
Types for Correctness of Queries over Semistructured Data

Dario Colazzo Giorgio Ghelli Paolo Manghi Carlo Sartiani

Dipartimento di Informatica - Università di Pisa, Corso Italia 40, Pisa, Italy

e-mail: {colazzo, ghelli, manghi, sartiani}@di.unipi.it

Abstract

A type system for a query language should serve both
purposes of verifying whether a query is coherent with
what is known about the structure of the database (query
correctness) and of giving information about the type of
the query result (result analysis). Current proposals for
typed query languages for semistructured data are usually
focused on result analysis, but perform very few controls,
or none at all, of query correctness.

This work presents a type system for a core of XQuery
that supports both query correctness and result analysis,
and discusses some of the design issues and alternatives.

1 Introduction

In conventional query languages, a type system analyses
query correctness and the result type. Query correctness
is generally defined as a relation of compatibility between
the type of the query input and the query type. The query
type represents the type of the data targeted by the query,
and is either inferred from the query structure, or directly
provided by the programmer. Correctness ensures, at the
very minimum, that the query has some hope to find a
match in data that respects the input type.

Result analysis is the process of checking whether a
query effectively returns data of an expected output type.
This check is performed by inferring the output type of a
query and by matching it against the expected type.

Both query correctness and result analysis are useful
tools for the development of complex database applica-
tions, where database queries and high-level program-
ming language applications are usually combined forming
a complex web of input and output type dependencies.

In the context of semi-structured data (SSD) and XML
only a few query and manipulation languages exploit static
type information, given the possibly irregular and unstable
nature of the data. Current proposals mainly focus on
result analysis [3, 6, 5], but perform very few controls, or
none at all, of query correctness. Actually, there is no
clear agreement, and neither much discussion, about what
query correctness means in this context.

This is due to the fact that SSD, especially XML doc-
uments, are usually endowed with rather irregular type
descriptions, comprising union types, recursive types, and
wildcards; coherently, the corresponding languages include

operators such as alternative paths, wildcard matching,
collection of descendants.

One possible notion of query correctness, adopted by the
XDuce language [4], is the full correspondence between the
alternative paths in a query and all the possible cases of
the union-type that describes the input. This approach
seems, however, too restrictive for many SSD specific pro-
gramming tasks.

At the other extreme, one may flag as non-correct only
those queries that are statically deemed to always return
an empty collection. This approach has been suggested
by the authors of XQuery [1]. However, unless the system
is able to flag the specific parts of the query where the
problem arises, this policy becomes quite loose, and not
informative enough for programmers.

An intermediate notion of correctness is to deem as
wrong all and only those paths in the query that have
no hope to match the input data.

In summary, each of these approaches is reasonable in
some specific application, hence none of them can be re-
garded as the general purpose solution.

Our contribution This work describes a type system
for µXQuery, an abstract core of XQuery. µXQuery’s
type system provides a formal framework where different
notions of query correctness can be formalized and com-
pared. Specifically, it supports a notion of conformance of
data to a type, of result analysis, and is based on a three-
levels definition of query correctness, according to which
a query can be classified as:

• incorrect, if the structural requirements of the query
will not find a match against any instance of the
database schema;

• weakly correct, if the structural requirements of the
query will find a match in at least one instance of the
database schema.

• strongly correct, if the structural requirements will
find a match against all possible instances of the
database schema.

We believe this characterisation to be particularly suit-
able in the context of SSDBs, as it is based on a clear
semantic characterization but is flexible enough to be com-
patible with the needs of different applications.

1

2 Query correctness in XML

query languages

In the absence of input type description, query correctness
cannot be checked. As a consequence, programmers may
interpret an empty result as being due to a structural re-
quirement failure (from clause) or a selection failure (no
data satisfied the where clause).

<!DOCTYPE people[

<!ELEMENT people person+>

<!ELEMENT person (name,phone)>

<!ELEMENT name (frsname, sndname | firstname, secondname)>

<!ELEMENT frname PCDATA>

<!ELEMENT snname PCDATA>

<!ELEMENT firstname PCDATA>

<!ELEMENT secondname PCDATA>

<!ELEMENT phone PCDATA>

]>

Figure 1: A sample DTD.

When schemas are available, instead, some static con-
trols can in principle be performed. However, the irregular
nature of SSD types and query languages makes this aim
very elusive. In fact, only the language XDuce defines a
standard notion of query correctness, but XDuce is quite
far from the standard structure of query languages, being
a stricter relative to functional languages as ML.

Other approaches, such as XQuery’s and Suciu’s ap-
proach [6], are not concerned with the automatic iden-
tification of incorrect queries and concentrate on result
analysis. Given a query and a schema for the database
at hand, the problem is that of checking whether every
output of the query conforms to a given expected output
type.

Such solutions target different kinds of application sce-
narios and therefore differ for a number of design choices.
However, if we focus on query correctness, XDuce’s ap-
proach turns out to be quite restrictive for a query lan-
guage, while the other approaches are instead poorly in-
formative for the programmer.

XDuce XDuce is a typed, functional, Turing complete
programming language. It is based on an ML-like pattern
language that implements a one-match semantics, i.e. ev-
ery pattern, instead of collecting every matched piece of
data (as in standard query languages), only binds the first
match. XDuce is nearer to a programming language than
to a query language, but we consider it here since it is the
only example of typed language for XML that explicitly
provides a notion of type correctness.

For example, consider the following XDuce’s function,
which returns the list of phone numbers of all people in the
document d, which conforms to the schema in Figure 1:

fun selNums: person* --> (sndname,phone)* =

person[name[frsname[String],sndname[n:String]],

phone[p:String]], rest:person*

--> sndname[n], phone[p], selNums(rest) |

person[name[firstname[String],secondname[n:String]],

phone[p:String]], rest:person*

--> sndname[n], phone[p], selNums(rest) |

() --> ()

(XD1)

selNums can be applied to the element people of d. This
function is type correct, because XDuce supports a no-
tion of query correctness according to which functions are
correct if and only if they specify a matching pattern (a
function case) for all possible patterns described by the
input type: exhaustive patterns in function definitions are
required to ensure the soundness of the type system of
XDuce, as stated in [4]. Indeed, the function,

fun selNums: person* --> (sndname,phone)* =

persons[name[frsname[String],sndname[n:String]],

phone[p:String]], rest:person*

--> sndname[n], phone[p], selNums(rest) |

persons[name[firstname[String],secondname[n:String]],

phone[p:String]], rest:person*

--> sndname[n], phone[p], selNums(rest) |

() --> ()

(XD2)

is statically judged incorrect and never executed, because
the field persons is not defined in the schema. This no-
tion of correctness, however, is too restrictive for XML
querying purposes. For instance, the function

fun selNums: person* --> (sndname,phone)* =

person[name[frsname[String],sndname[n:String]],

phone[p:String]], rest:person*

--> sndname[n], phone[p], selNums(rest) |

() --> ()

(XD3)

is considered incorrect and never executed, although one
would expect the query to be run, as instances of the
database exist that are matched by the body of the func-
tion.

XQuery XQuery’s type system infers the output type
of a query by matching the structural requirements of the
query (query type) with the type of the query input [3]. In
doing this, the type system does not identify and discard
incorrect queries, but simply assigns an empty type to
those subparts of the query that cannot find a match in
any instance of the data. Coherently, a query over an
instance of a union type is assigned an empty type only
when none of the members of the union type is relevant to
the query.1 Given the expected type of the query’s output
data and the inferred output type of the query, the system
can statically detect if the query’s output value has the
expected output type.

The function (XD1) can be encoded in the following
XQuery’s query,

1This policy is looser than XDuce’s, where a query is accepted

only if it searches for all the members of a union type, and more

suitable for navigating arbitrarily irregular SSDBs.

2

for $p in d/person,

$n in op:union($p/name/sndname,

$p/name/secondname),

$ph in $p/phone

return <sndname> data($n) </sndname>,

$ph

(XQ1)

for which the type system statically infers the following
output type,

(element sndname {xsd:string},

element phone {xsd:string})*

Function (XD3) corresponds to the query,

for $p in d/person,

$n in $p/name/sndname,

$ph in $p/phone

return <sndname> data($n) </sndname>,

$ph

(XQ3)

The type system infers the same output type of (XQ1).
Result analysis states that both (XQ1) and (XQ3) are cor-
rect as their output type matches (is a subtype of) the ex-
pected type of the output. The function (XD2) becomes
instead,

for $p in d/persons,

$n in op:union($p/name/sndname,

$p/name/secondname),

$ph in $p/phone

return <sndname> data($n) </sndname>,

$ph

(XQ2)

The type inferred for this query is the empty type ().
The system pinpoints the error, as the programmer was
expecting a different type.

Essentially, XQuery provides programmers with power-
ful result analysis tools, which are, in some situations, also
useful for detecting errors before execution. In particular,
the authors observe that, since queries are assigned an
empty type if they cannot find a match in any instance of
the input type, when the inferred type is empty the system
may automatically report the query as incorrect. This is
generally true, unless the programmer were expecting an
empty type as output. This notion of incorrectness, how-
ever, is rather incomplete, as many incorrect queries do
not necessarily return an empty type. Consider for exam-
ple the following query:

for $p in d/person,

$n in op:union($p/name/sndname,

$p/name/secondname),

$ph in $p/phone

return <sndname> data($n) </sndname>,

$ph,

$p/age

(XQ4)

Although the schema of d contains no age field, the type
system infers exactly the same output type inferred for the
query (XQ1). The same happens with the following query,
although the schema of d contains no seconname field.

for $p in d/person,

$n in op:union($p/name/sndname,

$p/name/seconname),

$ph in $p/phone

return <sndname> data($n) </sndname>,

$ph

(XQ5)

Suciu’s proposal Dan Suciu et al. focus on the devel-
opment of a formal framework for the definition of result
analysis tools [6]. They view queries as transformation

programs, i.e. applications transforming an original data
source into an XML database that conforms to a given
type.

They explore a backward type inference mechanism,
which takes as inputs the query, the query input type,
the expected output type, and checks that every database
that is the result of the query applied to an instance of
the input type, conforms to the output type. Again, the
methodology fully addresses the issues of result analysis,
but totally disregards a notion of query correctness.

3 µXQuery

µXQuery is an abstract version of the FLWR core of
XQuery. The main difference between µXQuery and
XQuery is the lack of support for function definitions, and
for if − then− else and typeswitch expression. Moreover,
µXQuery features only copy-semantics return clauses,
hence discarding reference-semantics element construc-
tion.

The novelty of µXQuery’s type system is that it has
been specifically designed for both result analysis and
query correctness checking. The type system infers the
output type of a query, as in XQuery, but makes a distinc-
tion between correct and incorrect queries, as in XDuce.
In particular, it supports a three-levels definition of cor-
rect queries, distinguishing between weakly correct and
strongly correct queries. We shall briefly discuss the ad-
vantages of this approach.

3.1 Grammar

Queries are defined by the following grammar:

Q ::= () | vB | 〈l〉Q 〈/l〉 | Q,Q | x | Q p

| let x := Q return Q | for x in Q return Q

Data are represented as ordered forests (f) of trees (t),
as defined by the following grammar:

f ::= () | t | f, f t ::= vB | 〈l〉 f 〈/l〉

3

where vB is a leaf value of type B, ‘,’ is associative, and
(), f = f, () = f .

Paths are defined by the following grammar:

p ::= nil | /ls | //ls | p p | p + p′

ls ::= l | ∗

3.2 Query semantics

A query Q is evaluated according to an environment ρ
which associates a forest with each free variable occur-
ring in Q, and the result is denoted by [[Q]]ρ. Informally,
[[Q]]ρ yields the pair 〈f, S〉, where f is the forest returned
by Q with respect to the substitution ρ, and S is a sta-
tus variable that captures a notion of correct execution
(formal details can be found in [2]). S ranges over the
set {C, F}, respectively representing the correct or faulty

status of execution. Specifically, 〈f, C〉 states that f is
correctly returned by a query, while 〈f, F〉 states that f is
faultily returned by a query.

In detail, a query Q correctly returns a forest f in an
environment ρ ([[Q]]ρ = 〈f, C〉), if, for all path selections
Q′ p in Q, the path p finds a match with the forest re-
turned by Q′. In particular, for path selections of the form
Q′ (p1+p2)p it is only required that either p1p or p2p finds
a match in the forest returned by Q′. A query Q faultily

returns a forest f in an environment ρ ([[Q]]ρ = 〈f, F〉), if
there exists a path selection Q′ p in Q for which either Q′

faultily returns a forest f ′ or p cannot find a match in f ′.
Because of union types, two well-typed input values may

exist such that the same query may correctly return a
result on one and faultily return a result on the other one.
For this reason, we adopt a three-levels classification of the
semantic correctness of a query with respect to an input
type: strongly correct if it correctly returns a forest for
any well-typed input, weakly correct if it correctly returns
a forest for some well-typed input, incorrect if it faultily
returns a forest for any well-typed input (Definition 3.1).

Consider for example the databases d1 and d2 in Fig-
ure 2, which conform to the schema in Figure 1. The query
(XQ4) on d1 faultily returns the forest:

<sndname> Sartiani </sndname> <phone> 123456 </phone>

as the path selection ($p\age) does not match the data;
for the same reason, (XQ4) execution would be faulty over
d2 or any d that conforms to the same schema. The same
is true for the query (XQ2), which faultily returns the
empty forest because the /persons path will never match
the data. These queries are incorrect.

On the other side, a query d/person/name/secondname

would faultily return an empty forest when applied to d1,
since it finds no match, but would correctly return a result
when applied to d2. Hence this query is weakly correct.

For path selections Q (p1 + p2)p, our notion of correct
execution is rather permissive, in the sense that, as we
already said, matching is required for at least one alterna-
tive. The query (XQ1), for example, is correctly executed

d1 = <people><person>

<name>

<frsname> Carlo </frsname>

<sndname> Sartiani </sndname>

</name>

<phone> 123456 </phone>

</person></people>

d2 = <people><person>

<name>

<firstname> Dario </firstname>

<secondname> Colazzo </secondname>

</name>

<phone> 654321 </phone>

</person></people>

Figure 2: Two db’s conforming to the DTD in Figure 1

over d1, and returns the same forest f above with S = C,
since one of its alternative paths finds a match in d. (XQ1)
is actually strongly correct, since, for any well-typed con-
tent of the database, at least one of its alternative paths
finds a match. The query (XQ5), when applied to d1,
returns the same forest as (XQ1), thanks to the disjunct
/name/sndname, hence this execution is correct, despite
the presence of the wrong path /name/seconname. How-
ever, (XQ5) is actually weakly correct since, over d2, its
execution is faulty.

Hence, our semantics defines a three-level notion of the
correctness of a query with respect to an input type. Now,
our aim is to define a type system that is able to infer, for
each query, a reasonable approximation of its semantic
correctness with respect to a given input type.

3.3 Type system

In this Section we introduce µXQuery’s type system. We
first introduce the syntax of types, then give an informal
characterisation of the semantics of types, and give a char-
acterisation of type correctness in terms of the semantics
of queries. Formal definitions, as well as type rules, can
be found in [2].

3.3.1 Type language

The type language we consider is essentially XDuce’s type
language, and is defined by the following grammar.

T ::= () | B | T, U | T + U | l[T] | X

where B represents atomic types. The empty type () only
contains the empty forest (). The type constructor l[T]
represents the set of trees rooted as l and containing a
forest of type T . Concatenation T, U represents the set
of forests f, f ′, where f and f ′ are forests in T and U
respectively. The untagged union type constructor T + U
represents the set of forests f which belong to either T or
U .

Type variables are defined by an environment E, which
consists of a set of potentially mutual recursive type defi-
nitions of the following form:

4

E ::= () empty environment

X = T, E type variable definition

x : T, E query variable declaration

Note that environments also contain query variable type
declarations x : T . These are used in the typing rules given
in [2]. Moreover, observe that regular expressions types,
such as repetition and optional types, can be defined by
combining recursive and union types as follows:

T∗ ≡ X with X = () + (T, X) T ? ≡ () + T

For instance, the DTD given in Figure 1 corresponds to
the following µXQuery’s type environment,

PEOPLE = people[PERSON +]

PERSON = person[NAME,PHONE]

NAME = name[(FRSNAME,SNDNAME) + (FIRSTNAME,SECONDNAME)]

FRSNAME = frsname[String]

SNDNAME = sndname[String]

FIRSTNAME = firstname[String]

SECONDNAME = secondname[String]

PHONE = phone[String]

While query correctness in XDuce and XQuery is based
on subtyping, in µXQuery it is based on a relation of
coherence between query paths and query input types.2

3.3.2 Semantics of types

We interpret a type as the set of all forests that have that
type. In the style of [4], we define the semantics of types
by means of a set of deduction rules over judgements of
the form E ` f : T , which state that f conforms to T with
respect to E. Informally, we write

[[T]]
E

= {f | E ` f : T}.

3.3.3 Query correctness

To define query correctness in µXQuery, we denote as
[[Q]]E the set of all possible results, i.e. pairs 〈f, S〉, re-
turned by Q, for each assignment to Q’s variables that
respects the type definitions in E.

Definition 3.1 (Correctness) Given a query Q and an

environment E of type definitions for free variables in Q,

we say that Q is

strongly correct if ∀ 〈f, S〉 ∈ [[Q]]E . S = C

weakly correct if ∃ 〈f, S〉 ∈ [[Q]]E . S = C

incorrect if ∀ 〈f, S〉 ∈ [[Q]]E . S = F

In [2] we have defined a set of algorithmic rules which
reflect this characterisation, by returning the inferred cor-

rectness of a query (the relationship between the correct-
ness as inferred by the type rules and the actual correct-
ness is discussed below). Observe that query correctness

2As a consequence of this the system may infer context-free types

for some queries, even when they feature regular input types.

is strictly related with type inference, as in the presence
of nested queries, correctness of outer queries depends on
the type inferred for inner queries. As a consequence, the
rules also return the query type thereby enabling result
analysis techniques.

Table 1 shows the inferred correctness returned by the
rules for path selections Q p, given the type inferred for Q
(the symbol denotes any label) and the path p.

Path p Type of Q Strong Weak

1 /l + /m [l[T] + m[U]] Y es Y es

2 /l + /m + /n [l[T] + m[U]] Y es Y es

3 /l [l[T] + m[U]] No Y es

4 /l + /n [l[T] + m[U]] No Y es

5 /n [l[T] + m[U]] No No

6 /l + /o [l[T] + m[U]] + n[V]] No Y es

Table 1: Inferred correctness.

As illustrated by the rows 1 and 2, Q p is strongly type
correct if p finds a match in each instance of the type of Q.
Accordingly, when checking correctness of a path p with
an input union type, the rules state that Q p is strongly
correct only if all members of the union type are matched
by p (data covering). However, we do not require here the
path covering property, i.e. that every disjunctive member
of p is matched (or may be matched) by a piece of data,
hence row 2 is strongly correct as well. Data covering and
path covering are, in a sense, independent issues, both of
them relevant, though we focus here on the first one only;
we will come back to this in Section 4.

When not all members of the type, but at least one, are
matched by p, the query is weakly correct, as exemplified
in rows 3, 4, and 6. In this case, programmers may exploit
this information, deciding either to make their queries
strongly correct, by adding the missing alternatives in the
path, or run them anyway when they are not interested in
querying the non-matching instances. Finally, row 5 ex-
emplifies an incorrect query, whose path will never match
any data.

The rules, given a query Q and an environment E, infer
a pair (T ; A), where T is the output type of Q and A is
a variable that ranges over the set {s, w, i}. The correct
definition of the rules is far from trivial. Consider the fol-
lowing query over a database of type root[a[int]+ b[int]],
bound to the variable $y,

{ $y/a, $y/b }

The query is semantically incorrect, as $y either matches
/a or /b, but cannot match both of them. However, a
standard inductive type rule such as,

E ` Q : w, E ` Q′ : w ⇒ E ` Q,Q′ : w

does not suffice for the example above, as both $y/a and
$y/b are weakly correct with respect to the type of $y.
Similarly, but more subtly, the following query

{ $y/a/a, $y/a/b }

5

where $y is of type root[X] with X = a[X] + b[X] + int,
is semantically incorrect. Indeed, the product query
$y/a/a, $y/a/b is incorrect as each level of a unary tree
either contains a label a or a label b.

In [2] we give a solution to these problems by means of
complex algorithmic type rules, which keep track of which
members of union types are matched by the paths in the
query, and return a correctness status which depends on
this information.

The following proposition claims soundness of the type
rules with respect to the characterisation of query cor-
rectness, although the rules are not complete (a strongly
correct query may be flagged as w).

Proposition 3.2 (Soundness) For each query Q and

environment E, if the judgement E ` Q : (T ; A) holds,

then,

if A = s then Q is strongly correct;

if A = w then Q is weakly or strongly correct;

if A = i then Q is incorrect;

Observe that the type rules always infer an output type.
By doing so, in the style of XQuery, the type system also
provides programmers with result analysis tools. For ex-
ample, for queries (XQ1) to (XQ4), our type rules infer the
same output types as XQuery’s. However, we are also able
to identify (XQ1) as strongly correct, (XQ3) and (XQ5)
as weakly correct, and (XQ2) and (XQ4) as incorrect.

4 Path covering

To simplify the discussion, imagine, for a moment, that
every query is just a sum of paths, and every input type
is just a union type. Then, the system we described up
to now is geared towards the prevention of problems that
arise (informally) because one branch of the input-data
union-type is not covered by any path (lack of strong cor-
rectness), or even no branch of the union type is covered
by any path (lack of weak correctness).

This is already complex enough, but only captures those
errors that show up as ‘too few paths in the query’. Errors
may also show up as ‘too many paths’, as in rows 2, 4, and
6, in Table 1, or in query (XQ5), where we have paths that
are not covered by any branch of the union type.

Typical programming errors, like path misspelling, tend
to generate both path and data coverage problems, as in
(XQ5) or in row 4, hence suggesting that path coverage
may be ignored. On the other side, consider row 6 in
Table 1. Here the programmer misspelled an /m into an
/o, was expecting a ‘weak correctness’ result, and gets
it from the type-checker; hence, the misspelling problem
does not show up in the type.

Moreover, the errors generated by a data-covering based
analysis can only be reported in terms of type-branches
that have not been considered by a subpart of the query,
while a path-covering based analysis would pinpoint a

wrong path. Going back to line 4 if the table, the data-
covering error is ‘branch m[U] in the type is not covered’,
while the path-covering one is ‘subpath /n is irrelevant’.
The second message helps the programmer better.

For these reasons, path coverage should be consid-
ered by a correctness-checking type system. How-
ever, while we gave a precise semantic characteriza-
tion of the correctness of a query with respect to
data covering, this is not easy when path covering
is considered. As an example, the path expression
(/a+/b+/c),(/a+/b+/c),(/a+/b+/c) should be equiva-
lent to its expansion /a/a/a+/a/a/b+/a/a/c+/b/a/a....
However, the first one should probably be considered
wrong only when one of the nine atoms /x is useless, while
the second one is suspect as soon as any one of the twenty-
seven addends is useless.

In [2] we discuss some concrete notions of path-covering
correctness and type rules; here we can only point out that
the problem is relevant and difficult.

5 Conclusions and future issues

This work presents a type system in which both result
analysis and query correctness analysis of XML queries
can be conveniently expressed. Specifically, queries can be
classified as strongly correct, weakly correct, or incorrect.
We have seen that such classification describes an intuitive
spectrum of query correctness characterisations.

Our type system, beside being the first to try correct-
ness analysis for XQuery-like languages, also provides a
framework in which different notions of correctness can
be formally identified and studied, as exemplified in the
discussion of Section 4. We are currently working on the
design and comparison of such alternative notions.

Finally, we plan to augment the type language with
other type operators, such as non-ordered sequences, ID
and IDREFs types, so as to study our results in the con-
text of a system closer to XML Schema.

References

[1] D. Chamberlin & J. Clark et al. XQuery 1.0: An XML
Query Language. Technical report, W3C, 2001.

[2] D. Colazzo & G. Ghelli et al. Types for Cor-
rectness of Queries over Semi-structured data.
http://www.di.unipi.it/~colazzo/tcqssd.ps.

[3] P. Fankhauser & M. Fernandez et al. XQuery 1.0 formal
semantics. Technical report, W3C, 2001.

[4] H. Hosoya. Regular Expression Types for XML. PhD thesis,
The University of Tokyo, Japan, 2000.

[5] D. Suciu. The XML Typechecking Problem. SIGMOD

Record Web Edition, Special Section on Data Management

Issues in Electronic Commerce, 2002.

[6] T. Milo & D. Suciu & V. Vianu. Typechecking for
XML Transformers. In ACM Symposium on Principles of

Database Systems, 2000.

6

