
A Static Type System for Message Passing

Giorgio Ghelli

Dipartimento di Informatica, Universita di Pisa,

Corso Italia 40, Italy

ghelli@dipisa.di.unipi.it

Abstract

Much research has been performed with the aim of
isolating the basic notions of object-oriented
languages and of describing them by basic operators
which can be embedded in strongly-typed languages.
In this context we define an atomic linguistic
construct to capture the notion of message passing,
and we define a static and strong type system, based
on subtyping, for this construct. Message passing is
modelled as the application of an overloaded
function, whose behavior is determined only at
compile-time on the basis of the class which created
a distinguished argument, the object “receiving” the
message. By embedding this mechanism in a
strongly-typed language with subtyping and abstract
data types we can obtain the full functionality of
object-oriented languages. We show that this
approach is strictly more expressive then the usual
interpretation of message passing as selection plus
application of a functional record field.

1. Introduction

Object-oriented languages are based on the notions
o f objects, classes, messageslmethodr and
inheritance.
objects are entities with a record-like state,
collected in classes. A class plays both the role of
an Abstract Data Type (ADT) and of a generator of

This work was carried out with the partial support of Selenia.

project “Very Large Knowledge Bases”, of E.E.C., Esprit
B.R.A. 3070 FIDE, and of Italian C.N.R.. P.F. “Sistemi
informatici e calcolo parallelo”.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 89791-446~5/9?/0010/0129...$1.50

homogeneous objects; it is defined by specifying:
the record type representing the structure of the state
of the objects produced, the name of their abstract
type, and its methods, i.e. the basic functions which
can be applied, by message sending, to them.

Message sending is the object-oriented version of
function call: when a message (a pair <method
name,args>) is sent to an object obj, the
“corresponding” method is evaluated, receiving the
object obj (the distinguished parameter) and args
as parameters. Many different methods in different
classes can correspond to a given method name; the
one executed depends on the class which created the
distinguished parameter (this is known as
overloading of method names). The method
associated to a message does not depend on the
compile-time type of the receiving object, but on the
class which generated the object, so that this
meaning can be decided only at run-time (late
binding of method names). Besides this, the method
associated at run-time to a message could even
belong to a class defined after the compilation of the
code issuing the message call (dynamic extension of
the meaning of method names)

A new class NC can be defined by inheritance
from an old one Oc by specifying which fields are
added to the structure of the state of the objects of
Oc, which new methods are added, and possibly

how the code of some old methods changes; in this

case NC is called a subclass of (X’.

The high level of reusability of object-oriented

software is due to the interplay of all of these four

features: overloading, late binding, dynamic

extensibility and inheritance.

OOPSLA’91, pp. 129-145

129

The embedding of these features into languages with
well established semantics and type systems is
widely studied, with three objectives: 9 a formal
understanding of object-oriented languages, l the
definition of a strong type system for these
languages, l the definition of languages enjoying
both a strong foundation and the high expressivity
and code reusability of object-oriented languages.

Most of these researches are based on the encoding
of the mechanisms of object-oriented languages in a
strong type system with subtyping (see, e.g.
[CarWeg85] [AlbGheOccOrs88] [CanHilOlt88]
[Coo891 [CooHilCan90] [MiBO] [Red881 [Ghegl]).
An object is represented by a record containing the
methods of its class as functional fields; passing a
message <methName,params> to an object obj is
interpreted as selection and application of that
functional field: (obj.methName)(params). This
interpretation immediately gives overloading, late
binding and dynamical extensibility of methods. In
short, field names are overloaded, since a unique
field name can be associated with different functions

in records produced by different classes. The

function contained in a record field does not depend

on the record type, but is decided by the function

which creates the record, and can be known only at

run-time (late binding). Finally, the set of the

meanings of a field name can be extended, since it is

always possible to define new records where a field

name, already used in other records, assumes new

meanings; old code accessing this new record will

retrieve the new meaning. In this approach class

inheritance introduces many type-level
complications, since it is modelled by record

concatenation, which needs complex type systems in

presence of subtyping [CarMit89] [Wan89]. The

result is that in these systems either no inheritance is
present, like in the seminal work [Car88], either

subtyping is heavily limited, like in [CooHilCan90],

or both inheritance and subtyping are offered, paying

the price of very complex record subtyping rules,
like in [MiBO] and in [CarMit89].

The record-based approach presents another well-

known technical problem: the interaction of the
subtyping rules of the record and function types used
to codify objects, has the undesired effect that the
argument types of methods redefined in a subclass
can be only generalized, rather then specialized
(specializing means changing into a subtype;
generalizing is the inverse operation). This
constraint on the redefinition of method argument
types is called contravariance.

Contravariance implies immediately that, in the
record model, the object receiving the message
cannot be seen as a regular argument of the method,
since its type is necessarily specialized going from
superclasses to subclasses; for this reason the
receiving object is not seen as an argument but is
accessed by its methods “by recursion” [CarWeg85].
But in turn, this way of accessing the distinguished
argument entails new difficulties in the interpretation
of inheritance as record concatenation, as discussed
in [CooHilCan90] and [MNO]; the solutions
proposed there destroy the simplicity of the record
approach.

Besides these technical problems on the
distinguished argument, type contravariance is an
undesired constraint also for the other method
arguments, since experience shows that covariance
of argument types is much more common in practice
[DanTom88].

The problems above are due to the fact that the
record-based approach is not a direct description of
the message passing mechanism, but rather an
encoding of it. To overcome these difficulties, and to
study the object-oriented mechanisms at a more
basic level, we introduce a completely different way
of viewing objects and message passing.

In our approach inheritance and message passing are
modelled, respectively, by the incremental definition
and by the application of overloaded functions. The
meaning of our overloaded functions can be solved
only at compile-time on the basis of the class which
created a distinguished argument. Conversely,
objects are just entities which can remember the
class which created them. This mechanism reflects
the kernel of the message passing mechanism, and

130

the record-based approach can be seen just as one
“implementation” of this fundamental mechanism.

We define also a strong type system for this
mechanism, i.e. a type system such that a well-typed
expression cannot raise any run-time failure. Despite
late binding, this type system is static: type checking
is performed completely at compile-time.

This mechanism models one-half of the object-
oriented paradigm, i.e. message passing with late-
binding overloading, and inheritance (dynamic
extensibility is modelled by the general mechanisms
of the host language). The other half of the paradigm
is represented by the possibility of encapsulating the
state of objects and the implementation of classes. In
our approach object-oriented encapsulation can be
understood in terms of any general purpose
encapsulation mechanism, like abstract data types,
modules or existential types (see e.g. [CarWegU] or
[MitPlo85]), since our overloading mechanism can
be applied to the functions defined on abstract data
types too. This is not true in the record-based
approach, where only record field names can be
overloaded, while the functions defined on an
abstract data type cannot.

To sum up, our model of message passing is more
convenient than the traditional record-based one
with respect to the following points:

l It allows both covariant and contravariant
redefinition of methods in the context of a static and
strong type system

l It allows studying simple and multiple inheritance
without affecting the subtyping rules

l Non recursive methods can be defined without using
recursion

But our construct allows also defining typed
languages which are more expressive than traditional
object-oriented languages. With respect to method
definition, this is showed in the paper through the
following example. Let ColoredPoint be a subclass
of Point. In the record model, due to
contravariance, a method equal comparing two
Point’s cannot be overloaded to make it able to

compare also two ColoredPoint’s. In an untyped

object-oriented language this redefinition is allowed,
but you cannot explicitly specify what happens when
a Point and a ColoredPoint are compared, and this
comparison may even raise a run-time error. In our
model the covariant redefinition of the eq ua 1
method is allowed, run-time failures are not
possible, and you can even explicitly program how a
Point is compared with a ColoredPoint. Besides
this, in our model methods are first class values of
the language, which is not true in the record-based
model or in the untyped object-oriented languages.

The paper is structured as follows. In $2 we
introduce a basic strongly-typed language, a weakly-
typed “traditional” object-oriented language and its
translation in the record model. In $3 we present our
strong type system for late-binding overloading. In
$4 we compare our approach with other ones. In $5
we discuss how dynamic extension and

encapsulation can be realized. In $6 we draw some
conclusions.

2 Basic definitions

2.1 A functional language

This is the syntax of our basic functional language
aa] means a is optional):

Declaration:= let ide:= Val
I let [ret] ide [:Type] := Val
I let [ret] type typeMe := Type

Val:= constant I 2% I Declaration; Val
I fun (z&:Type,.. .,ide:Type). Val
I Val(Val,...,Val)
I record label := Val,. . ., label E= Val end
I Valhbel
I ret ide [:Type]. Val I Val; Val I Val: Type

Type:= typeIde I basicType I TypexType t
I Type+Type
I Record label : Type,. . . , label : Type End
I Ret typeIde. Type

A declaration

lFor simplicity we use product types only to pass parameters

131

“let ide:=Val/ let &X typelde := typexpr”

binds an identifier to a value or to a type in all the
expressions which follow it, in a terminal session or
in this paper. These are constant bindings; updatable
references are also needed in the host language, but
they are not defined here since they are not used in
any example.

‘fun (i&l:Typel,...,ide,:Type,). Val” is an
expression which denotes a function:

‘xit? &?a” l,..., are the formal parameters,

“Type1 ,...,Type,,” are the type required for the
actual parameters and “ VaZ” is the body of the

function. “Type1 x.. .xType,+TypeR” is the type
of this function if “TypeR” is the type of “Val”.
“Val(Val,..., Val)” is function application.

“record label := Val,...,label := Val end” is a
record whose type has the form “Record label :

Type,..., label : Type End”. Record fields can be

selected using the notation “recfield”. The order of
labels in records is irrelevant.

“ret ide. expr” returns the value of expr evaluated
in an environment where ide is recursively bound to
the value which is being built. let ret ide := expr
means let ide := ret ide. expr, i.e. the identifier ide
is recursively bound to the value under construction
(ret ide. expr) and remains bound to it after the
construction (let ide := rec...; see the example
below):

“ret typeide. TypeExpr” returns the value of
TypeExpr evaluated in an environment where
typeide is recursively bound to the type which is
being defined. let ret type typeide := TypeExpr
means let type typeide := Ret typeide. expr :

let ret type Graph :=
Record value: Int

outStar: List of Graph
End;

let loop := ret self:Graph.
record value:=O,

outStar:= list of (self)
end;

let ret 1oop:Graph :=
record value:=O,

outStar:= list of (loop)
end;

“Val;Val” denotes the sequential execution of two
expressions, which returns the result of the second
expression.

If one of the types of “ Val” is “Type” then
“VaZ:Type” is the same expression, but having as
types only “Type” and all its supertypes. This
construct is used mainly to avoid ambiguity in the
type of terms with too many types, like the term
denoting an empty list: writing emptylist: List of Int
we restrict the type of this empty list to the lists of
integers.

The plugs “constant” and “basicType” denote a

set of other values, operations and type constructors
which could be useful, like lists (the constructor
List of used above) integers, booleans, pairs etc.

A reflexive and transitive inclusion relation,
subtyping, is defined on types [Car88]. Subtyping
means that if a:T and T is a subtype of U (T_QIJ
then a:U. The typing and subtyping rules are in the
Appendix A.

22 A weakly-typed object-oriented language

We exemplify a weakly-typed object-oriented

language by adding the following C&s construct,

to declare classes, to our micro functional language.

Notice that the resulting language is nor our

proposal; the construct below is just aimed to

illustrate some points about message passing in

weakly-typed object-oriented languages:

let ObJType(x 1 :T 1,. . .J,:T,):=
Chss <method0 end

The definition above defines a new type ObjType

and a function new[ObJType] , to generate “objects”

of that type? <methods> is a list of bindings

with form

21n this micro language the state of the object has the same

slxucture of the input parameters of the creation function; this is

just an irrelevant simplification

132

ide(parameters:ParamTypes):=expr:ResultType;

each of which defines a new function

iak:ObjType +ParamTypes +ResultType ,

let redrawAllPictures :=
fun (lpics: List of Picture).

for pit in lpics do redraw(pic);

called “a method of the class ObJType”; the
distinguished parameter of each method is not
explicitly declared, and is called Sep. Classes
can be defined “by inheritance” by extending other
classes:

let ChildType(x,+l :T,+l ,. . .J,,,:T,+&:=
Class isa ParentT 1,. . JarentTt <methods>
end

In this case ChildType is a subtype of
ParentTl,...SarentTt, so that any method of a
ParentTi can be applied to values of type
ChildType too (method inheritance). The creation
function new[ChildType] requires all the input
parameters of the ParentTi’s plus those added in its
own definition (state inheritance). If a method is
specified both in a ParentTi and in ChildType, then
it is overloaded with the new definition; we say that
it is extended, since it acquires a new branch
without losing the old ones (we call branches the
different definitions supplied for an overloaded
method). If a method is defined in more then one
ParentTi, but not in ChildType, then some choice
rule of the language selects the inherited definition.
Single inheritance means that there is just one
parent type, so that no choice rule is needed;
otherwise we have multiple inheritance.

When an overloaded method is applied to an object,
a branch is selected depending on the run-time type
of the object (the class which created it), which is in
general only a subtype of the compile-time type of
the expression returning it. E.g., let Rectangle and
Circle be subtypes of Picture; in the following
function the expression pit has compile-time type
Picture, but if the list @its contains rectangles and
circles, then in each run of the for loop the redraw
method of rectangles or of circles is selected:

Solving overloading on the basis of run-time (resp.
compile-time) types is called late (resp. early)
bindingd; e.g., imperative languages use early
binding for overloaded operators (like, e.g., a I‘+”
operator overloaded on integer and floating point
numbers).

The extension of a method affects also already
“compiled” method calls: if a new subclass Square
of Picture is added, then the already defined
redrawAllPictures function will afterwards select
the new definition of redraw for objects of the class
Square. This “dynamic extension” is a kind of
dynamic binding, which allows changing the
meaning of a method identifier by adding new
branches for new subtypes. It is related to late
binding (solving overloading using the run-time
type) from an implementative point of view, since
both mechanisms need a run-time binding of method
names, but the two notions are different (cf. 95).

The redrawAllPictures example suggests how, in
object-oriented languages, an application, (e.g. a
graphic editor), can be first implemented and
packaged, and later on modified simply by adding a
subclass (e.g. circles), without modifying or
recompiling the existing code, exploiting critically
all the four features of inheritance, overloading, late
binding and dynamic extensibility.

2.3 The record model for object-oriented
languages

The record model is a techinque to understand
message passing by translating it into a functional

language with rtecors and subtypes. We present the

record model through one example. Consider the

following declarations, expressed in the weakly-

typed object-oriented toy language:

31n the obiect-oriented jargon, objects “contain” their own
methods, and self is not a parameter but an auto-reference

4This distinction affects only languages with some form of

polymorphism, like subtyping, since otherwise the run-time type

of a value is just ifs compile time type

133

let Point(x:Int, y:Int) := Class
get-x():= x, get_y():= y,
equal(p:Point) := get-x(self)=get-x(p)

& get_y(self)=get_y(p)
end;

let ColorPoint(x:Int, y:Int, color:Color) := Class isa
Point

get-color@= color,
equal(p:ColorPoint) := get-x(self)=get-x(p)

& get_y(self)=get_y(p)
82 get-color(self)=get-color(p);

end;

In the record model they would be translated as:

let rcx type Point :=Record get-x: Unit + Int,
get-y: Unit -3 Int,
equal: Point + Boo1

End;
let newpoint: IntxInt + Point :=

fun (x:Int, y:Int).
let state := record x:=x, y:=y end
in nxsself.

record
get-x:= fun C:Unit). state.x,
get-y:= fun C:Unit). state.y,
equal:= fun (p:Point). p.get-x()=self.get-x()

82 p.get_y()=self.get-y()
end;

let ret type ColorPoint :=

Record get-x(y): Unit + Int,

get-color. Unit + Color

equal: ColorPoint + Boo1

End;
let newColorPoint: IntxIntxColor

fun (x:Int, y:Int,color:Color).

+ ColorPoint :=

let state := record x:=x, y:=y, color:=color end
in ret self .record

get-x(y/color):=

fun C:Uni t). state.x(. y/. color),
get-colors= fun C:Unit). statecolor,

%nformally. ret ide. expr evaluates pxpr binding id e,
recursively, to wr itself (ret self. record(self)>. let ret ide :=
eqr means let ide := ret ide. expr.

equal:=
fun@:ColorPoint).

p.get-x()=self.get-x()
& p.get_y()=self.get_y()
& p.get~color()=self.get~color()

end;

Notice that a class definition is expanded into the
definition of a record type and of a function which
creates new records of that type (the objects). The
fields of these records correspond just to the
messages which can be sent to them, while the state
of the object is codified in a local variable shared by
these fields, called state above (actually this local
variable is not needed to translate the toy language,
while it is useful in general to model state
encapsulation). To get the x coordinate of an object
aPoint the expression uPoint.get-x() is used; the
implicit argument of the get-x method, which
would be aPoint, is not given explicitly, by writing
aPoint.get-x(aPoint) , but is accessed by the get-x
method using the variable self which recursively
refers to the whole object, aPoint in this case.
Notice that, intuitively, there is nothing really
recursive in trivial functions like get-x or equal
above; we will see that in our model this kind of
recursive definitions is avoided.

The example above is a critical one, since
ColorPoint should be a subtype of Point, since it is
defined by inheritance from Point (in the weakly-
typed source code), but it is not a subtype due to the
covariant redefinition of the argument type of the
equal method6 , and for this reason, in most
strongly-typed object-oriented languages, the
definition above would not be well-typed; the
remaining part of this section is devoted to a better
understanding of this problem.

Notice that in the above example the ability of
defining classes incrementally (through inheritance),
which we find in the source code, is lost in the
translation: the type ColorPoint and the function
newColorPoint are fully defined without exploiting
the similarities with the preceding two definitions. In

6For subtyping, recursive types are equivalent to their infinite
tree expansion; see [AmaCar90] for more details about
subtyping and recursive types.

134

more powerful record models (see e.g. [MitgO]),
inheritance is present, and is codified by using
record concatenation operators, but other problems
then arise.

2.4 Inheritance and subtyping

A subclass SubC inherits from SuperC wkn
S&C is defined by describing how it differs from
SuperC; a type T is a subtype of a type U if all the
elements of T have also type U; so subtyping and
inheritance are very different notions. However, in
strongly-typed object-oriented languages, the type of
a subclass is usually required to be a subtype of that
of its superclasses, to assure that well-typed methods
remain well-typed when are inherited. In fact a
method in a superclass with element type
SuperObjType is type-checked supposing
seCf:SuperObjType; when the method is inherited in
a subclass with element type SubObJType, it should
be type-checked another time, under the assumption
self:SubObjType. This second type-checking can be
avoided if SubObjType is required to be a subtype
of SuperObJType, since in this case
self:SubObJType implies se&:SuperObJType,
which in turn implies the well-typing of the method.

While some important approaches to inheritance
and subtyping support a weaker link between the
two notions, notably [CanCooHil90] and [MiBO],
this linking is a positive feature of object-oriented
languages which leads to a better structuring of class
definitions.

2.5 Contravariance of method arguments in the
record model

In the record model an object type can be a subtype

of another one only if the corresponding record types

are in the same relation; so, when a record subtype is
defined by modifying (by inheritance) a record

supertype, the types of the fields which already exist

in the super-type, can be only specialized in the

subtype. Methods are encoded by functional record

fields, and functions can be specialized only by

generalizing, and not by specializing, the argument

type (i.e. T+U -< T’+U only if T’g). For this
reason, in the record model, when a method type is
redefined in a subclass, its argument type can be
only generalized; this is a problem, since in many
programming situation specialization would be
needed. But contravariance is not just an accidental
result of some combination of formal rules, which
could be relaxed just by adopting different rules; it is
really needed to obtain type-safety in the weakly-
typed and record-based approaches, as exemplified
below.

Example: due to the covariant specialization of the
type of the other parameter of the equal function in
the ColorPoint type, ColorPoint is not a subtype of
Point, and if this relation holded, run-time errors
could occur:

let Point(x,y: It) := Class
get-x/y0 := x/y;
equal(p:Point) := get-x(p)=get-x(self)

22 gety(p)=get-yWO
end

let ColorPoint(x,y: Int, color:Color)
:= Class isa Point

get-color0 := color,
equal(other:ColorPoint) :=

get-x(other) = get-x(self)
& get_y(other) = get_y(self)
& get-color(other) = get-color(self)

end

let one:=new[Point](l,l);
let oneBlue:= new [ColorPoint](1,l ,Blue);
equal(oneBlue)(one); * ????

If ColorPoint were a subtype of Point, the last
application of equal would be allowed, the
ColorPoint equality would be selected by late
binding (think to oneBlue.equul(One) in the record
model) and a get - color message would be sent to
one, resulting in a run-time failure. So this example
shows that the contravariance constraint cannot be
relaxed in a type safe way without a reconsideration
of the run-time semantics of the message passing
mechanism, like the one studied in the next section.

135

3 The proposed type system

In this section we define a static strong type system
for late-binding overloading. Late binding
overloading allows message passing to be expressed,
but is still more expressive; as a result, it allows, in a
type safe context, both covariant and contravariant
redefinition of method types.

Our overloading mechanism is defined by an
operator which allows transforming a regular
function in a one-branch overloaded function, an
operator to extend an overloaded function by adding
new branches to it, and finally by an operation of
overloaded function application. Overloaded
application selects a branch of the overloaded
function, on the basis of the run-time type of a
distinguished argument, and then applies that branch
to the argument. In 93.1 we give the rules which
specify how these constructs are typed, in the case of
single inheritance, and which subtyping relation is
defined on overloaded function types, and we

discuss the compatibility of covariance and

contravariance in our model. In 53.2 we generalize

this discussion to the case of multiple inheritance,

dealing with the conflict resolution rules at a general

level. In $3.3 we exemplify our approach. In $3.4 we

state some further observations.

3.1 The type rules of overloadedfunctions

In our model each branch of an overloaded function

is associated with an “expected input type” T, which

is just the input type of the branch seen as a non-

overloaded function. If the run-time type of the

argument is exactly one of the “expected input

types”, the corresponding branch is selected.

Otherwise a choice rule is invoked, such that in any

case the selected input type is a supertype of the nm-
time argument type; if the set of those eqected

input types which are supertypes of the run-time

argument type has a minimum, that minimum is

selected. We do not specify how choice rules are
defined, but we define which sets of branches can be

put together, with type rules which are “parametric”
with respect to the way of specifying choice rules.

With single inheritance, for any run-time argument
type, a minimum supertype always exists in the set
of the expected input types, so that there is no need
of specifying a choice rule. The absence of choice
rules, which are also missing in approaches different
from single inheritance, simplifies greatly the type
rules and the notation, and we now address this. The
more general setting, where the minimum supertype
is not always defined, is sketched in the next section.

The type of an overloaded function with branches
with expected input types Al, AZ, and A3, and
result types, respectively, Bt, B2 and B3 is
denoted as {AI+B~,A~+B~,A~+B~] or (at
the meta-level) as {Ai+Bi]iEf1,2,3),

The first rule below specifies which sets of types
can be combined to form a well-formed overloaded
type, and implicitly which sets of branches can be
combined to form a well-formed overloaded
function. Type rules should be read backward; for
example the rule below can be read as: “(in the
environment r) {Ti+Ui}igI is a well formed type
if a) for any i in I, Ti is a choice-rype and Ui is a
type, and if for any iJ in I if Ti I Tj then Ui I
Uj"; r is an environment collecting information
about the free variables. Well-formed overloaded
types are definedby the rule below simply as those
types where all the component functional types are
“mutually compatible”. Mutual compatibility means
that if the input types are in the subtyping relation,
the output types are related in the same way; we will
see in the next section that in case of multiple
inheritance the compatibility condition is slightly
stronger.

(()FOITII) VIE I. TF Ti choice-type, IF Ui type

Vi,jEI rl- Ti ITi qrl- U; 5Ui

The condition r /- Ti choice-type, which is not
formally specified here, models the fact that in real
systems not every type is accepted as an expected
input type; however, in our examples below we will

‘IThis V is a meta-level finite quantification

136

accept any type as a choice type. In object-oriented
languages, only object types are accepted as choice

tYP=

The result type of an overloaded function application
is determined by applying the l (choose) operator
to the set of the expected input types of the
overloaded function and to the argument type:
fli}igrA selects from the set of expected input
types /TAigI the type corresponding to the type A.
In the case of single inheritance, that type is the
minimum supertype of A in FaiEIv if it exists;
fli+UdiEI returns Ui if fli)i,rA returns Ti.
The condition {Ti}igI accepts A is satisfied when in
fli]i,l there is a type which corresponds to A; in
the case of single inheritance, this means simply that
in fli)iEI there is one supertype of A. The
application of an overloaded function is denoted
here as f;a to stress the fact that applying an
overloaded function is different from applying a
regular function, since it involves both a branch
selection and a function application.

([]Elim) Tl- f: (Ti+Ui)isI I’i- a:A

rl- {Ti)i.taccents A

I’/- f*(a): (Ti+Ut)ieI*A

The same l notation is used at the type and at the
value level just to indicate that the same rule is used
to choose a type in (Ti+Ui]ieI at compile-time and
to choose a branch in fat run-time. However, the
branch of the type which is selected at compile-time
could not correspond to the branch of the function
which is selected at run-time. In fact we have shown
in section 2.2 that the compile-time type of an
expression is generally only a supertype of the run-
time type of the corresponding value. The
compatibility condition (Ti I Tj 3 I’ I- Ui I Uj) of
the formation rule assures that in any case the type
which is computed at compile-time for the
overloaded application is a supertype of the actual
run-time type of the result.

An overloaded function is defined by starting from a
regular function and adding new type-branch pairs
with the + operator; a simpler approach could be

obtained by identifying regular functions with one-
branch overloaded functions:

(()IntIo) rt- f:T+U

I’k overload f: (T-GJ)

((}Add) II- f: (Ti+Ui}ieI

rt- g: Tk+uk TkP (TiliEI

rI- (Ti+UiIieIu(k) tyPe

rk f+g: (Ti+‘JiJiczIu{k]

In general, AIB means that for any context C[x], if
any element of type B can substitute x in a type-
safe way, then also any element of type A can be
inserted in C[X]; this implies that if Tcll~ (resp.
TcI]~) is the type of the expression obtained by
putting an element of type B (resp. A) in that
context, then Tc~]p ITcI]B. From this definition
we have the following general rule (to be read
backward, as usual):

(OS) Y’sAsuchthat (Vj)jEJaLXXptSA.

(Ti}iEI accepts A and

I’I- (Ti+Ui}iel*A I (Vj+Wj]jE JoA

ri- (Ti+Ui)iEII (Vj+Wj)js J

Even if this is not apparent, the usual contravariance
rule for subtyping can be derived from the rules
above. More formally, in Appendix B it is proved
that, even in the general case:

l-l- TIT, Il- U’IIJ 3 I-l- (T+U’}I (T’+U)

This observation helps to clarify the fact that our
system is a conservative extension of the traditional
type systems for subtyping. In our system covariance
and contravariance both exist with two neatly
different r6les. Covariance is the compatibility
constraint to be satisfied when different branches of
an overloaded function are put together, used in the

rule of type formation, while contravariance is the

condition for subtyping, used only in subtyping

rules, with no contrast between the two notions. At

the end of section 3.3 we will show that the

covariance condition does not prevent the

contravariant specialization of method argument

137

32 Constraints on the set of types of an
overloadedfunction in case of multiple inheritance

In this section we define at a general level which sets
of types can be combined to form a well-formed
overloaded type, in the general case of multiple
inheritance, when choice rules are necessary to
select one specific supertype of the run-time
argument among the expected input types. This
study is general in the sense that we do not commit
to any specific mechanism for specifying choice
Nles.

For generality we suppose that each overloaded
function contains its choice rule, which is also a part
of its type; this is a heavy formalization which is
made here to carry on this discussion at the highest
level of generality; by selecting a specific way of
defining this choice rule we can model, and
compare, some of the known approaches to multiple
inheritance. So the type of an overloaded function
with a choice rule r is now denoted by
{A+T,...,B+u,. Instead of detailing how choice
rules can be specified, we formalize some
constraints on their behaviour, to preserve the
property that the compile-time type of any
expression is a supertype of the possible run-time
types of its values. Since no operation fails if the
run-time type of its argument is a subtype of the
expected type, this property implies that typed
expressions never fail, i.e. that our type system is
strong.

The well-fonnedness conditions for an overloaded
type are the following ones:

Notation :
fli)i,I,y*A is the type selected for A by the

choice rule s among fl$iEl

iTdi,I,s accepts A
means “fli)icIsaA is well defined”

fli+TiJigls*A=Uj
is the same as fli]iEIJ*A=Tj

i

ii

. . .
111

iv

(internal choice) VT. (Ti)icb*AE (Ti}iEI

(nearest choice) VjE I kcrjl(Tt]i~I+*A
* Tj=(Ti]iELs*A

(supertype choice) VA r I- A 5 (Ti]iELs*A

(downward closure)
VA& ll-A<B, (Ti)i,ls accepts B

* ITilieLs =cepB B

v,8 (choice covariance)

Conditions i-iii do not need any explanation.
Conditions ii specifies that no type in {Ti}i,l can be
“nearer” to A than the selected type; it implies that,
if a minimum supertype of T exists among fli)icI,
that minimum is selected. To understand the last two
constraints, suppose that AcB (i.e. AIB and A#B),
that T is a type unrelated to U and that fifA+T,
B 4-J r. Suppose that f is applied as an overloaded
function to the value of an expression b whose
compile-time type is B, and whose run-time type is
A (e.g. b is a formal parameter of type B which is
bound to an actual parameter created with type A).
Since the compile-time type of b is B, then the
compile-time type of F(b) is U. But when f is
applied to a value b with run-time type A, the late
binding mechanism selects, among the f branches,
the piece of code with type A+T, so that the
application returns a value with run-time type T,
unrelated with its compile-time type U. The rule v s
prevents this kind of problem by forcing the type T
to be a subtype of the output type U computed by
the compiler, while rule iv enforces the condition
that for any possible run-time type A corresponding
to a compile-time type B the corresponding branch
selection is well defined.

To express condition vs in a more useful way, we

define the following preorder on a set z of expected

input types with respect to a choice rule s (T+&
read T can be chosen for U by s in 2):

*The s subscript stands for “strong covariance” since we

have also a weaker form of this rule, vw.

138

Def.: (subtype choice preorder)

T%~U *def 3ASB: 2mSA=T, ~*,B=U

Lemma: z&T extends 2 on 2; Q is reflexive and
transitive

Condition v, can be now expressed as:

vs (choice covariance for (Ti+Ui)i,Ls):

VijEI. rk Ti Gs,ITiliEITj 3 rt- Ui IUj

In systems without multiple inheritance, i-iv are
satisfied by the choice rule selecting the minimum
expected input supertype of the argument type, and
vsctIong) is equivalent to the following requirement,
which is weaker than the one needed in the general
case:

vw (type covariance for s,(Ti+Ui)i,Ls):

ViJEI. I’l- Ti <Tj * rt- Ui SUj

The five conditions above can be exploited to
discuss, with some generality, how choice rules can
be specified in the case of multiple inheritance. We
do not enter in this discussion, but simply list some
of the possibilities:
l When a new choice-type with multiple ancestors is

defined, all the overloaded functions defined for a
non-empty set of supertypes of this type without a
minimum have to be explicitly overloaded for this
type. With this constraint condition ii specifies
completely how the choice is performed, so that no
choice rule has to be specified.

l When a new choice-type with multiple ancestors is
defined, a linear order is defined on its immediate
ancestors. PA always chooses the minimum
supertype of A with respect to this order.

l A global linear order is defined on all the choice

types; VA always chooses the minimum
supertype of A with respect to this order.

l Single inheritance.

By specializing our constraints to the four cases
above we obtain the rules specifying what must be
checked whenever a new choice type is defined. In
this way we can compare in a unique setting
different approaches to multiple inheritance, which

is more difficult in the record model.

3.3 An example

We will now exemplify the proposed approach,
using just single inheritance for simplicity. For
simplicity we suppose that every type can be used as
an expected input type, while restricting these types,
for example to products of named data types or of
abstract data types, would be more usual (named
data types are used in [AlbGheOrs911). We consider
again the ColorPoint example of $2.5:

let type P := Record x: Int, y: Int End;
let eql: {PxP+Bool} :=

overload (fun (p,q:P). p.x=q.x & p.y=q.y;

let type CP
:= Record x: Int, y: Int, color: Color End;

let eql: (PxP+Bool, CP~8+Bool) :=

eql
+ (fun (p,q:CP). eql*(p,q) & p.colo~q.color);

let eq2: (PxP+Bool, CPx@+Bool,
PxCP+Bool, CPxP+Bool] :=

eql + (fun (p:P,q:CP).false)
+ (fun (p:CP,q:P).false);

let OneRed (OneBlue) :=
record x:=1 ,y:=l ,color:=Red(Blue) end;

let One := record x:=l,y:=l end;

eql (OneBlue,OneRed) + false
% OneBlue and OneRed are compared as colored

eql (OneBlue,One) + true
% We can safely compare Points and ColorPoints

eql (One,OneBlue) + true
% eql compares them as Points (One=OneBlue)

eq2(0ne,OneBlue) + false
% eq2 does not equate colored and uncol. points

eql is a safe version of the old equal method; it
compares a point with a colored point as if they were
both points, and never fails, while in $2.5 we have
seen that eqI(OneBlue,One) would fail, if allowed,

in the traditional model. eq2 shows that we can

decide how a point is compared with a colored point

139

(consider them always different (eq2). or compare
them as uncolored (eql), or consider an uncolored
point as a transparent one...). So our general-
purpose overloading is both safer and more
expressive than the weakly-typed object-oriented
overloading, and more expressive than the record
model, where eql was ill-typed and eq2 not
expressible.

The possibility of selecting a branch on the basis of
more then one parameter is the origin of the
expressive power of our approach; the outermost +
in each element of the overloaded type specifies the
examined parameters. For example, consider the two
following overloaded types:

The first case is the type of an overloaded function
which selects the branch on the basis of both
arguments, in the second case only the first
argument is considered for branch selection. Notice
that if AIB and B not I A, only the first type is well
formed; so in the second case, where choice is
restricted to just one argument, our approach has the
same contravariant behaviour of the traditional one.
On the other hand the following types are both well
formed:

((A XN +T, (B XB) +V r
{(AxB)+T, @XA)+T) r

The first one is the type of a two-parameters
functio, where the second parameter is specialized in
a covariant way when the first parameter is
specialized to type B. The second one is the type of a
function where the second parameter is generalized
in a contravariant way to type A when the first
parameter is specialized to type B. Both types are
well-formed, showing that in our approach both
covariant and contravariant argument type
specialization are allowed.

3.4 Final considerations

Our approach to overloading is very general, but

many instances of that approach have unpleasant
properties. In object-oriented languages only object
types, i.e. named user defined abstract data types,
can be used as choice type. But user defined types
can acquire new subtypes, when new types are
defined, so that well-formed types can lose well-
formedness. For example, suppose that two types
Worker and Student are defined, and that an
overloaded function co& of type
~orker+lnt,Student+String]r is defined too.
The type of code is well formed until Worker and
Student have no common subtype. As soon as such
a common subtype TeachingFellow is defined, the
well-formedness of the type of the code function
would depend on the behaviour of its r choice
method. We can distinguish three alternative ways to
deal with this problem:
*avoiding user defined types: this is an elegant
approach, but cannot be used to understand object-
oriented languages

*fixing the set of user defined types: also in this case
we avoid the problem of evolving type hierarchies,
but this approach is effective only to study the
type-system of object-oriented languages which are
implementated in a compilative way, where the
program is read once to collect the type hierarchy
and a second time to type-check the methods, and is
not useful to study languages which are suitable for
an interactive use

*allowing evolving hierarchies: this is the general
and most interesting case.

Our general approach encopasses all the three cases
above, but is expecially useful to deal with the last
case, which is the most interesting and important
one.

4 Related researches

4.1 The Canning Cook Mitchell Hill Olthoff
approach

Method covariance has been obtained by W. Cook,

J. Mitchell and others in the important case when all

the arguments have the same type (like in the

comparison examples above) [CooHilCan90]

.

140

[Mit90]. They use the record model, but they allow
the definition of functions which operate not only on
all the subtypes of a type, but on a wider set,
exploiting their notion of F-bounded quantification
[CanCooHilMitOlt89]. Then a subclass can inherit
methods even if its type is not a subtype of the
superclass, at least in the limited case cited in the
second line; so the covariance-contravariance
dilemma is faced by breaking the subtyping-
inheritance link.

The Cook-Canning-Hill and Mitchell approaches
(which are different but share these basic ideas) are
much more complex than traditional approaches,
since they rely on F-bounded quantification.
Moreover, inheritance, which is realized in our
model by the overloading “+” operator, is realized in
these approaches by using record concatenation,
which is not compatible with the standard record
subtyping rules. To allow record concatenation, in
the Cook-Canning-Hill approach values of a subtype
cannot be substituted for values of supertypes
everywhere, but only as parameters of functions
where this substitution is explicitly allowed; this is a
very limited use of the subtyping mechanism. On the
other hand the concatenation problem is solved in
the Mitchell approach by retaining the usual notion
of subtyping, but by exploiting a more complex type
system, where record types contain not only some of
the labels which must be found in the record but
also some of the labels which cannot be there.

Besides this, these approaches solve just a specific,
even if important, case of covariance, and in this
case they do not have full subtyping but only
inheritance plus that weaker notion of subtyping
which is expressed by F-bounded quantification. But
this comparison is not fair, since solving a special
case of the covariance-contravariance conflict is not
the basic aim of the Cook-Canning-Hill and Mitchell
approaches, whose fundamental contribution is a
clean definition of the operation of inheritance in the
record-based model and of its relation with
subtyping and with record concatenation.

42 Overloading and conjunctive types

A type can be read as a predicate satisfied by its
values, e.g., “EA+B” means: f is a function which,
receiving a parameter satisfying A, does not raise
run-time type failures, and its result satisfies B. In
this setting, subtyping is implication: ASB means
that every value satisfying A satisfies also B.
Conjunctive types are types which represent the
conjunction of the predicates associated to their
component types; they have been introduced by
Coppo, and have been studied in the context of
programming languages by Reynolds (see e.g.
[CopSl] [Rey77]). Record types are a kind of
conjunctive type: “r:Record 1:A End” means “r.1
returns a value satisfying A”, and “r:Record
11 :A1 ,...,ln:An end” is a conjunctive type meaning
“r:Record 11 :A1 end A. ..A r:Record 1,.-A,, end”.
Conjunctive types are strictly related to non-trivial
subtypes: (P A Q) a P becomes, in the language
of types, {A A B} I {A]. Our overloaded functions
can be read as another special case of conjunctive
types, since f:(A+B, C+D] means “f:A-+B A
EC+D”. This link is important mainly from a
semantic point of view, since conjunctive type
possess a clear semantics based on intersection (or
on indexed products, see [BruLon90]), which can be

transferred to our overloaded function types.

6 Type safe dynamic extension and
encapsulation

Our model supports directly inheritance, overloading

and late binding, but does not support dynamic

extensibility and encapsulation, which are the other

two features of the object-oriented approach. In this

section we give a hint about the encoding of these

two features.

Dynamic extensibility must be simulated in a

strongly-typed language with static binding by

exploiting updatable references; a method is

modelled as an updatable reference to an overloaded

function, and dynamic extension is modelled by

updating that reference. This is possible, in a

strongly-typed context, since dynamic extension

141

always extends an overloaded function with type

fli+Ui)i.I to an overloaded function with type
fTi-?‘Ui)iEJ, such that

Encapsulation, in our approach, is truly orthogonal
to message passing; this is one important result,
since breaking down the features of object-oriented
languages into orthogonal atomic notions is among
the aims of this research. In our approach,
encapsulation can be obtained by using any of the
well known mechanisms of ADT’s, existential types
or modules (see [MitPlo85], [CarWeg85]).

Referring to our example, we can encapsulate the

type Point in a module exporting an abstract
version AbsPoint of it, together with a creation
function and a selector equal: AbsPoint+Int. In
another module we can do the same with the type
CPoint, and finally we can collect the two equal
functions into one overloaded function. This is not
possible in the record-based approach (refer to the
translation in $2.3), since in that case, once equal
has been transformed, by a general purpose
encapsulation mechanism, from a record field name
to a function name, then it is no more possible to
overload equal. For this reason, in the record-based
model, encapsulation cannot be considered
orthogonal to message passing.

This is just a very brief discussion about
encapsulation; to be more complete we should
distinguish encapsulation at least into state
encapsulation and method implementation
encapsulation, which are actually supported in the

record model, and ADT-like encapsulation, i.e. the

possibility of specifying that an object type is

different from any other, which, in the record model,

suffers from the problem highlighted above.

7 Conclusions and directions for future work

We have defined a static and strong type system for

late-binding overloaded functions. It can be used to

give a strongly-typed model for object-oriented

languages which is strictly more expressive than the

classical record-based model, and even of the

traditional untyped model. We have discussed the
origins of the well-known conflict contravariance-
covariance and have formally shown that the two
notions are not mutually exclusive.

We have left many details to be verified. We should
show that, e.g., a notion of state, the “super”
operator of object-oriented languages, and mutual
recursion among methods, could be all added
without problems in our approach. The extension of
our mechanism to languages offering parametric
polymorphism and existential types, like Fun
[CarWeg85], raises many interesting issues.

We should prove decidability of type checking for
our type system. The fact that subtyping in this
system is not irreflexive, i.e. there exists U#V such
that USV and V<U, could constitute a problem
[CurGhe91]. It can be solved by introducing a
calculus at the type level equating all and only the
pairs of types which are mutually subtype-related.

We should define formally operational and
denotational semantics for our operators, and then
we should give a formal proof of the property of
strong typing for our system. The kernel of this
proof is the property run-time type_<compile-time
type, discussed in the paper, while the remaining
pan of the work should be routine.

Finally we could design a little object-oriented
language around our type system to prove its
usability.

References

[AmaCargO]: Amadio R., and L. Cardelli,
“Subtyping Recursive Types”, DEC-SRC
technical report, Palo Alto DEC System Research
Center, Ca., USA, 1990.

[AlbGheOccOrs88]: Albano A., G. Ghelli, E.
Occhiuto and R. Orsini, “Galileo Reference
Manual Version 2.0”, Servizio Editoriale
Universita di Pisa, Italy, 1988.

142

[AlbGheOrsgl]: Albano A., G. Ghelli and R. Orsini, [DanTom88]: Danforth, S. and C. Tomlinson, “Type
“Object and Classes for u Database Theories and Object-Oriented Programming”,
Programming Language *‘, Tech. Rep. PFSICP- ACMSurveys, 20 (l), 1988.
CNR 5/24, Rome, 199 1.

[GheBl]: Ghelli G., “Modelling features of object-

[BruLon90]: Bruce K.B. and G. Longo, “A Modest oriented languages in second order functional
Model of Records, Inheritance and Bounded languages with subtypes”, in Foundations of

Quantification”, Information & Computation, 87 Object-Oriented Languages (G. Rozenberg ed.),

(l/2), 1990. Springer-Verlag, Berlin, 1991.

[CanHilOlt88]: Canning P.S., W.L. Hill and W.
Olthoff, “A kernel language for object-oriented
programming **, TR. STL-88-21, HP Labs, 1988.

Mit90]: Mitchell, J., “Toward a typed foundation
for method specialization and inheritance”, Proc.
of POPL ‘90,199O.

[CanCooHilMitOlt89]: Canning P.S., W.R. Cook,
W.L. Hill, J.C. Mitchell and W. Olthoff, “F-
bounded polymorphism for object-oriented
programming”, Proc. of Conf. on Functional
Progr. Languages and Comp. Arch., 1989.

MitPlo851: Mitchell J.C. and G.D. Plotkin,
“Abstract Types Have Existential Types”, Proc.
of POPL ‘85,1985.

[Car88]: Cardelli L., “A Semantics of Multiple
Inheritance”, Information & Computation, 76

Red88]: Reddy, U.S., “Objects as Closures:
Abstract semantics of object-oriented languages”,
Proc. of ACM Conf. on Lisp and Functional
Programming ‘88,1988.

(2/3), 1988.
[Rey77]: Reynolds J.C., “Conjunctive Types and

[CarMit89]: Cardelli L. and J.C. Mitchell, Algol-like Languages”, Proc. of LICS 87, 1987.
“Operations on Records”, Proc. Fifth IntZ. Co&
on Mathematical Foundation of Programming
Semantics, Tulane Univ., New Orleans, 1989.

[Wan89]: Wand M., “Type inference for record
concatenation and multiple inheritance”, Proc of
WCS ‘89, pp. 92-97, Asilomar, CA, 1989.

[CarWeg85]: Cardelli L. and P. Wegner, “On
understanding types, data abstraction and
polymorphism”, ACM Computing Surveys, 17
(4), 1985.

[CooHilCan90]: Cook W.R., W.L. Hill and P.S.
Canning, “Inheritance is not subtyping”, Proc. of
POPL ‘90.1990.

[CopSl]: Coppo M., M. Dezani-Ciancaglini and B.
Venneri, “Functional Character of Solvable
Terms”, Z. Math. Logik Grundlug Math., 27,
1981.

[CmGhe91]: Curien P.L. and G. Ghelli, “Coherence
of Subsumption”, Mathematical Foundations of
Computer Science, to appear.

143

Appendix A: The type rules

syntax
A::=t I A+A I AxA

I RcdllAl,... ,l;A,-, End I {A ,..., A}

a ::= x I fun(xl:Ar ,..., x,:A,Jal a(ar ,..., a,)
I rcd11z=al,...,l,z=a, end la.1
I overload a I a + a I a*(at,...,an)

Environments

(0env) 0 env

(Senv) I’ env r I- A type

r, t5A env

(: env) r env r i-A type

r, x:A env

(RcdFonn) Vi. r i- A i type

r l-RcdllzAl ,...,l,AA, End type

(+xFom) l-l-Atypen-Btype

rt-A+/xB type

(ch.Form)

i

ii

. . .
111

iv

b% I r l- Ti choice-type

vJA~acc.ITili,~s.ITi)i,~s*A~ ITilicI

VAE acc.{T;]iELs, Vj=I.
kcrjl{Ti)iELs*k * Ti={Ti]iEI,s*A

VAEacc.(Ti]i,=L,. I’l-A I (Ti}iEls*A

VB~acc.(Ti}i,t,. VA suchthat I’/-AIB.

A= am.tT; licI,s
I’l- s choice-for (Ti)iEI

(I 1Fon-N

V

ViJEL l?k T;#Tj

VkL I’l- U; type I’l- s choice-for (Ti)ieL

VijEI s.t. I+ Ti ns,tTiliCITj. ri- Ui IUi

rl- ITi+UilieLs type

Subtypes

(Ids) n-A type

nAs4

(TransS) n-m rt-KC

(xl)

(AbsS)

rt-k<c

I’l-AIA’I’l-B<B’

ItAxBIA’xB

T,tlA,r’ env t not in P

r-t-ta

(Record I)
Vi:1 ,...,n r kAiai
Vi:n+l ,...,n+mT i-Ai type

IJ-- Rcdl ~-AI ,... ,l,,-An,mt-An+1 ,..., l&A,, End
IRCdli:Br,...,ln:B,End

({ 15) VAE aCCepted{Vj}jEJs then
AE act. (Ti } iE r,s and
k [Ti+IJi}i,I,s*A I (Vi+Wi}ie J,r’A

rk {Ti+Ui]i,I,s 5 {Vj+WjJjeJs

Expressions:

(Var:) I?, x:A, I” env x is not in I’

r, x:A, I-1 l-x: A

(Subsump) r l-a:A Tl-ASB

gA variable t (x) is in r if it is present in a left hand side of an

element t S A (x : A) of the environment.

44

r I-a:B

(+ Intro)T,xlAl,...,x;A,~bb: B

rl-fim(x1-At,..., xnAn).a: Alx...XA,+B

(+ Elim)IHAIX...XAn+B lhi:Ai

rl-f(al ,...,a& B

(RcdIntro) Vi:l,...,n l? kai.Ai

ll- ~dlt:=al,...,l,:a,end:
Rcd11~41,...,1+4~End

(RcdElim) T)-r:Rcdll~l,...,l.~A.End

r I- r.li : A i

(()Intro) Tl- fiT+U I’l- s choice-for (T)

r l- overloads f: (T+U) s

(()Add) I’k f: {Ti+Ui)iEkr rk g: Tk+Uk

rk ITi+UiIiEIu(k),s tYPe

II- f+ sg:ITi+UiIi~Iu(k),s

(()Elim) I?- f:(Ti+Ui)iELs I’l- a:A
IF (Ti)ieI,s accepts A

~f*,(a):(Ti~U;)i,Ls*A

Appendix B: Compatibility of covariance and
contravariance

Suppose that:

n-Ts-r n-mu
rt- (T-cJ),typeri-(T+V),type

We want to prove that :

rt-[T+u),5(~-+U),

i.e. that:
VAE accepted{ T’) r

AE accepted(T) s, (T+V) ,-A I (T+U),*A

Pmof:
a) Hyp.: AE accepted (7”) r

b> *i (only TE [T)) {?*kAcT

cl = (T +U) ,a A=U

“iii,b) AST

*l-ST ACT

‘T>4 min(U2AI UE (T))=min(T)=T

6) *ii (T) s*A=T

e) * (T+U’) ,*A=U

0 -d) AE accepted(T) s,

@ *e),U%U l-l-(T-N+) ,*A I (T’+U),*A

a> + f,g):
VAE accepted(T) T

AE act.(T) s and
l-l-(T+U’) ,*A I (T+U} ,*A

l-l- (T+U’} s I (T -+U) r

145

