The Query Language TQL

Giovanni Conforti

Antonio Albano Dario Colazzo

Giorgio Ghelli

Paolo Manghi Carlo Sartiani

Dipartimento di Informatica, Universita di Pisa, Pisa, Italy

April 29, 2002

Abstract

This work presents the query language TQL, a query lan-
guage for semistructured data, that can be used to query
XML files. TQL substitutes the standard path-based
pattern-matching mechanism with a logic-based mecha-
nism, where the programmer specifies the properties of the
pieces of data she is trying to extract. As a result, TQL
queries are more ‘declarative’, or less ‘operational’, than
queries in comparable languages. This feature makes some
queries easier to express, and should allow the adoption of
better optimization techniques. Through a set of exam-
ples, we show that the range of queries that can be declar-
atively expressed in TQL is quite wide. The implementa-
tion of TQL binding mechanism requires the adoption of
non-standard techniques, and some of its aspects are still
open. In this paper we implicitly report about the current
status of the implementation by writing all queries using
the version of TQL that has been implemented, and that
can be freely downloaded from //tql.di.unipi.it/tql.

1 Introduction

The Tree Query Language [1] (TQL) is a query language
for tree-shaped semistructured data. The language is
based on the set comprehension (match-filter-construct)
paradigm, in the tradition of SQL, StruQL, Lorel, Quilt,
XQuery (among many others). However, the match-filter
operation is expressed in TQL using a variant of the am-
bient logic [2], a logic defined to describe process structure
and behaviour. TQL adopts a subset of that logic, for its
ability to describe trees.

The TQL logics is used to express the binding (match-
filter) part of a query. The same logic can be exploited to
describe those properties of the data that are usually ex-
pressed through types and constraints. This implies that:

e TQL queries can be exploited in order to check
whether a data source has a type, or satisfies a con-
straint;

e whenever a type or a constraint C' is known to hold for
a data source, the binder B of TQL queries is equiv-
alent to its refinement B A C, which is a legitimate

The contact author is Giovanni Conforti confor@di.unipi.it

TQL binder, as we will see. This refinement opens
the way for new optimizations, or even for the static
declaration of an empty result, if the unsatisfiability
of B A C can be detected.

We will exemplify later these two properties.

The promise of combining the expression of types, con-
straints, and queries in just one language, and to use this
synergy for optimization and error-checking purposes, is
the kernel of the TQL project. But the language is also
worth studying for its ability to express complex queries by
declaring the properties of what one is looking for, instead
of describing a path to arrive there. While most interesting
properties, as we will show through examples, are heavily
path-based, others involve negation, implication, universal
quantification, and are expressed in other languages, such
as XQuery, by resorting to external functions or by oper-
ational means, which makes optimization and formal rea-
soning on the queries quite harder. While many program-
mers are perfectly comfortable with operational-oriented
programming and reasoning, others find declarative ex-
pression easier, and there is at least a pattern, exemplified
in Section 5.3, where the TQL style clearly pays off. In
TQL, whenever you are able to describe a property of a
specific tag (e.g., title is a key for each article), by substi-
tuting the constant with a variable you obtain the query
that finds all tags with the same property (e.g., find all
pairs x, y such that tag x is key for y).

This feature is reminiscent of prolog-like languages.
However, TQL does not share datalog problems with nega-
tion, partly because TQL is born with negation, and
mostly because we restrict ourselves to a monotone form
of recursion.

In the rest of the paper we present the expressive power
of TQL, and some of the properties we discussed here,
through a succession of examples, all tested on the current
TQL implementation. In some cases we also present an
XQuery equivalent query, for the sake of comparison, and
also to clarify our usage of the terms ‘declarative’ and
‘operational’ expression of queries.

The current version of TQL data model is unordered.
This makes TQL unusable in document-oriented applica-
tions, but this lack of order is very important, in terms of
allowed optimization, in database-like applications. Deal-
ing with order is left as a future extension.

2 Related work

Many query languages for semistructured data and XML
have been designed in the past years: StruQL, Lorel, XQL,
XML-QL, YATL, etc. Building on this research, W3C is
designing XQuery [3], a standard query language for XML
data, which subsumes many concepts coming from these
languages. XQuery (still a work in progress) is a typed,
Turing-complete query language that can be used in both
XML-enabled database systems and native XML systems.

While TQL and XQuery are based on the same bind-
filter-reconstruct paradigm, they differ in many aspects.

First of all, TQL, by design, is based on a logic that can
express types, constraints, and queries, and is tailored for
formal, and automated, manipulation. On the other side,
XQuery is designed as an industrial-strength language,
aimed at both database-oriented and document-oriented
applications. As a consequence, TQL has a very sharp
semantic definition, that can be completely defined in one
page of formulae, while XQuery semantics is much more
complex. On the other side, XQuery data model supports
order and oid-like information, which are not dealt with
in the current TQL version.

Second, even though XQuery expressive power is greater
than TQL’s (the former is Turing-complete), some queries
can be more easily expressed in TQL, thanks to the greater
expressive power of the tree-logic with respect to a pure
matching mechanism.

Finally, XQuery features powerful vertical navigational
facilities, while it lacks corresponding horizontal opera-
tors; TQL, instead, makes no difference between horizon-
tal and vertical navigation, hence allowing the user to eas-
ily impose horizontal constraints on documents.

3 The Simplest Queries

3.1 The Input Data

We begin with some standard queries, borrowed
from the W3C XMP Use Case [4]. These queries
operate over the XML document available at
//tql.di.unipi.it/bib.xml, which we assume to
be bound to the variable $Bib in the global environment
(the TQL system allows any document on the web
to be bound to a variable). The document contains
bibliography entries, whose structure is described by the
following DTD:

<!ELEMENT
<!ELEMENT

bib
book

(book*)>

(title, (author+ | editor+),
publisher, price)>

book year CDATA #REQUIRED >

(last, first)>

(last, first, affiliation)>

(#PCDATA)>

last (#PCDATA)>

first (#PCDATA)>

affiliation (#PCDATA)>

publisher (#PCDATA)>

<IATTLIST
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

author
editor
title

<!ELEMENT price (#PCDATA)>

The DTD specifies that a book element contains a
title, one or more author elements or one or more
editor elements, one publisher element and one price
element; it also has a year attribute. An author con-
tains a last and a first name elements. An editor ele-
ment also contains an affiliation. Finally, title, last,
first, publisher, and price elements contain string val-
ues.

In this paper we present the XML file using its more
compact TQL-syntax representation, which looks as fol-
lows (the implemented system allows both XML and TQL
visual presentations):

bib[
book [year [1992]

| title[FoundationsDatabases]

| author[first[Serge] | last[Abiteboul]]
| author[first[Richard] | last[Hull]]

| author[first[Victor] | last[Vianu]]
| publisher[Addison]
| price[60]

title[SistemiOperativil
author[first[Piero] | last[Maestrini]]
publisher [McGrawHill]

| book[year[1990]

|

|

|
| price[38]

In this format, bib[C] stands for an element tagged
bib whose content is C, while C1 | C2 is the concatena-
tion of two elements, or, more generally, of two sets of
elements. We use this non-XML notation because TQL is
born as a language to query semistructured data in gen-
eral, i.e. unordered forests with labeled nodes, and not just
XML. XML is just one way to construct such forests, using
tagged elements (and attributes) to build labeled nodes.

3.2 The Formal Presentation of TQL
Data Model

More formally, TQL data model is defined by the fol-
lowing syntax and equations. The syntax specifies that
a forest is either a leaf, or an empty forest, or a node
labeled by tag and leading to a subforest, or the union
of many forests. We choose to distinguish between a
leaf ’tag and a leaf tag[0] in order to model the XML
distinction between PCDATA and empty elements.

TQL forests
forest ::="tag | O | tag[forest]l | forest| forest

The formal definition of the data model is completed
by the equations that specify that | is commutative and

TQL node-labeled forests can be equivalently described as edge-
labeled trees, as done in [1].

associative, and 0 is its neutral element:

tlt =ttt t]@[t)=(|t)|t" t|0o=t
Hereafter we will elide the leaf constructor ’, writing
t[d] instead of t[’d], unless ambiguity arises; the same

abbreviation is supported in the implemented system.

3.3 Matching and Binding

The basic TQL query is from Q |= A select Q’, where
Q is the subject (or data source) to be matched against the
formula A, and Q’ is the result expression. The matching of
Q and A returns a set of bindings for the variables that are
free in A. Q’ is evaluated once for each of these bindings,
and the concatenation of the results of all these evaluations
is the query result.

For example, consider the following TQL query, that
returns the titles of all books written in 1991, and is eval-
uated in an environment where $Bib is bound as specified
above.

from $Bib |= .bib[.book[.year[1991]
And .title[$t]
]
]
select title[$t]

The formula:
.bib[.book[.year[1991] And .title[$t] 1]

is an ambient logic formula, which should be read as:
“there is a path .bib[.book[]] that reaches a place
that matches .year[1991] And .title[$t], i.e. a place
where you find both a path .year[] leading to 1991 and
a path .title[] leading to something, that you will call
$t7.

The formula .tag[A], read “there exists an element tag
whose content satisfies A”, is the most useful operator, but
is actually defined in terms of three more basic operators,
truth T, vertical splitting A’ | A’?, and element matching
tag[A].

The element formula tag[A] only matches a one-
element document: while .t [A] matches both forests t [D]
and t[D] | t2[D2] | ... (provided that A matches D),
the formula t[A] only matches the first one. The truth
formula T matches every forest. Finally, the formula A;
| A2 matches D iff D is equal, modulo reordering, to D; |
Do, with A; matching D;. For example, the following pairs
match, provided that $a is bound to Date:

title[IDB] |author [Date] |
year [1994]

author[$a] |title [IDB] |
year [1994]

title[IDB] |year [1994] T

title[IDB] | author [Date] |
year [1994]

author[$a] IT

author [Date] author[$a] IT

The third formula can be read as: there is an author $a
and something else, hence is equivalent to .author[$al;
the fourth pair matches as well, since the empty forest
matches T. Hence, m[A] | T is equivalent to .m[A]; this is
actually the official definition of the semantics of .m[A].

While in this example we matched $t with a leaf, a TQL
variable can be matched against any forest, or against a
tag.

For example, the following query returns any tag in-
side a book whose content is Serge; .a.b[A] abbreviates
.al.b[Al].

from $Bib |= .bib.book.$tag.first[Serge]
select SergeTag[$tag]

Finally, the following query matches the formula
year [1992] | $EveryThingElse against any book,
hence it returns, for any book whose year is 1992,
everything but the year:

from $Bib |= .bib.book[year[1992]
| $EveryThingElse

]
select Book0f1992[$EveryThingElse]

Since we have two books of 1992, there are two possible
bindings for $EveryThingElse, each corresponding to the
whole content of a 1992 book without its year subtree;
hence the result is:

Book0f1992[
title[FoundationsDatabases]
| author[first[Serge] | last[Abiteboul]]

]
| Book0f1992[

| title[Interpreters]

| author[first[Vincent] | last[Aho]]
]

Hereafter, as a convention, we use lowercase initials for
variables that are bound to tags and uppercase initials for
variables that are bound to forests.

3.4 Matching and Logic

TQL logic allows the programmer to combine matching
and logical operators. For example, the condition in the
following query combines the request for the existence of
a title field, of a $x field containing Springer, and of
either an author.last or an editor.last path leading
to Buneman.

from $Bib |=
.bib.book [.title[$t]
And Exists $x. .$x[Springer]
And (.author.last[Buneman] Or
.editor.last [Buneman])
]
select title[$t]

The pattern Exists $x. .$x[A] is common enough to
deserve the abbreviation .%[A], that we will use hereafter
(see [1] for the exact definition of this abbreviation).

Conjunction, disjunction, and universal quantification
are operators that can be found in many match-based lan-
guages. TQL, however, has the full power of first-order
logic, hence we can express universal quantification and
negation of arbitrary formulas. This will be exemplified
later.

4 Restructuring the Data Source

In TQL syntax, a subquery can appear wherever a forest
expression is expected, as expressed by the following
syntax:

TQL Queries
Q = from Q|=Aselect Q | ’tag | 0 | tag[Q] | Q|Q

This freedom of nesting is a feature of most modern
query languages, and is typically exploited to use the nest-
ing structure of the query in order to describe the nesting
structure of the result. For example, in our data source
there is an entry for each book, containing the list of its
author. We can restructure it to obtain an entry for each
author, containing the list of its books. The structure of
the result can be visualized as follows, where (A)* indi-
cates an arbitrary repetition of the A structure:

(author[authornamel[...] |
(book[...])* 1)=*

Observe how this structure is reflected by the structure of
the following query, with a from-select for each *.

from $Bib |= .bib.book.author [$A]
select author[authorname[$A]
| from $Bib |= .bib.book[author [$A]
| $0therFields
]
select book[$0therFields]
]

This query performs a nested loop. For each bind-
ing of $A to a different author, it returns a for-
est result[author[$Al] | book[...]|...|book[...11,
where book[...]]|...|[book[...] is the result of the in-
ner query, i.e. it contains one book element for each book
whose author is $A. As in a previous example, we extract,
from the input book, all the fields but the author.

5 Schema-less XML data

As XML documents are not necessarily to come with
a DTD, query languages should provide mechanisms for
querying data regardless of the structure.

Alternatively, when schema information is fundamental
for writing sensible queries, schema inference mechanisms

are very useful. For example, one may be interested in
finding the exact structure of the data, or in finding the
mandatory elements in the data. Property checking tools
may also be useful, so as to prove the validity of given as-
sertions about the data. For instance, checking whether a
certain set of tags is a primary key, or if a tag is mandatory
in a specified path.

TQL provides all these mechanisms by simply combin-
ing tag variables (as in [6] and [7]) and ambient logic, as
shown in the following sections.

5.1 Querying in absence of schema

We consider an XML document, bound to $Bib2 in the
global environment, which is similar to the $Bib file, but
features some extra-elements with a title (i.e. article, phd,
etc.), whose labels are not known a priori.

The following query selects the title of all elements,
whatever the label, and wherever they are, that contain
an element whose value is Suciu; the * operator iterates
a path an arbitrary number of times (may be zero); .%*
must be read as (.%)* and corresponds, roughly, to the
XPath operator //.

bib[from $Bib2 |= .%*x.$B[$A[Suciul
select $B[Suciul[$A] | $Rest]
]

| $Rest]

This query constructs a Suciu’s personal bibliography doc-
ument, selecting all elements in $Bib2 where he appears
and inverting the tags with the content. The remaining
information present in the elements involving Suciu are
inserted in the result using the $Rest variable.

This query clearly reveals some of the differences be-
tween TQL and XQuery, in which it would be expressed
as follows,

<bib>
for $b in $Bib2//x,
let $xx := $b/x*,
for $y in $xx

where $y/data() = "Suciu"
return <xf:name($b)>
<Suciu>
xf :local-name ($y)
</Suciu>,

{ op:except($xx,$y)}
</xf :name ($b)>
<bib>

Observe how TQL’s binding mechanism and horizontal
navigation are more declarative than XQuery’s, which
adopts instead operational techniques:

e the definition of each binding to a variable requires a
corresponding nested loop (for or let), while in TQL
all free variables are bound in one single from-select
clause;

e horizontal constraints are dealt with an external op-
erator op:except, while in TQL these are expressed
with the logic horizontal navigation operator |.

5.2 Checking Properties

In this section we show how tree logic formulae can be
used to express properties of XML data. When a formula
A expresses a property, we can check it by running the
query from Q |= A select success: this query returns
the leaf success if A holds over Q, and an empty forest
otherwise.

As a first example we consider a query that verifies if
the tag title is mandatory for book elements in the $Bib
document.

from $Bib |= bib[Not .book[Not .title[T]]]
select title_is_mandatory

The formula Not .book[Not .title[T]] means: it is
not the case that there exists a book whose content does
not contain any title, i.e. each book contains a title.
TQL actually features an operator !'a[A] defined as Not
.a[Not A] which we can directly use, as in the follow-
ing query. Here !'book.title[T] is an abbreviation for
I'book[.title[T]], hence means: for every book there is
a title.

from $Bib |= bib[!'book.title[T]]
select title_is_mandatory

The formula !'a[A] is dual to .a[A] in the same sense
as Vx.A is dual to 3z.A, or A is dual to V. In TQL, every
primitive operator has a derived dual; this implies that
negation can always be pushed inside any operator, hence
you can write any query with no use of negation. Actu-
ally, when negation appears in a query, in most cases the
TQL optimizer pushes it down to the query leaves (vari-
ables, expression of the content of a leaf, comparisons),
since negation is quite expensive. This is the reason why,
although we claim that unlimited negation is an impor-
tant feature of TQL, you will see very little explicit use of
negation in our examples.

The next query verifies that title never appears twice
in a field.

from $Bib |= Not bib[.book[.title[T] |
select title_never_appears_twice

.titlelT] 1 1]

Another interesting property to verify is whether a given
tag is a primary key. There are many possible generaliza-
tions of the relational notion of key to the semistructured
case. The statement below, for example, says that title
is a mandatory field, and that you cannot find two sepa-
rate books with the same title (more precisely, with one
title in common).

from $Bib |=
bib[!'book[.title[T]]
And foreach $X. Not (.book.title[$X] |
.book.title[$X])
]

select each_title_is_key

Of course, if the system knows that $Bib satisfies
bib[!book[.title[T]]], this knowledge implies that
bib[!book[.title[T]] And foreach $X. Not
(.book.title[$X] | .book.title[$X]) 1]

is equivalent (over $Bib) to
bib[foreach $X. Not (.book.title[$X] |
.book.title[$X]1)].

We do not comment further on this point, since this
kind of optimization is out of the reach of the current
implementation of TQL.

Our last query checks that the $Bib element contains
only elements labeled book, by asking that each tag inside
the outer bib is equal to book.

from $Bib |= bib[foreach $x .$x[T] implies $x=Dbook]
select only_book_inside_bib

This query can be rewritten using path operators as
follows:

from $Bib |= bib[Not (.Not book[T])]
select only_book_inside_bib

Here Not book is a tag-expression that stands for any
tag different from book. Hence, .Not book[T] means:
there exists a subelement whose tag is different from
book. Hence, Not (.Not book[T]) means: there exists
no subelement whose tag is different from book.

5.3 Extracting the Tags That Satisfy a
Property

Every query @ in the previous subsection checks a prop-
erty P of a tag t. In all such cases, if we substitute, in @,
t with a tag variable, we obtain a query that finds the set
of all tags that satisfy P.

For example, we can extract all keys of books by tak-
ing the query that checks whether title is a key, and
substituting title with $k, as follows:

from $Bib |=
bib[!book[.$k[T]]
And foreach $X. Not (.book.$k[$X] |
.book. $k [$X])
]
select key[$k]

It must be highlighted that this is possible because in
TQL we can universally quantify even on a formula with
other free variables ($k, in this case). The query evalua-
tion algorithm we exploit to this aim is quite sophisticated,
and is described in [5].

Generalisation by simple substitution is not possible in
XQuery, where variables inserted to replace tags must at
least be bound by an outer for clause, this requiring the
redesign of the original query.

A similar generalisation can be performed for the queries
that check whether a label is mandatory, or occurs only

once, inside another one. We present below a query that
almost produces a DTD for any input XML file (modulo
ordering) by extracting all the tags in the file and listing,
for each of them, all the labels that must or may appear,
and distinguishing among them the ones which may be
repeated and the ones which only appear once. While it
may look frightening, it has just been obtained by a trivial
generalization of the simple queries we presented above.

from $parts |= .%*.$tagl.%[T]]
select $tag[mandatory_subtags
[from $parts |=
Not (.%*.$tag[Not .$subtagl[T]1])
select $subtagl[]
]
| optional_subtags
[from $parts |=
Jh*x . $tagl .$subtaglTl]
And .%*.$tagnot .$subtaglT]]
select $subtagl]
]
| list_subtags
[from $parts |=
.hx.$tagl .$subtaglT] |
.$subtag[T]
]
select $subtagl]
]
| non_list_subtags
[from $parts |=
Jh*.$tagl .$subtaglT]]
And not .%x*.$tagl .$subtag[T] |
.$subtag[T]
]
select $subtagl[]
]

6 Recursion

TQL logic also includes two monotonic recursion operators
(rec and maxrec), very similar to the p and v operators
(minimal and maximal fix point) of modal logic. These can
be used to interpret the Kleene star operator path* and
to express recursively definable forest properties. Consider
for example the following formula:

rec $Binary. (%[$Binary | $Binaryl) or %[0] or ’¥%

The formula describes a binary tree, defined as either a
node leading to two binary trees, or as a leaf; %[0] Or
?% matches a leaf, which may be (in XML terminology)
either an empty element, or a piece of PCDATA.

7 Conclusions

Although the language TQL originates from the study of a
logic for mobile ambients, for the simplest queries it turns
out to be quite similar, in practice, to other XML query
languages.

However, the expression of queries which involve recur-
sion, negation, or universal quantification, keeps in TQL a
clear declarative nature, while other languages are forced
to adopt a more operational approach.

All queries presented in this paper are executable in the
prototype version of the TQL evaluator, and can be found
in the file demo.tql in the standard distribution. The
current version of the prototype still works by loading all
data in main memory, but is already based on a transla-
tion into an intermediate TQL Algebra [5], with logical
optimizations carried on both at the source and at the al-
gebraic level. The intermediate algebra works on infinite
tables of forests, represented in a finite way, and supports
such operations as complement, to deal with negation, co-
projection, to deal with universal quantification, several
kinds of iterators, to implement the | operator, and a re-
cursion operator.

TQL is currently based on a unordered nested multi-
sets data model. The extension of TQL’s data model with
ordering is an important open issue.

References

[1] L. Cardelli and G. Ghelli. A Query Language Based on
the Ambient Logic. In Proc. of Furopean Symposium
on Programming (ESOP), Genova, Italy, 2001.

[2] L. Cardelli and A. D. Gordon. Anytime, anywhere:
Modal logics for mobile ambients. In Proc. of Princi-
ples of Programming Languages (POPL). ACM Press,
January 2000.

[3] Don Chamberlin, James Clark, Daniela Florescu,
Jonathan Robie, Jérome Siméon, and Mugur Ste-
fanescu. XQuery 1.0: An XML Query Language. Tech-
nical report, World Wide Web Consortium, jun 2001.
W3C Working Draft.

[4] Don Chamberlin, Peter Fankhauser, Massimo Mar-
chiori, and Jonathan Robie. XML Query Use Cases.
Technical report, World Wide Web Consortium, De-
cember 2001. W3C Working Draft.

[5] G. Conforti, O. Ferrara, and G. Ghelli. TQL Alge-
bra and its Implementation. To appear in Proc. of
IFIP International Conference on Theoretical Com-
puter Science (IFIP TCS), Montreal, Canada, August
2002. Available at http://tql.di.unipi.it/tql.

[6] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. XML-QL: A Query Language
for XML. Technical report, World Wide Web Consor-
tium, August 1998. Submission to the World Wide
Web Consortium.

[7] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A
query language and processor for a web-site manage-
ment system. In Proc. of Workshop on Management
of Semistructured Data, Tucson, 1997.

