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Abstract 

Much research has been performed with the aim of 
isolating the basic notions of object-oriented 
languages and of describing them by basic operators 
which can be embedded in strongly-typed languages. 
In this context we define an atomic linguistic 
construct to capture the notion of message passing, 
and we define a static and strong type system, based 
on subtyping, for this construct. Message passing is 
modelled as the application of an overloaded 
function, whose behavior is determined only at 
compile-time on the basis of the class which created 
a distinguished argument, the object “receiving” the 
message. By embedding this mechanism in a 
strongly-typed language with subtyping and abstract 
data types we can obtain the full functionality of 
object-oriented languages. We show that this 
approach is strictly more expressive then the usual 
interpretation of message passing as selection plus 
application of a functional record field. 

1. Introduction 

Object-oriented languages are based on the notions 
o f objects, classes, messageslmethodr and 
inheritance. 
objects are entities with a record-like state, 
collected in classes. A class plays both the role of 
an Abstract Data Type (ADT) and of a generator of 
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homogeneous objects; it is defined by specifying: 
the record type representing the structure of the state 
of the objects produced, the name of their abstract 
type, and its methods, i.e. the basic functions which 
can be applied, by message sending, to them. 

Message sending is the object-oriented version of 
function call: when a message (a pair <method 
name,args>) is sent to an object obj, the 
“corresponding” method is evaluated, receiving the 
object obj (the distinguished parameter) and args 
as parameters. Many different methods in different 
classes can correspond to a given method name; the 
one executed depends on the class which created the 
distinguished parameter (this is known as 
overloading of method names). The method 
associated to a message does not depend on the 
compile-time type of the receiving object, but on the 
class which generated the object, so that this 
meaning can be decided only at run-time (late 
binding of method names). Besides this, the method 
associated at run-time to a message could even 
belong to a class defined after the compilation of the 
code issuing the message call (dynamic extension of 
the meaning of method names) 

A new class NC can be defined by inheritance 
from an old one Oc by specifying which fields are 
added to the structure of the state of the objects of 
Oc, which new methods are added, and possibly 

how the code of some old methods changes; in this 

case NC is called a subclass of (X’. 

The high level of reusability of object-oriented 

software is due to the interplay of all of these four 

features: overloading, late binding, dynamic 

extensibility and inheritance. 

OOPSLA’91, pp. 129-145 
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The embedding of these features into languages with 
well established semantics and type systems is 
widely studied, with three objectives: 9 a formal 
understanding of object-oriented languages, l the 
definition of a strong type system for these 
languages, l the definition of languages enjoying 
both a strong foundation and the high expressivity 
and code reusability of object-oriented languages. 

Most of these researches are based on the encoding 
of the mechanisms of object-oriented languages in a 
strong type system with subtyping (see, e.g. 
[CarWeg85] [AlbGheOccOrs88] [CanHilOlt88] 
[Coo891 [CooHilCan90] [MiBO] [Red881 [Ghegl]). 
An object is represented by a record containing the 
methods of its class as functional fields; passing a 
message <methName,params> to an object obj is 
interpreted as selection and application of that 
functional field: (obj.methName)(params). This 
interpretation immediately gives overloading, late 
binding and dynamical extensibility of methods. In 
short, field names are overloaded, since a unique 
field name can be associated with different functions 

in records produced by different classes. The 

function contained in a record field does not depend 

on the record type, but is decided by the function 

which creates the record, and can be known only at 

run-time (late binding). Finally, the set of the 

meanings of a field name can be extended, since it is 

always possible to define new records where a field 

name, already used in other records, assumes new 

meanings; old code accessing this new record will 

retrieve the new meaning. In this approach class 

inheritance introduces many type-level 
complications, since it is modelled by record 

concatenation, which needs complex type systems in 

presence of subtyping [CarMit89] [Wan89]. The 

result is that in these systems either no inheritance is 
present, like in the seminal work [Car88], either 

subtyping is heavily limited, like in [CooHilCan90], 

or both inheritance and subtyping are offered, paying 

the price of very complex record subtyping rules, 
like in [MiBO] and in [CarMit89]. 

The record-based approach presents another well- 

known technical problem: the interaction of the 
subtyping rules of the record and function types used 
to codify objects, has the undesired effect that the 
argument types of methods redefined in a subclass 
can be only generalized, rather then specialized 
(specializing means changing into a subtype; 
generalizing is the inverse operation). This 
constraint on the redefinition of method argument 
types is called contravariance. 

Contravariance implies immediately that, in the 
record model, the object receiving the message 
cannot be seen as a regular argument of the method, 
since its type is necessarily specialized going from 
superclasses to subclasses; for this reason the 
receiving object is not seen as an argument but is 
accessed by its methods “by recursion” [CarWeg85]. 
But in turn, this way of accessing the distinguished 
argument entails new difficulties in the interpretation 
of inheritance as record concatenation, as discussed 
in [CooHilCan90] and [MNO]; the solutions 
proposed there destroy the simplicity of the record 
approach. 

Besides these technical problems on the 
distinguished argument, type contravariance is an 
undesired constraint also for the other method 
arguments, since experience shows that covariance 
of argument types is much more common in practice 
[DanTom88]. 

The problems above are due to the fact that the 
record-based approach is not a direct description of 
the message passing mechanism, but rather an 
encoding of it. To overcome these difficulties, and to 
study the object-oriented mechanisms at a more 
basic level, we introduce a completely different way 
of viewing objects and message passing. 

In our approach inheritance and message passing are 
modelled, respectively, by the incremental definition 
and by the application of overloaded functions. The 
meaning of our overloaded functions can be solved 
only at compile-time on the basis of the class which 
created a distinguished argument. Conversely, 
objects are just entities which can remember the 
class which created them. This mechanism reflects 
the kernel of the message passing mechanism, and 
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the record-based approach can be seen just as one 
“implementation” of this fundamental mechanism. 

We define also a strong type system for this 
mechanism, i.e. a type system such that a well-typed 
expression cannot raise any run-time failure. Despite 
late binding, this type system is static: type checking 
is performed completely at compile-time. 

This mechanism models one-half of the object- 
oriented paradigm, i.e. message passing with late- 
binding overloading, and inheritance (dynamic 
extensibility is modelled by the general mechanisms 
of the host language). The other half of the paradigm 
is represented by the possibility of encapsulating the 
state of objects and the implementation of classes. In 
our approach object-oriented encapsulation can be 
understood in terms of any general purpose 
encapsulation mechanism, like abstract data types, 
modules or existential types (see e.g. [CarWegU] or 
[MitPlo85]), since our overloading mechanism can 
be applied to the functions defined on abstract data 
types too. This is not true in the record-based 
approach, where only record field names can be 
overloaded, while the functions defined on an 
abstract data type cannot. 

To sum up, our model of message passing is more 
convenient than the traditional record-based one 
with respect to the following points: 

l It allows both covariant and contravariant 
redefinition of methods in the context of a static and 
strong type system 

l It allows studying simple and multiple inheritance 
without affecting the subtyping rules 

l Non recursive methods can be defined without using 
recursion 

But our construct allows also defining typed 
languages which are more expressive than traditional 
object-oriented languages. With respect to method 
definition, this is showed in the paper through the 
following example. Let ColoredPoint be a subclass 
of Point. In the record model, due to 
contravariance, a method equal comparing two 
Point’s cannot be overloaded to make it able to 

compare also two ColoredPoint’s. In an untyped 

object-oriented language this redefinition is allowed, 
but you cannot explicitly specify what happens when 
a Point and a ColoredPoint are compared, and this 
comparison may even raise a run-time error. In our 
model the covariant redefinition of the eq ua 1 
method is allowed, run-time failures are not 
possible, and you can even explicitly program how a 
Point is compared with a ColoredPoint. Besides 
this, in our model methods are first class values of 
the language, which is not true in the record-based 
model or in the untyped object-oriented languages. 

The paper is structured as follows. In $2 we 
introduce a basic strongly-typed language, a weakly- 
typed “traditional” object-oriented language and its 
translation in the record model. In $3 we present our 
strong type system for late-binding overloading. In 
$4 we compare our approach with other ones. In $5 
we discuss how dynamic extension and 

encapsulation can be realized. In $6 we draw some 
conclusions. 

2 Basic definitions 

2.1 A functional language 

This is the syntax of our basic functional language 
aa] means a is optional): 

Declaration:= let ide:= Val 
I let [ret ] ide [ :Type] := Val 
I let [ret ] type typeMe := Type 

Val:= constant I 2% I Declaration; Val 
I fun (z&:Type,.. .,ide:Type). Val 
I Val(Val,...,Val) 
I record label := Val,. . ., label E= Val end 
I Valhbel 
I ret ide [:Type]. Val I Val; Val I Val: Type 

Type:= typeIde I basicType I TypexType t 
I Type+Type 
I Record label : Type,. . . , label : Type End 
I Ret typeIde. Type 

A declaration 

lFor simplicity we use product types only to pass parameters 
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“let ide:=Val/ let &X typelde := typexpr” 

binds an identifier to a value or to a type in all the 
expressions which follow it, in a terminal session or 
in this paper. These are constant bindings; updatable 
references are also needed in the host language, but 
they are not defined here since they are not used in 
any example. 

‘fun (i&l:Typel,...,ide,:Type,). Val” is an 
expression which denotes a function: 

‘xit? &?a” l,..., are the formal parameters, 

“Type1 ,...,Type,,” are the type required for the 
actual parameters and “ VaZ” is the body of the 

function. “Type1 x.. .xType,+TypeR” is the type 
of this function if “TypeR” is the type of “Val”. 
“Val(Val,..., Val)” is function application. 

“record label := Val,...,label := Val end” is a 
record whose type has the form “Record label : 

Type,..., label : Type End”. Record fields can be 

selected using the notation “recfield”. The order of 
labels in records is irrelevant. 

“ret ide. expr” returns the value of expr evaluated 
in an environment where ide is recursively bound to 
the value which is being built. let ret ide := expr 
means let ide := ret ide. expr, i.e. the identifier ide 
is recursively bound to the value under construction 
(ret ide. expr) and remains bound to it after the 
construction (let ide := rec...; see the example 
below): 

“ret typeide. TypeExpr” returns the value of 
TypeExpr evaluated in an environment where 
typeide is recursively bound to the type which is 
being defined. let ret type typeide := TypeExpr 
means let type typeide := Ret typeide. expr : 

let ret type Graph := 
Record value: Int 

outStar: List of Graph 
End; 

let loop := ret self:Graph. 
record value:=O, 

outStar:= list of (self) 
end; 

let ret 1oop:Graph := 
record value:=O, 

outStar:= list of (loop) 
end; 

“Val;Val” denotes the sequential execution of two 
expressions, which returns the result of the second 
expression. 

If one of the types of “ Val” is “Type” then 
“VaZ:Type” is the same expression, but having as 
types only “Type” and all its supertypes. This 
construct is used mainly to avoid ambiguity in the 
type of terms with too many types, like the term 
denoting an empty list: writing emptylist: List of Int 
we restrict the type of this empty list to the lists of 
integers. 

The plugs “constant” and “basicType” denote a 

set of other values, operations and type constructors 
which could be useful, like lists (the constructor 
List of used above) integers, booleans, pairs etc. 

A reflexive and transitive inclusion relation, 
subtyping, is defined on types [Car88]. Subtyping 
means that if a:T and T is a subtype of U (T_QIJ 
then a:U. The typing and subtyping rules are in the 
Appendix A. 

22 A weakly-typed object-oriented language 

We exemplify a weakly-typed object-oriented 

language by adding the following C&s construct, 

to declare classes, to our micro functional language. 

Notice that the resulting language is nor our 

proposal; the construct below is just aimed to 

illustrate some points about message passing in 

weakly-typed object-oriented languages: 

let ObJType(x 1 :T 1,. . .J,:T,):= 
Chss <method0 end 

The definition above defines a new type ObjType 

and a function new[ObJType] , to generate “objects” 

of that type? <methods> is a list of bindings 

with form 

21n this micro language the state of the object has the same 

slxucture of the input parameters of the creation function; this is 

just an irrelevant simplification 
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ide(parameters:ParamTypes):=expr:ResultType; 

each of which defines a new function 

iak:ObjType +ParamTypes +ResultType , 

let redrawAllPictures := 
fun (lpics: List of Picture). 

for pit in lpics do redraw(pic); 

called “a method of the class ObJType”; the 
distinguished parameter of each method is not 
explicitly declared, and is called Sep. Classes 
can be defined “by inheritance” by extending other 
classes: 

let ChildType(x,+l :T,+l ,. . .J,,,:T,+&:= 
Class isa ParentT 1,. . JarentTt <methods> 
end 

In this case ChildType is a subtype of 
ParentTl,...SarentTt, so that any method of a 
ParentTi can be applied to values of type 
ChildType too (method inheritance). The creation 
function new[ChildType] requires all the input 
parameters of the ParentTi’s plus those added in its 
own definition (state inheritance). If a method is 
specified both in a ParentTi and in ChildType, then 
it is overloaded with the new definition; we say that 
it is extended, since it acquires a new branch 
without losing the old ones (we call branches the 
different definitions supplied for an overloaded 
method). If a method is defined in more then one 
ParentTi, but not in ChildType, then some choice 
rule of the language selects the inherited definition. 
Single inheritance means that there is just one 
parent type, so that no choice rule is needed; 
otherwise we have multiple inheritance. 

When an overloaded method is applied to an object, 
a branch is selected depending on the run-time type 
of the object (the class which created it), which is in 
general only a subtype of the compile-time type of 
the expression returning it. E.g., let Rectangle and 
Circle be subtypes of Picture; in the following 
function the expression pit has compile-time type 
Picture, but if the list @its contains rectangles and 
circles, then in each run of the for loop the redraw 
method of rectangles or of circles is selected: 

Solving overloading on the basis of run-time (resp. 
compile-time) types is called late (resp. early) 
bindingd; e.g., imperative languages use early 
binding for overloaded operators (like, e.g., a I‘+” 
operator overloaded on integer and floating point 
numbers). 

The extension of a method affects also already 
“compiled” method calls: if a new subclass Square 
of Picture is added, then the already defined 
redrawAllPictures function will afterwards select 
the new definition of redraw for objects of the class 
Square. This “dynamic extension” is a kind of 
dynamic binding, which allows changing the 
meaning of a method identifier by adding new 
branches for new subtypes. It is related to late 
binding (solving overloading using the run-time 
type) from an implementative point of view, since 
both mechanisms need a run-time binding of method 
names, but the two notions are different (cf. 95). 

The redrawAllPictures example suggests how, in 
object-oriented languages, an application, (e.g. a 
graphic editor), can be first implemented and 
packaged, and later on modified simply by adding a 
subclass (e.g. circles), without modifying or 
recompiling the existing code, exploiting critically 
all the four features of inheritance, overloading, late 
binding and dynamic extensibility. 

2.3 The record model for object-oriented 
languages 

The record model is a techinque to understand 
message passing by translating it into a functional 

language with rtecors and subtypes. We present the 

record model through one example. Consider the 

following declarations, expressed in the weakly- 

typed object-oriented toy language: 

31n the obiect-oriented jargon, objects “contain” their own 
methods, and self is not a parameter but an auto-reference 

4This distinction affects only languages with some form of 

polymorphism, like subtyping, since otherwise the run-time type 

of a value is just ifs compile time type 
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let Point(x:Int, y:Int) := Class 
get-x():= x, get_y():= y, 
equal(p:Point) := get-x( self)=get-x(p) 

& get_y( self)=get_y(p) 
end; 

let ColorPoint(x:Int, y:Int, color:Color) := Class isa 
Point 

get-color@= color, 
equal(p:ColorPoint) := get-x( self)=get-x(p) 

& get_y( self)=get_y(p) 
82 get-color( self)=get-color(p); 

end; 

In the record model they would be translated as: 

let rcx type Point :=Record get-x: Unit + Int, 
get-y: Unit -3 Int, 
equal: Point + Boo1 

End; 
let newpoint: IntxInt + Point := 

fun (x:Int, y:Int). 
let state := record x:=x, y:=y end 
in nxsself. 

record 
get-x:= fun C:Unit). state.x, 
get-y:= fun C:Unit). state.y, 
equal:= fun (p:Point). p.get-x()=self.get-x() 

82 p.get_y()=self.get-y() 
end; 

let ret type ColorPoint := 

Record get-x(y): Unit + Int, 

get-color. Unit + Color 

equal: ColorPoint + Boo1 

End; 
let newColorPoint: IntxIntxColor 

fun (x:Int, y:Int,color:Color). 

+ ColorPoint := 

let state := record x:=x, y:=y, color:=color end 
in ret self .record 

get-x( y/color):= 

fun C:Uni t). state.x(. y/. color ), 
get-colors= fun C:Unit). statecolor, 

%nformally. ret ide. expr evaluates pxpr binding id e, 
recursively, to wr itself (ret self. record(self)>. let ret ide := 
eqr means let ide := ret ide. expr. 

equal:= 
fun@:ColorPoint). 

p.get-x()=self.get-x() 
& p.get_y()=self.get_y() 
& p.get~color()=self.get~color() 

end; 

Notice that a class definition is expanded into the 
definition of a record type and of a function which 
creates new records of that type (the objects). The 
fields of these records correspond just to the 
messages which can be sent to them, while the state 
of the object is codified in a local variable shared by 
these fields, called state above (actually this local 
variable is not needed to translate the toy language, 
while it is useful in general to model state 
encapsulation). To get the x coordinate of an object 
aPoint the expression uPoint.get-x() is used; the 
implicit argument of the get-x method, which 
would be aPoint, is not given explicitly, by writing 
aPoint.get-x(aPoint) , but is accessed by the get-x 
method using the variable self which recursively 
refers to the whole object, aPoint in this case. 
Notice that, intuitively, there is nothing really 
recursive in trivial functions like get-x or equal 
above; we will see that in our model this kind of 
recursive definitions is avoided. 

The example above is a critical one, since 
ColorPoint should be a subtype of Point, since it is 
defined by inheritance from Point (in the weakly- 
typed source code), but it is not a subtype due to the 
covariant redefinition of the argument type of the 
equal method6 , and for this reason, in most 
strongly-typed object-oriented languages, the 
definition above would not be well-typed; the 
remaining part of this section is devoted to a better 
understanding of this problem. 

Notice that in the above example the ability of 
defining classes incrementally (through inheritance), 
which we find in the source code, is lost in the 
translation: the type ColorPoint and the function 
newColorPoint are fully defined without exploiting 
the similarities with the preceding two definitions. In 

6For subtyping, recursive types are equivalent to their infinite 
tree expansion; see [AmaCar90] for more details about 
subtyping and recursive types. 
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more powerful record models (see e.g. [MitgO]), 
inheritance is present, and is codified by using 
record concatenation operators, but other problems 
then arise. 

2.4 Inheritance and subtyping 

A subclass SubC inherits from SuperC wkn 
S&C is defined by describing how it differs from 
SuperC; a type T is a subtype of a type U if all the 
elements of T have also type U; so subtyping and 
inheritance are very different notions. However, in 
strongly-typed object-oriented languages, the type of 
a subclass is usually required to be a subtype of that 
of its superclasses, to assure that well-typed methods 
remain well-typed when are inherited. In fact a 
method in a superclass with element type 
SuperObjType is type-checked supposing 
seCf:SuperObjType; when the method is inherited in 
a subclass with element type SubObJType, it should 
be type-checked another time, under the assumption 
self:SubObjType. This second type-checking can be 
avoided if SubObjType is required to be a subtype 
of SuperObJType, since in this case 
self:SubObJType implies se&:SuperObJType, 
which in turn implies the well-typing of the method. 

While some important approaches to inheritance 
and subtyping support a weaker link between the 
two notions, notably [CanCooHil90] and [MiBO], 
this linking is a positive feature of object-oriented 
languages which leads to a better structuring of class 
definitions. 

2.5 Contravariance of method arguments in the 
record model 

In the record model an object type can be a subtype 

of another one only if the corresponding record types 

are in the same relation; so, when a record subtype is 
defined by modifying (by inheritance) a record 

supertype, the types of the fields which already exist 

in the super-type, can be only specialized in the 

subtype. Methods are encoded by functional record 

fields, and functions can be specialized only by 

generalizing, and not by specializing, the argument 

type (i.e. T+U -< T’+U only if T’g). For this 
reason, in the record model, when a method type is 
redefined in a subclass, its argument type can be 
only generalized; this is a problem, since in many 
programming situation specialization would be 
needed. But contravariance is not just an accidental 
result of some combination of formal rules, which 
could be relaxed just by adopting different rules; it is 
really needed to obtain type-safety in the weakly- 
typed and record-based approaches, as exemplified 
below. 

Example: due to the covariant specialization of the 
type of the other parameter of the equal function in 
the ColorPoint type, ColorPoint is not a subtype of 
Point, and if this relation holded, run-time errors 
could occur: 

let Point(x,y: It) := Class 
get-x/y0 := x/y; 
equal(p:Point) := get-x(p)=get-x(self) 

22 gety(p)=get-yWO 
end 

let ColorPoint(x,y: Int, color:Color) 
:= Class isa Point 

get-color0 := color, 
equal(other:ColorPoint) := 

get-x(other) = get-x(self) 
& get_y(other) = get_y(self) 
& get-color(other) = get-color(self) 

end 

let one:=new[Point](l,l); 
let oneBlue:= new [ ColorPoint]( 1,l ,Blue); 
equal(oneBlue)(one); * ???? 

If ColorPoint were a subtype of Point, the last 
application of equal would be allowed, the 
ColorPoint equality would be selected by late 
binding (think to oneBlue.equul(One) in the record 
model) and a get - color message would be sent to 
one, resulting in a run-time failure. So this example 
shows that the contravariance constraint cannot be 
relaxed in a type safe way without a reconsideration 
of the run-time semantics of the message passing 
mechanism, like the one studied in the next section. 
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3 The proposed type system 

In this section we define a static strong type system 
for late-binding overloading. Late binding 
overloading allows message passing to be expressed, 
but is still more expressive; as a result, it allows, in a 
type safe context, both covariant and contravariant 
redefinition of method types. 

Our overloading mechanism is defined by an 
operator which allows transforming a regular 
function in a one-branch overloaded function, an 
operator to extend an overloaded function by adding 
new branches to it, and finally by an operation of 
overloaded function application. Overloaded 
application selects a branch of the overloaded 
function, on the basis of the run-time type of a 
distinguished argument, and then applies that branch 
to the argument. In 93.1 we give the rules which 
specify how these constructs are typed, in the case of 
single inheritance, and which subtyping relation is 
defined on overloaded function types, and we 

discuss the compatibility of covariance and 

contravariance in our model. In 53.2 we generalize 

this discussion to the case of multiple inheritance, 

dealing with the conflict resolution rules at a general 

level. In $3.3 we exemplify our approach. In $3.4 we 

state some further observations. 

3.1 The type rules of overloadedfunctions 

In our model each branch of an overloaded function 

is associated with an “expected input type” T, which 

is just the input type of the branch seen as a non- 

overloaded function. If the run-time type of the 

argument is exactly one of the “expected input 

types”, the corresponding branch is selected. 

Otherwise a choice rule is invoked, such that in any 

case the selected input type is a supertype of the nm- 
time argument type; if the set of those eqected 

input types which are supertypes of the run-time 

argument type has a minimum, that minimum is 

selected. We do not specify how choice rules are 
defined, but we define which sets of branches can be 

put together, with type rules which are “parametric” 
with respect to the way of specifying choice rules. 

With single inheritance, for any run-time argument 
type, a minimum supertype always exists in the set 
of the expected input types, so that there is no need 
of specifying a choice rule. The absence of choice 
rules, which are also missing in approaches different 
from single inheritance, simplifies greatly the type 
rules and the notation, and we now address this. The 
more general setting, where the minimum supertype 
is not always defined, is sketched in the next section. 

The type of an overloaded function with branches 
with expected input types Al, AZ, and A3, and 
result types, respectively, Bt, B2 and B3 is 
denoted as {AI+B~,A~+B~,A~+B~] or (at 
the meta-level) as {Ai+Bi]iEf1,2,3), 

The first rule below specifies which sets of types 
can be combined to form a well-formed overloaded 
type, and implicitly which sets of branches can be 
combined to form a well-formed overloaded 
function. Type rules should be read backward; for 
example the rule below can be read as: “(in the 
environment r) {Ti+Ui}igI is a well formed type 
if a) for any i in I, Ti is a choice-rype and Ui is a 
type, and if for any iJ in I if Ti I Tj then Ui I 
Uj"; r is an environment collecting information 
about the free variables. Well-formed overloaded 
types are definedby the rule below simply as those 
types where all the component functional types are 
“mutually compatible”. Mutual compatibility means 
that if the input types are in the subtyping relation, 
the output types are related in the same way; we will 
see in the next section that in case of multiple 
inheritance the compatibility condition is slightly 
stronger. 

(( )FOITII) VIE I. TF Ti choice-type, IF Ui type 

Vi,jEI rl- Ti ITi qrl- U; 5Ui 

The condition r /- Ti choice-type, which is not 
formally specified here, models the fact that in real 
systems not every type is accepted as an expected 
input type; however, in our examples below we will 

‘IThis V is a meta-level finite quantification 
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accept any type as a choice type. In object-oriented 
languages, only object types are accepted as choice 

tYP= 

The result type of an overloaded function application 
is determined by applying the l (choose) operator 
to the set of the expected input types of the 
overloaded function and to the argument type: 
fli}igrA selects from the set of expected input 
types /TAigI the type corresponding to the type A. 
In the case of single inheritance, that type is the 
minimum supertype of A in FaiEIv if it exists; 
fli+UdiEI returns Ui if fli)i,rA returns Ti. 
The condition {Ti}igI accepts A is satisfied when in 
fli]i,l there is a type which corresponds to A; in 
the case of single inheritance, this means simply that 
in fli)iEI there is one supertype of A. The 
application of an overloaded function is denoted 
here as f;a to stress the fact that applying an 
overloaded function is different from applying a 
regular function, since it involves both a branch 
selection and a function application. 

([]Elim) Tl- f: (Ti+Ui)isI I’i- a:A 

rl- {Ti)i.taccents A 

I’/- f*(a): (Ti+Ut)ieI*A 

The same l notation is used at the type and at the 
value level just to indicate that the same rule is used 
to choose a type in (Ti+Ui]ieI at compile-time and 
to choose a branch in fat run-time. However, the 
branch of the type which is selected at compile-time 
could not correspond to the branch of the function 
which is selected at run-time. In fact we have shown 
in section 2.2 that the compile-time type of an 
expression is generally only a supertype of the run- 
time type of the corresponding value. The 
compatibility condition (Ti I Tj 3 I’ I- Ui I Uj) of 
the formation rule assures that in any case the type 
which is computed at compile-time for the 
overloaded application is a supertype of the actual 
run-time type of the result. 

An overloaded function is defined by starting from a 
regular function and adding new type-branch pairs 
with the + operator; a simpler approach could be 

obtained by identifying regular functions with one- 
branch overloaded functions: 

(()IntIo) rt- f:T+U 

I’k overload f: (T-GJ) 

((}Add) II- f: (Ti+Ui}ieI 

rt- g: Tk+uk TkP (TiliEI 

rI- (Ti+UiIieIu(k) tyPe 

rk f+g: (Ti+‘JiJiczIu{k] 

In general, AIB means that for any context C[x], if 
any element of type B can substitute x in a type- 
safe way, then also any element of type A can be 
inserted in C[X]; this implies that if Tcll~ (resp. 
TcI]~) is the type of the expression obtained by 
putting an element of type B (resp. A) in that 
context, then Tc~]p ITcI]B. From this definition 
we have the following general rule (to be read 
backward, as usual): 

(OS) Y’sAsuchthat (Vj)jEJaLXXptSA. 

(Ti}iEI accepts A and 

I’I- (Ti+Ui}iel*A I (Vj+Wj]jE JoA 

ri- (Ti+Ui)iEII (Vj+Wj)js J 

Even if this is not apparent, the usual contravariance 
rule for subtyping can be derived from the rules 
above. More formally, in Appendix B it is proved 
that, even in the general case: 

l-l- TIT, Il- U’IIJ 3 I-l- (T+U’}I (T’+U) 

This observation helps to clarify the fact that our 
system is a conservative extension of the traditional 
type systems for subtyping. In our system covariance 
and contravariance both exist with two neatly 
different r6les. Covariance is the compatibility 
constraint to be satisfied when different branches of 
an overloaded function are put together, used in the 

rule of type formation, while contravariance is the 

condition for subtyping, used only in subtyping 

rules, with no contrast between the two notions. At 

the end of section 3.3 we will show that the 

covariance condition does not prevent the 

contravariant specialization of method argument 
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32 Constraints on the set of types of an 
overloadedfunction in case of multiple inheritance 

In this section we define at a general level which sets 
of types can be combined to form a well-formed 
overloaded type, in the general case of multiple 
inheritance, when choice rules are necessary to 
select one specific supertype of the run-time 
argument among the expected input types. This 
study is general in the sense that we do not commit 
to any specific mechanism for specifying choice 
Nles. 

For generality we suppose that each overloaded 
function contains its choice rule, which is also a part 
of its type; this is a heavy formalization which is 
made here to carry on this discussion at the highest 
level of generality; by selecting a specific way of 
defining this choice rule we can model, and 
compare, some of the known approaches to multiple 
inheritance. So the type of an overloaded function 
with a choice rule r is now denoted by 
{A+T,...,B+u,. Instead of detailing how choice 
rules can be specified, we formalize some 
constraints on their behaviour, to preserve the 
property that the compile-time type of any 
expression is a supertype of the possible run-time 
types of its values. Since no operation fails if the 
run-time type of its argument is a subtype of the 
expected type, this property implies that typed 
expressions never fail, i.e. that our type system is 
strong. 

The well-fonnedness conditions for an overloaded 
type are the following ones: 

Notation : 
fli)i,I,y*A is the type selected for A by the 

choice rule s among fl$iEl 

iTdi,I,s accepts A 
means “fli)icIsaA is well defined” 

fli+TiJigls*A=Uj 
is the same as fli]iEIJ*A=Tj 

i 

ii 

. . . 
111 

iv 

(internal choice) VT. (Ti)icb*AE (Ti}iEI 

(nearest choice) VjE I kcrjl(Tt]i~I+*A 
* Tj=(Ti]iELs*A 

(supertype choice) VA r I- A 5 (Ti]iELs*A 

(downward closure) 
VA& ll-A<B, (Ti)i,ls accepts B 

* ITilieLs =cepB B 

v,8 (choice covariance) 

Conditions i-iii do not need any explanation. 
Conditions ii specifies that no type in {Ti}i,l can be 
“nearer” to A than the selected type; it implies that, 
if a minimum supertype of T exists among fli)icI, 
that minimum is selected. To understand the last two 
constraints, suppose that AcB (i.e. AIB and A#B), 
that T is a type unrelated to U and that fifA+T, 
B 4-J r. Suppose that f is applied as an overloaded 
function to the value of an expression b whose 
compile-time type is B, and whose run-time type is 
A (e.g. b is a formal parameter of type B which is 
bound to an actual parameter created with type A). 
Since the compile-time type of b is B, then the 
compile-time type of F(b) is U. But when f is 
applied to a value b with run-time type A, the late 
binding mechanism selects, among the f branches, 
the piece of code with type A+T, so that the 
application returns a value with run-time type T, 
unrelated with its compile-time type U. The rule v s 
prevents this kind of problem by forcing the type T 
to be a subtype of the output type U computed by 
the compiler, while rule iv enforces the condition 
that for any possible run-time type A corresponding 
to a compile-time type B the corresponding branch 
selection is well defined. 

To express condition vs in a more useful way, we 

define the following preorder on a set z of expected 

input types with respect to a choice rule s (T+& 
read T can be chosen for U by s in 2): 

*The s subscript stands for “strong covariance” since we 

have also a weaker form of this rule, vw. 
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Def.: (subtype choice preorder) 

T%~U *def 3ASB: 2mSA=T, ~*,B=U 

Lemma: z&T extends 2 on 2; Q is reflexive and 
transitive 

Condition v, can be now expressed as: 

vs (choice covariance for (Ti+Ui)i,Ls): 

VijEI. rk Ti Gs,ITiliEITj 3 rt- Ui IUj 

In systems without multiple inheritance, i-iv are 
satisfied by the choice rule selecting the minimum 
expected input supertype of the argument type, and 
vsctIong) is equivalent to the following requirement, 
which is weaker than the one needed in the general 
case: 

vw (type covariance for s,(Ti+Ui)i,Ls): 

ViJEI. I’l- Ti <Tj * rt- Ui SUj 

The five conditions above can be exploited to 
discuss, with some generality, how choice rules can 
be specified in the case of multiple inheritance. We 
do not enter in this discussion, but simply list some 
of the possibilities: 
l When a new choice-type with multiple ancestors is 

defined, all the overloaded functions defined for a 
non-empty set of supertypes of this type without a 
minimum have to be explicitly overloaded for this 
type. With this constraint condition ii specifies 
completely how the choice is performed, so that no 
choice rule has to be specified. 

l When a new choice-type with multiple ancestors is 
defined, a linear order is defined on its immediate 
ancestors. PA always chooses the minimum 
supertype of A with respect to this order. 

l A global linear order is defined on all the choice 

types; VA always chooses the minimum 
supertype of A with respect to this order. 

l Single inheritance. 

By specializing our constraints to the four cases 
above we obtain the rules specifying what must be 
checked whenever a new choice type is defined. In 
this way we can compare in a unique setting 
different approaches to multiple inheritance, which 

is more difficult in the record model. 

3.3 An example 

We will now exemplify the proposed approach, 
using just single inheritance for simplicity. For 
simplicity we suppose that every type can be used as 
an expected input type, while restricting these types, 
for example to products of named data types or of 
abstract data types, would be more usual (named 
data types are used in [ AlbGheOrs911). We consider 
again the ColorPoint example of $2.5: 

let type P := Record x: Int, y: Int End; 
let eql: {PxP+Bool} := 

overload (fun (p,q:P). p.x=q.x & p.y=q.y; 

let type CP 
:= Record x: Int, y: Int, color: Color End; 

let eql: (PxP+Bool, CP~8+Bool) := 

eql 
+ (fun (p,q:CP). eql*(p,q) & p.colo~q.color); 

let eq2: (PxP+Bool, CPx@+Bool, 
PxCP+Bool, CPxP+Bool] := 

eql + (fun (p:P,q:CP).false) 
+ (fun (p:CP,q:P).false); 

let OneRed (OneBlue) := 
record x:=1 ,y:=l ,color:=Red(Blue) end; 

let One := record x:=l,y:=l end; 

eql (OneBlue,OneRed) + false 
% OneBlue and OneRed are compared as colored 

eql (OneBlue,One) + true 
% We can safely compare Points and ColorPoints 

eql (One,OneBlue) + true 
% eql compares them as Points (One=OneBlue) 

eq2(0ne,OneBlue) + false 
% eq2 does not equate colored and uncol. points 

eql is a safe version of the old equal method; it 
compares a point with a colored point as if they were 
both points, and never fails, while in $2.5 we have 
seen that eqI(OneBlue,One) would fail, if allowed, 

in the traditional model. eq2 shows that we can 

decide how a point is compared with a colored point 
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(consider them always different (eq2). or compare 
them as uncolored (eql), or consider an uncolored 
point as a transparent one...). So our general- 
purpose overloading is both safer and more 
expressive than the weakly-typed object-oriented 
overloading, and more expressive than the record 
model, where eql was ill-typed and eq2 not 
expressible. 

The possibility of selecting a branch on the basis of 
more then one parameter is the origin of the 
expressive power of our approach; the outermost + 
in each element of the overloaded type specifies the 
examined parameters. For example, consider the two 
following overloaded types: 

The first case is the type of an overloaded function 
which selects the branch on the basis of both 
arguments, in the second case only the first 
argument is considered for branch selection. Notice 
that if AIB and B not I A, only the first type is well 
formed; so in the second case, where choice is 
restricted to just one argument, our approach has the 
same contravariant behaviour of the traditional one. 
On the other hand the following types are both well 
formed: 

((A XN +T, (B XB) +V r 
{(AxB)+T, @XA)+T) r 

The first one is the type of a two-parameters 
functio, where the second parameter is specialized in 
a covariant way when the first parameter is 
specialized to type B. The second one is the type of a 
function where the second parameter is generalized 
in a contravariant way to type A when the first 
parameter is specialized to type B. Both types are 
well-formed, showing that in our approach both 
covariant and contravariant argument type 
specialization are allowed. 

3.4 Final considerations 

Our approach to overloading is very general, but 

many instances of that approach have unpleasant 
properties. In object-oriented languages only object 
types, i.e. named user defined abstract data types, 
can be used as choice type. But user defined types 
can acquire new subtypes, when new types are 
defined, so that well-formed types can lose well- 
formedness. For example, suppose that two types 
Worker and Student are defined, and that an 
overloaded function co& of type 
~orker+lnt,Student+String]r is defined too. 
The type of code is well formed until Worker and 
Student have no common subtype. As soon as such 
a common subtype TeachingFellow is defined, the 
well-formedness of the type of the code function 
would depend on the behaviour of its r choice 
method. We can distinguish three alternative ways to 
deal with this problem: 
*avoiding user defined types: this is an elegant 
approach, but cannot be used to understand object- 
oriented languages 

*fixing the set of user defined types: also in this case 
we avoid the problem of evolving type hierarchies, 
but this approach is effective only to study the 
type-system of object-oriented languages which are 
implementated in a compilative way, where the 
program is read once to collect the type hierarchy 
and a second time to type-check the methods, and is 
not useful to study languages which are suitable for 
an interactive use 

*allowing evolving hierarchies: this is the general 
and most interesting case. 

Our general approach encopasses all the three cases 
above, but is expecially useful to deal with the last 
case, which is the most interesting and important 
one. 

4 Related researches 

4.1 The Canning Cook Mitchell Hill Olthoff 
approach 

Method covariance has been obtained by W. Cook, 

J. Mitchell and others in the important case when all 

the arguments have the same type (like in the 

comparison examples above) [CooHilCan90] 

. 
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[Mit90]. They use the record model, but they allow 
the definition of functions which operate not only on 
all the subtypes of a type, but on a wider set, 
exploiting their notion of F-bounded quantification 
[CanCooHilMitOlt89]. Then a subclass can inherit 
methods even if its type is not a subtype of the 
superclass, at least in the limited case cited in the 
second line; so the covariance-contravariance 
dilemma is faced by breaking the subtyping- 
inheritance link. 

The Cook-Canning-Hill and Mitchell approaches 
(which are different but share these basic ideas) are 
much more complex than traditional approaches, 
since they rely on F-bounded quantification. 
Moreover, inheritance, which is realized in our 
model by the overloading “+” operator, is realized in 
these approaches by using record concatenation, 
which is not compatible with the standard record 
subtyping rules. To allow record concatenation, in 
the Cook-Canning-Hill approach values of a subtype 
cannot be substituted for values of supertypes 
everywhere, but only as parameters of functions 
where this substitution is explicitly allowed; this is a 
very limited use of the subtyping mechanism. On the 
other hand the concatenation problem is solved in 
the Mitchell approach by retaining the usual notion 
of subtyping, but by exploiting a more complex type 
system, where record types contain not only some of 
the labels which must be found in the record but 
also some of the labels which cannot be there. 

Besides this, these approaches solve just a specific, 
even if important, case of covariance, and in this 
case they do not have full subtyping but only 
inheritance plus that weaker notion of subtyping 
which is expressed by F-bounded quantification. But 
this comparison is not fair, since solving a special 
case of the covariance-contravariance conflict is not 
the basic aim of the Cook-Canning-Hill and Mitchell 
approaches, whose fundamental contribution is a 
clean definition of the operation of inheritance in the 
record-based model and of its relation with 
subtyping and with record concatenation. 

42 Overloading and conjunctive types 

A type can be read as a predicate satisfied by its 
values, e.g., “EA+B” means: f is a function which, 
receiving a parameter satisfying A, does not raise 
run-time type failures, and its result satisfies B. In 
this setting, subtyping is implication: ASB means 
that every value satisfying A satisfies also B. 
Conjunctive types are types which represent the 
conjunction of the predicates associated to their 
component types; they have been introduced by 
Coppo, and have been studied in the context of 
programming languages by Reynolds (see e.g. 
[CopSl] [Rey77]). Record types are a kind of 
conjunctive type: “r:Record 1:A End” means “r.1 
returns a value satisfying A”, and “r:Record 
11 :A1 ,...,ln:An end” is a conjunctive type meaning 
“r:Record 11 :A1 end A. ..A r:Record 1,.-A,, end”. 
Conjunctive types are strictly related to non-trivial 
subtypes: (P A Q) a P becomes, in the language 
of types, {A A B} I {A]. Our overloaded functions 
can be read as another special case of conjunctive 
types, since f:(A+B, C+D] means “f:A-+B A 
EC+D”. This link is important mainly from a 
semantic point of view, since conjunctive type 
possess a clear semantics based on intersection (or 
on indexed products, see [BruLon90]), which can be 

transferred to our overloaded function types. 

6 Type safe dynamic extension and 
encapsulation 

Our model supports directly inheritance, overloading 

and late binding, but does not support dynamic 

extensibility and encapsulation, which are the other 

two features of the object-oriented approach. In this 

section we give a hint about the encoding of these 

two features. 

Dynamic extensibility must be simulated in a 

strongly-typed language with static binding by 

exploiting updatable references; a method is 

modelled as an updatable reference to an overloaded 

function, and dynamic extension is modelled by 

updating that reference. This is possible, in a 

strongly-typed context, since dynamic extension 
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always extends an overloaded function with type 

fli+Ui)i.I to an overloaded function with type 
fTi-?‘Ui)iEJ, such that 

Encapsulation, in our approach, is truly orthogonal 
to message passing; this is one important result, 
since breaking down the features of object-oriented 
languages into orthogonal atomic notions is among 
the aims of this research. In our approach, 
encapsulation can be obtained by using any of the 
well known mechanisms of ADT’s, existential types 
or modules (see [MitPlo85], [CarWeg85]). 

Referring to our example, we can encapsulate the 

type Point in a module exporting an abstract 
version AbsPoint of it, together with a creation 
function and a selector equal: AbsPoint+Int. In 
another module we can do the same with the type 
CPoint, and finally we can collect the two equal 
functions into one overloaded function. This is not 
possible in the record-based approach (refer to the 
translation in $2.3), since in that case, once equal 
has been transformed, by a general purpose 
encapsulation mechanism, from a record field name 
to a function name, then it is no more possible to 
overload equal. For this reason, in the record-based 
model, encapsulation cannot be considered 
orthogonal to message passing. 

This is just a very brief discussion about 
encapsulation; to be more complete we should 
distinguish encapsulation at least into state 
encapsulation and method implementation 
encapsulation, which are actually supported in the 

record model, and ADT-like encapsulation, i.e. the 

possibility of specifying that an object type is 

different from any other, which, in the record model, 

suffers from the problem highlighted above. 

7 Conclusions and directions for future work 

We have defined a static and strong type system for 

late-binding overloaded functions. It can be used to 

give a strongly-typed model for object-oriented 

languages which is strictly more expressive than the 

classical record-based model, and even of the 

traditional untyped model. We have discussed the 
origins of the well-known conflict contravariance- 
covariance and have formally shown that the two 
notions are not mutually exclusive. 

We have left many details to be verified. We should 
show that, e.g., a notion of state, the “super” 
operator of object-oriented languages, and mutual 
recursion among methods, could be all added 
without problems in our approach. The extension of 
our mechanism to languages offering parametric 
polymorphism and existential types, like Fun 
[CarWeg85], raises many interesting issues. 

We should prove decidability of type checking for 
our type system. The fact that subtyping in this 
system is not irreflexive, i.e. there exists U#V such 
that USV and V<U, could constitute a problem 
[CurGhe91]. It can be solved by introducing a 
calculus at the type level equating all and only the 
pairs of types which are mutually subtype-related. 

We should define formally operational and 
denotational semantics for our operators, and then 
we should give a formal proof of the property of 
strong typing for our system. The kernel of this 
proof is the property run-time type_<compile-time 
type, discussed in the paper, while the remaining 
pan of the work should be routine. 

Finally we could design a little object-oriented 
language around our type system to prove its 
usability. 
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Appendix A: The type rules 

syntax 
A::=t I A+A I AxA 

I RcdllAl,... ,l;A,-, End I {A ,..., A} 

a ::= x I fun( xl:Ar ,..., x,:A,Jal a(ar ,..., a,) 
I rcd11z=al,...,l,z=a, end la.1 
I overload a I a + a I a*(at,...,an) 

Environments 

(0env) 0 env 

(Senv) I’ env r I- A type 

r, t5A env 

(: env) r env r i-A type 

r, x:A env 

(RcdFonn) Vi. r i- A i type 

r l-RcdllzAl ,...,l,AA, End type 

(+xFom) l-l-Atypen-Btype 

rt-A+/xB type 

(ch.Form) 

i 

ii 

. . . 
111 

iv 

b% I r l- Ti choice-type 

vJA~acc.ITili,~s.ITi)i,~s*A~ ITilicI 

VAE acc.{T;]iELs, Vj=I. 
kcrjl{Ti)iELs*k * Ti={Ti]iEI,s*A 

VAEacc.(Ti]i,=L,. I’l-A I (Ti}iEls*A 

VB~acc.(Ti}i,t,. VA suchthat I’/-AIB. 

A= am.tT; licI,s 
I’l- s choice-for (Ti)iEI 

(I 1Fon-N 

V 

ViJEL l?k T;#Tj 

VkL I’l- U; type I’l- s choice-for (Ti)ieL 

VijEI s.t. I+ Ti ns,tTiliCITj. ri- Ui IUi 

rl- ITi+UilieLs type 

Subtypes 

(Ids) n-A type 

nAs4 

(TransS) n-m rt-KC 

(xl) 

(AbsS) 

rt-k<c 

I’l-AIA’I’l-B<B’ 

ItAxBIA’xB 

T,tlA,r’ env t not in P 

r-t-ta 

(Record I) 
Vi:1 ,...,n r kAiai 
Vi:n+l ,...,n+mT i-Ai type 

IJ-- Rcdl ~-AI ,... ,l,,-An,mt-An+1 ,..., l&A,, End 
IRCdli:Br,...,ln:B,End 

({ 15) VAE aCCepted{Vj}jEJs then 
AE act. (Ti } iE r,s and 
k [Ti+IJi}i,I,s*A I (Vi+Wi}ie J,r’A 

rk {Ti+Ui]i,I,s 5 {Vj+WjJjeJs 

Expressions: 

(Var:) I?, x:A, I” env x is not in I’ 

r, x:A, I-1 l-x: A 

(Subsump) r l-a:A Tl-ASB 

gA variable t (x) is in r if it is present in a left hand side of an 

element t S A (x : A) of the environment. 
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r I-a:B 

(+ Intro)T,xlAl,...,x;A,~bb: B 

rl-fim(x1-At,..., xnAn).a: Alx...XA,+B 

(+ Elim)IHAIX...XAn+B lhi:Ai 

rl-f(al ,...,a& B 

(RcdIntro) Vi:l,...,n l? kai.Ai 

ll- ~dlt:=al,...,l,:a,end: 
Rcd11~41,...,1+4~End 

(RcdElim) T)-r:Rcdll~l,...,l.~A.End 

r I- r.li : A i 

(()Intro) Tl- fiT+U I’l- s choice-for (T) 

r l- overloads f: ( T+U) s 

(( )Add) I’k f: {Ti+Ui)iEkr rk g: Tk+Uk 

rk ITi+UiIiEIu(k),s tYPe 

II- f+ sg:ITi+UiIi~Iu(k),s 

(()Elim) I?- f:(Ti+Ui)iELs I’l- a:A 
IF (Ti)ieI,s accepts A 

~f*,(a):(Ti~U;)i,Ls*A 

Appendix B: Compatibility of covariance and 
contravariance 

Suppose that: 

n-Ts-r n-mu 
rt- (T-cJ),typeri-(T+V),type 

We want to prove that : 

rt-[T+u),5(~-+U), 

i.e. that: 
VAE accepted{ T’) r 

AE accepted(T) s, (T+V) ,-A I (T+U),*A 

Pmof: 
a) Hyp.: AE accepted (7”) r 

b> *i (only TE [T)) {?*kAcT 

cl = (T +U) ,a A=U 

“iii,b) AST 

*l-ST ACT 

‘T>4 min(U2AI UE (T))=min(T)=T 

6) *ii (T) s*A=T 

e) * (T+U’) ,*A=U 

0 -d) AE accepted(T) s, 

@ *e),U%U l-l-(T-N+) ,*A I (T’+U),*A 

a> + f,g): 
VAE accepted(T) T 

AE act.(T) s and 
l-l-(T+U’) ,*A I (T+U} ,*A 

l-l- (T+U’} s I (T -+U) r 
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