 <Ty:

ReachVarg(J,T1) =gef{teX | Iv evenu free inTy, Ty/v=u s.t. uR" t}
ReachVarg(J,Tp) =gef {teX | Iv odd,u free inTp, To/v=u s.t. u F\’J* t}
ReachVarg(J) =qgef ReachVarg(J,T1) U ReachVarg(J,T2;)

The nameeachabilitygiven to the above relation is justified by the fact that no variable
which is unreachable frodhmay be expanded in some judgement deriving ffom

Theorem 4.24Consider a judgemedtrT<U and a reduction chaid;};¢, starting from
it. The sequencReachVar§ef(F)({Ji})id IS non-increasing.
Proof. Consider &V cod)step:
J=I'I" F VisAB'sVtsA'B — J =I'I" t=t'<sA'-B'<B
We show thatueReachVargesry(Ji+1) implies thatueReachVarge(Jj). By

definition, there existsv negative free inB' or in B such thatw Ry * u. The
following cases arise:

a) w=t' (or t) andw=u: this is impossibleu is different fromt (andu#t') since
uedef(l") butt'(t)¢def(l").

9Formally, an occurrence is inside an occurrenqge whenv=u.u'. “Inside” refersto the fact that the
pathu.u' leads inside the type which is reached by the path

17

b) w=t' (ort) andw RJ,H"' u: sincew=t' RJi+l+ u then thereexistst" free at an
even occurrence iA' such that" R* u. SinceA' is a subterm of/t'<A'.B, and
A'is negative inj, ueReachVargesr(Jj); the same holds i=t.

c) wztit andw Ry * u: sincewzt and wzt', if w is negative free in eith@&" or
B thenw is negative free in/t<A.B'or in Vt'<sA'.B, i.e. it is negative free on
one side of the comparison of the judgemintenceucReachVargesr(J))-

A similar but simpler proof can be performed for (kelom) case.
Consider now an expansion step:
(t'1=t)sA...(U=tp)sA - t<B —> T+ FreshNames(A< B

The negative free variables BfeshName@\,) are the negative free variables/Aqf
which were already reachable throughwhile B is not affected by the stepl]

Corollary 4.25: Ift¢ReachVarg, (J), then there exists n@ deriving fromJ such that
an expansion step expandincan be applied td'.

Proof: An expansion step expandingan be applied t@' only if one side of the
comparison of)' consistsof a negative fred; in this caseteReachVarg (J),
hence, ifJ rewrites taJ', teReachVarg, (J).

The next fact to prove is that, when a variabie expanded, in the resulting judgement
no reference toremainson that side of the judgement, i.e. that the strict reachability
relation is acyclic. We will actually prove a stronger property, upward well-foundedness
of the reachability relation.

Lemma 4.26: Thd,* strict reachabilityrelation on variables is upward well-founded,
i.e. there isno infinite chain{ti}ie, such that, for anjew, tj Ry* ti+1. In particular,
for not we may haveé Ryt t.

Proof: If t R;* u thent is defined in the scope af, and this isan acyclic relation.
Formally, if the definitionat occurrencer; (w.r.t. J) of one variable is in the
scope of another variabledefined atoccurrencer,, thenm=m,.1.u for some
u. Hence, if|z| is the length of an occurrence, thanp|fpri|. t R, u implies that
u is free in the bound df hence that the definition a@fis in the scope af, hence
that fry|<prt|. Since < is downward well-founded on integers, tRghis upward
well-founded on variables.[

Corollary 4.27: In any infinite reduction chaid; = I'j - A ¢ Bi}ic (Whereo; is
either<’or =) a variablet and an infinite setCw exist such that, for one side of
the comparison (say the left hand side), fori'allin I, t¢ ReachVarg, (J;,A) and
teReachVarg (Ji+1,Ai+1)-

Proof: By Proposition 4.16, imn infinite reduction chain one variable exists, say
which is expanded infinitely many times, hence it is expanded infinitely many times
at least on one side of the comparison, say the left hand side e} J| reduces to
Ji+1 by expanding on the lefthand sidg both | and{l+1| leL} are infinite, and,
forall I'sinL:

* teReachVargy (J,,A), since, forel, A=t.

18

* t¢ReachVarg (J+1.A+1): for leL, Ai+1 is a renamed version of the boundtpf
henceAi+1 Ry, * t would implyt Ry _* t, which is forbidden by Lemma 4.26.

For any pair of consecutive integdrandl’ in L, t¢ ReachVarg; (Jj+1,A+1) and

teReachVarg, (J,Ar); hence, for any, akj exists, withl+1 < k < I', such that

t¢ReachVargy (J,A¢) and €ReachVarg (Ji,,.A,,) The set formed by all these

k’'s is an infinite set which satisfies the theorem hypothedis.

We have formalized the intuition that andiverging judgement there is a variable whose
reference is lost and then regained, infinitely many tiragone side of the comparison.
We can finally study the “fine structure” needed to regain that lost reference.

Proposition 4.28: I0—»>J' andueReachVarg(J',A)-ReachVargJ,A), where A and
A' are the left hand sides of the comparisonsaridJ', then:

a)J = I'FVisT.U <sVt'<sT'.U (for somg,t',T,U)
J = I t=t'<sT'"FU' <U
andJ is transformed id' by a(lhs-V cod) step.

b) tis negative free iJ' andu is reachable id from a free negative variable of
T.

Proof. Consider &V cod)step:
J=I' - ViI<T.U' < Vt'<T'.U —> J=I,t=t'<sT'F U <U

Suppose thaueReachVarg(J',U')-ReachVarg(J,Vt<T.U'). By definition, there
existsw negative free itJ' such thatv Ry* u. The following cases arise:

a) wzt andw Ry* u: this is impossible: sincevzt, if w is negative free irlJ’
thenw is negative free iVt<T.U', and therueReachVarg(J,Vt<T.U’).

b) w=t andw=u: this is impossible, sinagdef(") buttgdef(l").

c) w=t andw Ry* u: this means that(=w) is negative free irJ', and there is a
free negative variablein T' (the bound of in J) such thaz Ry* u, g.e.d..

We omit the simple proof of thiact that the seReachVarg(J,A), whereA is the
left hand side of the comparison, cannot growthe (Vdom) (exp) and(rhs-
Vcod)cases. J

The proposition above states that the only way of gaining a reference to one variable
on one side of the comparison is to unify a variable (sagproperly (negatively)
defined on that side to a variable, properly defined on the othert'sidéoseboundT’
refers tou. Furthermore, the variablemust appear in an even occurrence of its scope
U'. We can now complete Proposition 4.13.

Proposition 4.29: In aninfinite reduction an infinite number of different variables must
be created, appear in their scope, have their definition moved into the environment by
a (Y cod)step, and be expanded.

Proof: With respect to a fixed rewriting cha@¥{Ji}iew, We say that is usefully-
reachable fromu (w.r.t. to a judgemend;) iff u Ry* t and, furthermorey is
expanded in some step 6f Reasoning as in Corollary 4.27, we prove that there
exist one variablé and an infinite set such that is not usefully-reachable from

19

one side, sayhe left hand side, of any judgement{ii}j¢| but is usefully-reachable
from the left hand side of the judgements {#+1}iel. Since useful reachability
implies reachability, by Proposition 4.28, for argf, there exists one different
variabletj which appears in its scopd; and whose definition is moved into the
environment in the rewritingtep transforming)j in Jj+1. tj is also expanded in
some step, by definition of useful reachability.]

To summarize, wdave shown that every diverging chain uses infinitely many different
variables tobe able to expand one single variable infinitely many times (Propositions
4.16 and 4.29); Proposition 4.28 specifies the fine structure needed to exploit a new
variable to prepare a new expansion of an already expanded variable.

4.6 Theminimality of our diverging judgement

We can finally show the minimality of our judgement. More precisely, we show that, for
any diverging judgement, eachoccurrence of a type operatov,(t or “-”) in the
boundB=V§&.-Vy<&.-§ of the minimal diverging judgement corresponds to an
occurrence of the same type operataa imound of], both occurrences playing the same
role w.r.t. divergence.

Theorem 4.30: Any diverging judgement contains two bounds wiéh following
structure:
1) A = ElVtE(t]
2 B' O[Vt'<E3[t"].U]

Where theEj[] are even contexts, i.e. types with a hatean even occurrence, and
QO[] is an odd context.

Proof: Consider a diverging cha{di=TI'j-Ai<Bi}ic starting fromJ. By Corollary
4.27, a variablas and an infinite setCw exist such that, for one side of the
comparison (say the left hand side)f ie | u¢ReachVarg(J,A) and
ueReachVarg, (Ji+1,A+1)- Let us choose gl such that both 4rhs-exp)and a
(Ihs-exp)come before the ste@—>Jj;1 (this is always possible by Proposition
4.13) In this way, by Lemma 4.8, we are sure tAalandB; are similar to two
subterms of two negative boundsandB' appearing inJ. By Proposition 4.284A,
andB; are two type/t<T.U' andVt'<T".U such that:

(1) Vt<T.U' occurs negatively idj. Hence, it is similato a subterm which occurs
in an even occurrence of the bouAd Moreover,t appears negatively o',
henceA' can be written aB3[Vt.Ep[t]] , where thegj[] are even contexts.

(2) Vt'<sT".U occurs positively idj. Hence, it is similar to a subterm which occurs
in an odd occurrence of tHundB'. Moreover, some variablg appears free
at anegative occurrence dff', henceB' can be written a®©[Vt'<Ej[t"].U] ,
whereQJ] is an odd context arigs[] is an even context.[]

We can now show that, for any diverging judgemé&ntach occurrence of type
operator in the boun8=VE&.-Vy<&.-§ corresponds to an occurrence of theme
operator in some boundf J (where “-” may be substituted by any operator which
inverts polarity). Here “correspondsieans that the two operators play the same role in

20

the (¥ cod) step which is applied infinitely martymes, according to Proposition 4.28, in
order to have the variabteof Corollary 4.27reappear infinitely many times in the set of
variables which are reachable from one side of the comparison.

Consider the graphical representatiorBoh Figure 3.

VE £
- 1
vy 1.0
£ - 1.00 1.0.1
£ 1.0.1.0

Figure 3. The subterms occurring in the bousid

The quantifier§ occurring ate is used to introduce an improperly defined variable
and the occurrence of the varialdleat 1.0.1.0 is the one whichill be expanded later
on; hence they correspond to thié andt which must occur in even contexts in the
boundA' according to Theorem 4.30. In the same way, occurrence¥ {:pgnd 1.0.0
(§) correspond to th&'t' andt" required by condition (2) of Theorem 4.30. The “-”
appearing at occurrence 1 constitutes odd contex®[] required by condition (2) and,
finally, the “-” at occurrence 1.0.1 completes the even context surrounding the variable
& at 1.0.1.0 as required by condition (1). Hence, any diverging judgemesttains
the wholestructure of the boun8, possibly split in two boundOne may now also
show, by Proposition 4.28, that not only is boihdhinimal, but also the right hand side
of the comparison in the judgemesB - v < Vusv.vis the minimal one needed to start
a diverging chain.

5 Divergence and undecidability of Fbq

The typeTop was initially defined inFun to deal with both bounded and unbounded
guantification with a singleZ construct, by representing an unbounded quantification
Vt.T as Vt<Top.T. Alternatively, following [Bruce Longo 90]we may define two
different ¥ quantifiers, bounded andnbounded, thus avoiding the tyfep. The
resulting type system has been callethg by Luca Cardelli (F + Bounded
Quantification), and has three differefit) subtyping rules, one to compare two
bounded quantificationggne to compare two unbounded quantifications, and one to
perform the mixed comparison (unboundedounded). The rules are just three different
instances of thé& rules; for example, the mixed comparisare is as follows (the
algorithmic subtyping rules ¢fbqg are in Appendix C):

(u-bv <) I, t<AF B[t/t] <B
T+ VtB < Vt<AB

Fbq can be seen as a sublanguagé& gfsincethe unbounded quantification &fbq
can be read asop-bounded quantification ifr ., F< is conservative ovéibq, in the
sense that any provabk. judgement which can be written insii®q can also be
proved insidé=bq [Ghelli 90]. The standard type-checking algorithm Ftag can easily
be defined by dropping thEop rules from our reduction system, by introducing into the
environment syntax thest' type statement to substitutet'<Top and by addingwo

21

reduction rules for the unbounded-unbounded and unbounded-bounded comparisons:

(Fbg-usb) I VtB sVtsA'B —» I, t=t<sA' FB'<B
(Fbg-usu) T'F VtB <Vt.B —» T, t=t'type FB'<B

It is then easy to see that the diverging judgement in Section 3alegyes in this
reduction system.

We can generalize this fact by proving that type checkingis as difficult as type
checkingF ., more precisely, each problem may be transformed into the other one in
linear time.In one direction, sinc& < is a consistent extension Bbq, then anyF.
type checker cabe used to type check aRpq judgement. We now illustrate the other
transformation, which reduces the subtype checking problefy & subtypechecking
for Fbq.

To this aim we define a deep-double-negatinapping(_J which transforms-<
judgements intd-bq judgements and preserves provability. We first define negation of
T, written -T, as Vt<T.t; note that this is different from the previous definition
Vi<T.Top

Definition 5.1:The mapping - gurface negatiot?) of F. andFbq types on, respec-
tively, F< andFbqtypes is defined as:
AZTop = -A =Vi<At
-Top =Vtt
wheret is a fresh variable.
The mappingl_J (deep double negatiprof F. types and judgements &ibq types

and judgements negates each occurrence in the judgement twice, the only exception being
bounds.

Definition 5.2: The mapping_J (nternal double negationfrom F< minus{Top} on
Fbqis defined as:

(t): (t] =t

(V]: A,B#Top: (Vi<A.BJ] = Vt<(A).-{BJ
AZTop: (VisA.Top = Vi<(Al.--Top
B#Top: (VisTop.B = Vt.--(B)

(Vi<Top.Top = Vt.--Top
The mappind_J from F<to Fbqis defined as:

AZTop: [A] = --(A]
[(Top) = --Top

These mappings are extended to judgements in the natural way:

* (I']: t=t'<Topbecomes=t' type, while t=t'<A (AZTop) becomes=t'<(AJ
 [I'+-AsB] =(I'] F [A]l <(B] (note thatl" is internally double negated)
e ([I'AsB]=(I'] (A <(B) (well defined only ifAZTopandB=Top)

We want to prove that arfyc subtyping judgement is provable if and only ifJ] is
provable inFbg. We first need some lemmas.

10No (conscious) logical intuition is hidden behind the nawgation

22

Lemma 5.31" - -A<-Breduces td" - A >B and totrue.

Lemma 5.4: IfAZB andA andB aredifferent fromTop thenI" - [A] < ([BJ] reduces
toI' - (Al <(BJ] and tatrue.

Lemma 5.5I" - [A] <(Topl is provable.
Proof: If AzTop, I' - [A] <([Topl is equal to

I't---(A] <--Top
which reduces as follows (we ignore some trivial successful branches):
I'F--(A]<--Top —>
I -(A)>-Top =
I' - Vus(AluzYu'.u —>
I'u=u<tAlFuzu' —>
true. O

Lemma 5.61" - [Top) <[AJ is not provable iAZTop.
Proof: If AZTop, thenI” - [Top) <([AJ is equal to

I' - --Top<--(A
which reduces as follows (we ignore some trivial successful branches):
I' - -Top=-(A) =
I' - Vu.u=Vus(Al.u —>
false. O

Theorem 5.7: For any judgemeht] is provable inF. if and only if{J] is provable in
Fbag.

Proof: We prove that < J (i.e. Jis provable inF.) if and only if - (3] (i.e.[I] is
provable inFbq), together with the same property for the mapgihg We prove
that- . J=F bq [J) by induction on the length of the longest reduction chain
starting from J (this maximum exists sinee J), and provel- ¢ J&=F q [J] by
induction on the length of thiengest reduction chain starting fraJ. We work by
case analysis on the shape of the types comparkdniea only report the interesting
cased<A andVt<A.B'< V' t<A'.B. For each of these cases we simply show Jhat
reduces to a set of non trivially provable judgem@nts.,J, iff [J] reduces to a set
of non trivially provable judgements;,...,J;, such that Jj is either(J;J, or [J;).
Thenk<J < FcJdp,...40 <>by inductiontpqJ'y,....,.dp < Fpg [J).

We present the reduction chaifir some interesting cases with no further

comment.
J=TI,t=t'<A, I'"" - t<C with #C=t, C£Top, ATop.
J = I't=t<A, I F t<C —>(exp) I' - A<C
[3) = (I'],t=t'<(A), (I""] F -t < -(C) —>*(Vdom’)
('], t=t'<(A), (I"'] -t < (C) —>(exp)

(I'), t=t'<(A), (I"] - (A)] < (C]

23

J=1T, t=t'<sA, I'" - t<C with FC=t, C£Top, A=Top: in this case we have to
prove that neithed nor[JJ are provable (proof omitted).

J=TF VtsA.B's Vt'<A'.B with AZzZTopandA'ZTop

J= TIFVisAB'<Vt<A'B —>
(Vdom)I' - A=A and (Vcod)I', t=t'<A' - B'<B

[(J) =(I'] F [VtsA.B'] < [Vt'<A'.B) =
(I') F --Vt<(A.[B] < --Vt'<(A).[B] —>*(Vdom')
(I') F Vts(A.[B] < Vt<(A).[B)] —p
(Vdom) (I') - (A] 2(A'] and (Ydom) (I'], t=t'<s(A') - [B'] < [B])

J=T F Vi<Top.B's Vt'<sA'.B with AZTop

J = TIF VisTop.B'sVt<A'B —>(V cod)
I' t=t'<A'+ B'sB

[(J) = (I') F [Vi<Top.B'] =< [(Vt'<A'.B) =
('] - --Vt.[B] < --Vt'<(A).[B) —>* (Vdom")
('] Vt(B < Vt'<(A.[B] —>(Vcod")
(), t=t'<(A'] - [(B']) <(B]). O

Theorem 5.7 completes the proof tisabtype checking df< can be reduced to subtype
checking of Fbg and vice-versa. A proof of this fact based on a more complex
translation, alsdranslatingF < terms toFbqg terms, was previously suggested by Luca
Cardelli (personal communication). Note tirat andFbqg subtype checking are also
equivalent from the point ofiew of complexity, since the mappitig) can be executed
in linear time and increases the sizel oinly by a constant factor.

It may be interesting to know that, in [Katiyar Sankar 92q was provedto
become decidable as soon as the mixed bound compéFrisqru<b) is forbidden.

6 Conclusions

We have shown that the standard type-checking algorithm of systems only a
semidecision procedure, by presenting a subtype judgement which makes it diverge. The
divergence result was very surprising for the author, who shared the common belief that
the standard algorithm was a decision procedure. Wthispaper was being written, the
author communicated this judgement to Benjamin Pierce, who used it to encode two-
register Turing machines d&s. subtyping judgements, proving that the problem is
undecidable, in sharp contrast with the common belief that type-chelekirg“easy”

[Pierce 93].

We have given a set of results abthg nature of judgements which make the algorithm
diverge. These results can be used to prove decidability or undecidability for variations of
F., to design decidable versions of the system, and to characterize interesting decidable
subsystems of .. These results have been used to support the claim that undecidability
of F< may not be a problem of practical concesimce divergence of type checking is
limited to judgements with a very peculiar and unnatural structure [Curien Ghelli 93,

24

Ghelli Pierce 92]. Similarly, they have been usedupport the claim that the non-
conservativity of recursive types w.iH< subtyping is not a practical problem, since this
non-conservativity is limited to diverging judgements [Ghelli 93a].

Acknowledgments

| gratefully thank Luca Cardelli for many insights into the problem of decidalbilitype
checking for the languade.. The work on type-checking algorithms for the Galileo and
Fibonacci object-oriented database programming languages, in the project led at Pisa
University by Antonio Albano, provided the motivations for this study. Special thanks to
Pierre-Louis Curien who provided a great deal of help and suggestions during many
phases of this work, and to the anonymous referee who provided many useful and
constructive comments.

Refer ences

[Bruce 91] K. B. Bruce, “The equivalence of two semantic definitions for inheritance in
object-oriented languages”, Mathematical Foundations of Programming Semantics
Pittsburgh, PA, 1991.

[Bruce 92] K. B. Bruce, A paradigmatic object-oriented language: Design, static
typing and semanti€sTechnical Report CS-92-01, Williams College, 1992.

[Bruce 93] K. B. Bruce, “Safe type checking in a statically typed object-oriented
programming language”, IROPL '93 1993.

[Bruce Longo 90] K. B. Bruce an@. Longo, “A Modest Model of Records, Inheritance
and Bounded Quantificationlipformation & Computation87(1/2), 196-240, 1990.

[Canning et al89] P. Canning, W. Cook, W. Hill, J.C. Mitchell, and W. Olthoff, “F-
bounded quantificatioor object-oriented programming”, iIRunctional Programming
and Computer Architectuy@73-280, 1989.

[Canning Hill Olthoff 88] P. Canning, W. Hill, and W. OlthoffA"kernel languagédor
object oriented programmirigTechnical Report STL-88-21, HP Labs, 1988.

[Cardelli Longo 92] L. Cardelland G. Longo, “A semantic basis for Questurnal of
Functional Programmingl (4), 417-458, 1992.

[Cardelli Martini Mitchell Scedrov 91] L. Cardellis. Martini, J.C. Mitchell, and A.
Scedrov, “An extension of system F with subtypinigitl. Conference on Theoretical
Aspects of Computer Softwar8endai, Japan, LNC$26, 1991. To appear in
Information & Computation.

[Cardelli Mitchell 91] L. Cardelli and J.C. Mitchell, “Operations on Records”,
Mathematical Structures in Computer Sciencé¢l), 3-48, 1991.

[Cardelli Wegner 85] L. Cardelli and RNegner, “On understanding types, data
abstraction and polymorphismACM Computing Survey&7 (4), 1985.

[Castagna Pierce 94] G. Castagna andPBrce, Decidable Bounded Quantification”
in POPL '94 1994.

[Cook 89] W. Cook, A Denotational Semantics of Inheritafic®hD Thesis,Brown
University, 1989.

[Curien Ghelli 92] P.-L. Curien and G. Ghelli, “Coherence of Subsumptiongjn F
Minimum Typing and Type CheckingMathematicalStructures in Computer Science
2(1), 1992.

25

[Curien Ghelli 93] P.-L. Curien and G. Ghelli, “Confluence and decidabilitgrgbp<
reduction in E”, Information & Computationto appear.

[Danforth Tomlinson 88] S. Danforth and C. Tomlinson, “Type Theories and Object-
Oriented ProgrammingACM Computing Survey20 (1), 29-72, 1988.

[DeBruijn 72] N.G. De Bruijn, “Lambda Calculus Notation Withdyédmeless Dummies,
a Tool for Automatic Formula Manipulationfhdag. Math, 34, 381-392, 1972.

[Ghelli 90] G. Ghelli, Proof Theoretic Studiesbout a Minimal Type System
Integrating Inclusion and Parametric Polymorphism PhD Thesis, TD-6/90,
Dipartimento di Informatica dell’Universita di Pisa, Italy, 1990.

[Ghelli 91] G. Ghelli, “Modelling features of object-oriented languageseicond order
functional languages with subtypes”, Foundations ofObject-Oriented Languages
J.W. de Bakker, W.P. de Roever, G.Rozenberg (Eds.), LNCS 489, 311-340, 1991.

[Ghelli 93a] G. Ghelli, “Recursive types are not conservative ox&rIRtl. Conf. on
Typed Lambda Calculus and Applicatidi€.CA), Utrecht, The Netherlands, 1993.

[Ghelli 93b] G. Ghelli, Divergence of k type checking Technical Report 5/93,
University of Pisa, Dipartimento di Informatica, March 1993.

[Ghelli Pierce 92] GGhelli and B. Pierce,Bounded Existentials and Minimal Typing
manuscript, June 1992, available from the authors.

[Girard 72] J.Y. Girard, Ihterprétation fonctionnelle et élimination des coupures dans
I'arithmétique d’ordre supérietir These de Doctorat d’Etat, Paris, 1972.

[Gunter Mitchell 93] C. Gunter and.C. Mitchell, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Languageigri, The MIT Press,
1993, to appear.

[Hofmann Pierce 94] M. Hofmann and B. PiercA, unifyingtype-theoretic framework
for objects, in Symposium on Theoretical Aspects of Computer Sgiéaéd.

[Katiyar Sankar 92] D. Katiyar and S. Sankar, “Completely Bounded Quantification is
Decidable”, inACM SIGPLAN Workshop on ML and its Applicatiohsne, 1992.

[Mitchell 90] J.C. Mitchell, “Towards a typed foundation for method specialization and
inheritance”, inPOPL 90 1990.

[Mitchell et al 91] J.C. Mitchell, S. Meldal, and N. Madhav, “An extension of standard
ML modules with subtyping and inheritance”, POPL '91, 1991.

[Pierce 93] B. Pierce, “Bounded Quantificatioa Undecidable”,Information &
Computationto appear. Also in [Gunter Mitchell 93].

[Pierce Turner 93] B. Pierce and D.N. Turner, “Object-Oriented Programming Without
Recursive Types”, iPOPL '93 1993.

[Reynolds 74] J.C. Reynolds, “Towardsteeory of type structure”, iRaris Colloquium
in Programming LNCS 19, 408-425, 1974.

26

Appendix A: The System F_.

Syntax:

A=t | Top| A=A | Vi<A. A
a =x | top | AXA. @ a(a) | At<A. a | a{A}

Environments (sequences whose individual components have thg:foont<A):

(Jenv)
(senv)

Types:
(VarForm)

(—=Form)

Subtypes:
(Vars)

(=)

(Id<)

Expressions:
(Var)

(= Intro)
(V' Intro)

(Subsump)

() env
I' env ' A type g¢I'il

I, t<A env

I' t<A, I env

I''tsA,I"Ft type
I'-A type I'-B type

I' - A—=B type

I' t<A, I env

I't<A I F t<A
I' - A<A' T' - BsB'

I' - A—=B<A—B'

I' - ttype

I'Ftst

I', x:A, I'" env

I', XA, IT" X A
I' xA-b:B x¢ I

I'F Ax:A.b: A—B
I'tsAF b[tIt]: B tgl

I' - At<A.b: Vi<A.B

I'Fa A I'-A<B
I'aB

(: env) I'' env I'-A type ¥I'
I', x:A env

(TopForm)I" env
I'-Top type

YForm) I, t<sAF B type ¢#I’
I' - VitsA.B type

(Tog) I' - Atype
I' - A<Top

() I'-A<A' T',t<sAF B[t/t]<B' &I
I' - Yi<sA'B< Vi'<A.B'

(Trang T'F AsB Il BsC
T F A<C

(Top) I' env
I' - top: Top

(—Elim) 'Ff:A—=B T'FaA
I' -1f(a): B

(VEIm) TI'FfiVt<A.B I'HA'<A
I' - f{A}: B[t <A

11t¢T" means thatis not bounded by any elemest of I'; similarly for x¢I".

27

Appendix B: Thealgorithmic rulesand therewriting rules

Environments as functions from variables to types

I'(t) (the bound of t id"): (T, t=A, I (1) =gefA
I'*(T) (the minimum non variable supertype of Tin
OT if T is not a type variable
I*(M=get O

Or*V) if T=tand I'(t)=U
Expressions:

(Algvar) I, xA,I" env (AlgTop) I env

' xAT"Fx: A I' - top: Top
(AlgAbs) TI',x:AFb:B ¥I' (AlgAbs2) TI',t<AFb:B ¥I'

I' - Ax:A.b: A—B I' - AtsA.b: Vi<A.B
(AlgApp) T'HFfT TI*(T)=A—=B TI'FaA I'FA<A

I +f(a):B

(AlgApp2) THET TI*T)=VisAB TI'F A'<A
T F f{A}: B[t <A

Subtypes:
(Alglds=) I' -t type (AlgTop) AZTop I' - Atype
I+ttt I' - A<Top
(AlgTranxs) A#, AZTop I F I'(t)<A
I'Ft<A
(Alg—=) I'-A<A T+ B'sB (AlgZ<) I'-A<A T',t<sA'-B[th]<sB ¥I
I'-A—B'<A'—B I' - VtsAB's Vt'<sA'.B
Rewriting rules for the case (for the case, exchangewith = and vice versa):
(top) I' - A'<Top —> true
(varld) I't=u = ['Fust —> true
(exp) TI'#C=u,C£Top = I'usC —> I' - FreshNamed((u))<C
(Vdom) I'FVtsAB'sVt<sA'B — I'FA=ZA
(Vcod) I'-VtsAB'sVtsA'B — I, (t=t)sA' B'<B
(false) nothing else applies> I' - A<B —> false

The= relation is the minimal relation such thaf’,(t=u)<A,I" - t=u,U=t,t=t,u=u.

Appendix C: Algorithmic subtyperulesfor Fbq

(Id=), (Tranx), (—=<) plus:

(b-bVs) I'F A'sA T, t<sA'* Bth]sB I (u-uvVs) It typer Bt/t]<B %I
I' - VisAB's Vt'<sA'.B I'-VvVtB'<VtB

(u-bV's) I',t<sAF Btt] <B ¥I'
I' - VtB's Vt'<A.B

Rewriting rules: as above, min(sp), plus:

(Fbg-usb) ' VtB'sVt<A'B — T, t=t<sA' | B'<B
(Fbg-usu) I'-VvtB'svtB — T, t=ttype - B'<B

28

