
Subtyping Recursive Types in Kernel Fun

Dario Colazzo, Giorgio Ghelli
Dipartimento d’Informatica
Corso Italia 40, Pisa, ITALY

e-mail:fghelli, colazzog@di.unipi.it

Abstract

The problem of defining and checking a subtype relation
between recursive types was studied in [3] for a first order
type system, but for second order systems, which combine
subtyping and parametric polymorphism, only negative re-
sults are known [17].

This paper studies the problem of subtype checking for
recursive types in system kernel Fun, a typed�-calculus
with subtyping and bounded second order polymorphism.

Along the lines of [3], we study the definition of a sub-
type relation over kernel Fun recursive types, and then we
present a subtyping algorithm which is sound and complete
with respect to this relation. We show that the natural ex-
tension of the techniques introduced in [3] to compare first
order recursive types gives a non complete algorithm. We
prove the completeness and correctness of a different algo-
rithm, which also admits an efficient implementation.

Keywords: type theory and type systems, subtyping, recur-
sive types, kernel Fun.

1 Introduction

1.1 Background

Recursive type definitions are supported by every typed
language, since they are needed to define essential data
types, such as lists and trees, and occur in many important
programming patterns, such as the subject-observer pattern.

Two different approaches to recursive types have been
studied in the literature. Given a recursive definitionlet recX = T [X ℄, the strong (orequality based) approach makesX equal toT [X ℄ ([26, 3]), while the weak (isomorphism
based) approach ([20, 21]) only gives the programmer a
couple of functionsfoldT [X℄: T [X ℄ ! X andunfoldT [X℄:

1Proceedings of the 14th Annual IEEE Symposium on Logic in Com-
puter Science (LICS), Trento, Italy, 1999, ACM Press, New York, USA.

X ! T [X ℄. The weak approach makes type and subtype
checking very easy. The strong approach is easier for pro-
grammers to use, but makes subtype checking much more
challenging, and is the one we study in this paper.

The combination of subtyping and recursive types has a
significant practical relevance. Both notions appear in every
typed object-oriented language, and are even useful for the
compilation of languages which do not have a subtyping
relation (as in the ML to JavaVM compilation project at
Persimmon IT, where subtyping between strongly recursive
types is used in the intermediate language for optimization
purposes [24]).

A complete study of the problem of defining and check-
ing a subtype relation between first-order strongly recursive
types can be found in [3].

In this paper we study the integration of strong recursion
in a second order type system with subtyping. To this aim
we refer to system kernel Fun, an abstract version of the lan-
guage Fun [9], a language which combines subtyping with
parametric polymorphism, and which allows the definition
of bounded quantified types, i.e. polymorphic types whose
quantifier ranges over a set of subtypes of a given type.
Languages of the Fun family, with their extensions, are the
main foundational tool used to model object-oriented lan-
guages with expressive and strong types (see, for example,
[1, 5, 13, 14, 16, 22]). Although most current languages
are based on some variant of type comparison by name, the
structural approach to type comparison which has been pur-
sued by the type-theoretical community has many advan-
tages, especially in the context of open systems [3], and it
also allows comparison by name to be understood.

The main results of this paper are as follows.� We define an algorithm to perform subtype checking
in a strongly recursive extension of kernel Fun, which
is the first one presented in the literature, and we prove
that it is correct and complete. The algorithm is non
obvious, and its correctness proof is very challenging.� We show that the most natural algorithm for the same
problem is non complete, while its obvious general-

ization is non correct, even if we restrict ourselves to a
limited subset of system kernel Fun.� In the full paper [11] we also prove that our algorithm
can be implemented in an efficient way.

Our algorithm is obtained by extending the first-order
Amadio-Cardelli algorithm in a non-trivial way. Their al-
gorithm is based on the idea of keeping track of the pairs of
compared types which are met during the subtype-checking
process, so that it can stop when the ‘same’ pair is met
for the second time. We show that the obvious extension
of their algorithm to kernel Fun fails to be complete when
‘sameness’ is generalized to�-equivalence (or, even worse,
just equality), and it fails to be correct when sameness is
generalized to a quite natural notion of ‘similarity’. How-
ever, we obtain a correct and complete algorithm if we gen-
eralize sameness to similarity, but stop execution only when
a similar pair is met for thethird time.

In this work we do not study the complexity of our algo-
rithm. We know that it may have an exponential behavior
[19], and we suspect it may be made polynomial, but in this
paper this will remain an open issue.

1.2 Related work

A complete study of the problem of subtypingfirst-order
recursive types can be found in [3], where a natural subtype
relation over recursive types is defined, and a sound and
complete subtyping algorithm is presented. In [25] a more
efficient subtyping algorithm is described.

In [4] another possible axiomatization of the subtype
relation between first order recursive types is presented,
which is equivalent to the one defined in [3]. Our axiom-
atization of inclusion between second order recursive types
is more similar to the one in [4] than to the one in [3]. In
[2], first order recursive types are studied from a syntactic
perspective and the two possible approaches to recursion,
equality-basedand isomorphism-based, are compared. In
particular the equivalence between the two approaches is
proved.

Regarding the problem of subtyping recursive types in
second order systems, an important (negative) result was
given in [17]: any attempt to extend systemF� [15] with
recursive types leads to the definition of a non conservative
extension of the system. This problem is strictly related to
the undecidability of subtyping inF� [27, 18].

Other papers where second order recursive types are
studied don’t deal with the subtype checking problem in
much depth. In [5], a recursive extension of system F!<:
[6, 7] is defined, but only as a tool to compare different mod-
els of object-oriented languages. Hence, that paper doesn’t
consider the algorithmical aspects of the subtyping prob-
lem, and the defined system is far less powerful than our

extension of the [3] system. The extension of kernel Fun
with recursive types is studied in [10] from a semantical
point of view and it is proved that extending the system with
recursive types is consistent.

A different strand of research deals with a notion of sub-
typing where an instance of a polymorphic type is a super-
type of the type itself. In such a system, the subtyping prob-
lem for second order languages is undecidable even when
quantification is unbounded [28]. We do not comment on
papers in this family since their results and techniques can-
not be applied to subtyping for languages in the Fun family.

1.3 Structure of the paper

The paper is organized as follows. In Section 2 we
present a recursive version of system kernel Fun. We ex-
tend the Amadio-Cardelli first-order subtype system to sys-
tem kernel Fun, adopting the style of [4], by a set of rules
whose coinductive interpretation defines the subtype rela-
tion. Our presentation is also characterized by the fact that�-renaming is explicitly managed, and no variable renam-
ing is needed to type-check judgements where no recursive
type appears. In Section 3 we give a more algorithmic ver-
sion of the same system, where every type occurrence is
labeled, and these labels are used to rename types in a way
which makes it easier to test for type ‘similarity’, and to
reason about the properties of the proofs in this type sys-
tem. In Section 4 we modify this system so as to obtain
an algorithm which is complete and sound with respect to
the non-algorithmic rules. The complete proofs of sound-
ness and completeness are given in the full paper ([11]) but
they cover over thirty pages and so we only briefly describe
them in Section 5. In Section 6 we show that the most natu-
ral ‘algorithm’ to solve the subtype checking problem is not
complete; some more details are reported in Appendix A.
In Section 7 we show that a version of our algorithm which
stops when a similar pair is met for the second time, instead
of the third time, is not sound. In Section 8 we outline our
conclusions and areas of future research.

2 Recursive kernel Fun

2.1 Syntax

We only present here the kernel Fun types, since the type
rules for terms are not affected by the introduction of recur-
sion; for a more complete introduction to the system see
[9, 15, 12, 8]).

TypesT ::= > j t j X j �X:8t � T:T j �X:T ! T
Pre-JudgementsP ::= � B Env j � B T Type j � B T � T
JudgementsJ ::= � ` Env j � ` T Typej � ` T � T
Bi-Environments� ::= () j �; (t; t0) � (T; T 0) j �; (X = T; Y = T 0)
Environments� ::= () j �; t � T j �; X = T

In our presentation, types are not considered modulo�-
equivalence, because variable names play a central role in
our subtyping algorithm. We require that all variables in a
single type have different names, and we say that a type
which satisfies this condition is an “R-Type”. This con-
dition is not restrictive with respect to the usual presenta-
tion of the system, where types are interpreted modulo�-
equivalence, since every type is�-equivalent to an R-Type.

An environment defines a bound for some type variables
and a body for some recursion variables, and is used to
check the good formation of a type. A bi-environment gives
the same information for variables appearing in the com-
pared typesT; U in a judgement� ` T � U ; moreover,
an assumption(t; u) � (T 0; U 0) also means thatt insideT
is equivalent tou insideU . Bi-environments are one of the
tools we use to reduce the need for variable renaming during
the subtype checking process (see rule (8�), and [19]).

Pre-judgements are the input for the subtype and good
formation checking process; a judgement indicates that the
corresponding pre-judgement is true.� ` Env and� ` T Type are the well-formation judge-
ments, checking, essentially, that every variable is defined
and that, if a variable is in the scope of another one, their
names differ. Finally� ` T � U means that, with respect
to the bi-environment�, T is a subtype ofU .�X:8t � T:U is a universally quantified type where the
type variablet, which may occur free inU , only ranges
over the subtypes ofT ; �X:T ! U denotes the type of all
functions from values of typeT to values of typeU . In both
cases, an occurrence ofX in T or inU recursively denotes
the whole type,�X:8t � T:U , or�X:T ! U respectively.
This means for example that, in any interpretation which
respects this intuition, the following equations must hold:�X:T = [�X:T=X ℄T = [[�X:T=X ℄T=X ℄T:::

We consider a grammar where only function or bounded
quantified types can be the body of a recursive type; as an
alternative we may just add�X:T to kernel Fun grammar.
This is mainly a stylistic choice, with no deep effect on ei-
ther the power of the language or the difficulty of the prob-
lem.

To define the rules, we first need to define the follow-
ing bi-environment operations. We define them on bi-
environment elements. They are lifted to the whole bi-
environment in the obvious element-wise way.(t; t0) � (T; T 0) (X = T; Y = T 0)

Def (t; t0) (X;Y)
Swap (t0; t) � (T 0; T) (Y = T 0; X = T)
Left t � T X = T
Right t0 � T 0 Y = T 0

The good formation rules are the standard ones, with the
exception of the variable formation rule, where we adopt
the following stronger variant (note that, while all variable
names in a single type are different, two different types in
the same judgement may define variables which have the
same name, provided that (EnvForm) and (VarForm) are re-
spected). � ` T Type t =2 def(�)�; t � T ` Env

(EnvForm)� ` Env � ` �(t) Type� ` t Type
(VarForm)�(t) indicates the bound oft in �, i.e. the typeT such

that t � T 2 �; if � = (t1 � T1; :::; tn � Tn) then
def(�)=(t1; :::; tn).

Our notion of good formation, called UniDef in [19],
is stronger than the standard one, but every standard well
formed judgement admits an�-equivalent UniDef judge-
ment. The UniDef good formation is needed to be able
to avoid�-renaming when the (AlgTrans�) is applied, as
shown in the full paper.

We now present the rules which define our subtyping re-
lation over recursive types. We say that a relationRR � f(�; T; U) : � ` T � U is well formedg
is compatible with a set of rules ifR contains a judgment
which unifies with the conclusion of a subtyping rule if and
only if R also contains the corresponding judgements which
are unified with the premises of that rule.

A set of subtype rulesS is usually used to define the min-
imum relationR which is compatible withS, i.e. the set of
all judgements which admit a finite proof in the systemS
(inductive interpretation). In this case, the rules we present
will be interpreted coinductively, which means that our sub-
type relation is defined as the maximum relation which is
compatible with the rules.

We may also express this fact by saying that a pre-
judgement holds if there exists either a finite or an infi-
nite proof for it (see Definition 3.8 for a formal account).
WF(�; T; U) will abbreviate Left(�) ` T Type and
Right(�) ` U Type. In (8�) rule, � ` T = T 0 abbre-
viates Swap(�) ` T 0 � T and� ` T � T 0.

WF(�; T;>)� ` T � > (>�)(t; u) 2 Def(�) WF(�; t; u)� ` t � u (Id�)(t; u) � (T 0; U 0) 2 �U 6= > U 6= u � ` T 0 � U� ` t � U (AlgTrans�)�0 = (�; (X=�X:T ! U; Y =�Y:T 0 ! U 0))
Swap(�0) ` T 0 � T �0 ` U � U 0� ` �X:T ! U � �Y:T 0 ! U 0 (!�)�0 = (�; (X=�X:8t � T:U; Y =�Y:8t0 � T 0:U 0))�0 ` T = T 0 �0; (t; t0) � (T; T 0) ` U � U 0� ` �X:8t � T:U � �Y:8t0 � T 0:U 0 (8�)X = T 2 Left (�) � ` " T � U� ` X � U (LUnf�)Y = U 2 Right(�) � ` T � " U� ` T � Y (RUnf�)

Notice that in our definition of the(8�) rule, the charac-
teristic kernel Fun requirement of equality of bound types
is expressed in the premises by the mutual subtyping judge-
ment�0 ` T = T 0.

Since we are interested in solving the subtype-checking
problem, we will comment on the rules with respect to their
backwards reading (where the problem of proving the con-
clusion is reduced to the problem of proving the premises).
The forwards reading of the same rules obviously makes
perfect sense as well.

The symbol" T denotes a renaming of both type and
recursive defined variables inT . This renaming cannot, in
general, be avoided and in the next section we will define a
systematic way to perform this operation.

The use of bi-environments allows judgements such as() ` 8t � >:t � 8u� >:u to be proved with no need to
renamet andu to a common name.

3 Labeled recursive kernel Fun

In this section we introduce a labeled variant of recursive
kernel Fun which we use as a bridge between the official
system and the algorithm we are going to present.

3.1 Adding labels

To move towards our subtype algorithm we now de-
fine a specific variable renaming technique to be used in
the unfolding rules. Informally, we interpret the repeated
backward application of the subtyping rules starting from() B T � U as a descent along the infinite unfoldings of
the typesT andU , and we label every type occurrence in

a derived pre-judgement with the path� which corresponds
to that occurrence in the unfolding ofT or U . In this way,
every different definition of a variableX or t in the unfold-
ing is associated with a different label�, and we can rename
that variable asX�jt�. In this way we obtain variable unic-
ity, and we also preserve, insidet�, the original namet of
the variable it comes from; we will call sucht the “face” of
the labeled variablet�. Paths are represented by sequences
in f0; 1g�, indicated by�; �.

For example, the type “T = �X:8t � >:�Y:t ! X”
may be labeled as follows:Tl = �X�:8t� � >�:0:�Y�:1:(t�:1:0 ! X�:1:1)
which corresponds to the following variable renaming:Tr = �X�:8t� � >:�Y�:1:(t� ! X�):
We will use the following notation to represent the result of
labeling and renaming a type.Trjl = �X�:8t� � >�:0:�Y�:1:(t�j�:1:0 ! X�j�:1:1):

Observe that in a variable occurrencet�j�, t� is the vari-
able itself, while� is an occurrence label, which is used
during the subtype checking process.

The following definitions formalize the labeling process.
Hereafter,� will indicate either a labeled variablet� orX�.

Definition 3.1 For each labeled typeT , Erase(T) is the
type that we get by erasing each label from variables and
from >� occurrences insideT . For each sequenceA of
labeled types, Erase�(A) is the sequence obtained by ap-
plying “Erase” to each element ofA.

To label a typeT we have to specify the label� of the
root, and a sequenceL which contains the label of each free
variable inT . These labels have to refer to an occurrence�
such that� is in its scope (definition 3.2, conditions 2 and
3). In the following, we call FV(T) and DV(T) the sets of
free and defined variables of the typeT , respectively.

Definition 3.2 [L; �℄, whereL is a sequence of labeled
variables(�1; : : : ; �n), is a labeling pair forT 2R-Types
if the following conditions hold:1: variables inL have different faces:i 6= j) Erase(�i) 6= Erase(�j)2: for eacht� 2 L: � is in the scope of8t� :� = �:1:�03: for eachX� 2 L: � is in the scope of�X� :� = �:�04: every free variable inT is defined inL :

FV(T) � Erase� (L)5: no variable defined inT is defined inL too :
DV(T) \ Erase� (L)=;

Definition 3.3 Let T 2R-Types, if[L; �℄ is a labeling pair
for T then[L; �℄ (T) is defined as follows:� [L; �℄ (>) = >�� [L; �℄ (t) = t�j� where t� 2 L� [L; �℄ (X) = X�j� where X� 2 L� [L; �℄ (�X:8t � T:U) =�X� :8t� � [(L; X�) ; �:0℄ (T) : [(L; X� ; t�) ; �:1℄ (U)� [L; �℄ (�X:T ! U) =�X� : ([(L; X�) ; �:0℄ (T)! [(L; X�) ; �:1℄ (U))

By labeling types in R-Types according to the previous
definition, we obtain a set of labeled types which we call
LR-Types (Labeled Recursive Types):

LR-Types= fT : existsT 0 2 R-Types and a labeling pair[L; �℄ for T 0 such thatT = [L; �℄ (T 0)g
By combining erasing with labeling we can now define

the relabeling operator which takes an LR-TypeT and a
label � and updates the root label ofT to �, and every
other variable accordingly; note that this operator renames
the bound but not the free variables.

Definition 3.4 (Relabeling) The relabeling of an LR-TypeT according to label�, written T " �, is defined as:T "� = [FV(T); �℄(Erase(T)):
Relabeling is used when a recursion variableX�j� is

substituted with its body�X�:T ; in this case, we will guar-
antee the uniqueness of variables by expandingX�j� to(�X�:T)"�.

Over LR-Types we consider the following equivalence
relation.

Definition 3.5 For eachT; U 2LR-Types,T ' U ,
Erase(T) =Erase(U) :

The relation' (similarity) will be used to define the stop
condition of our subtype checking algorithm (Section 4).
Intuitively, two types are similar if they are two residualsof
the same type in the original judgement.

3.2 The labeled subtype relation

We are now ready to give a precise definition of the types
and judgements of labeled recursive kernel Fun.

For brevity, TX;� will indicate a type such as�X�:8t� � T:T 0 or �X�:T ! T 0, while 3 ranges over� and�; if 3 is� (�), then3�1 is� (resp.,�).

TypesT ::= >� j t�j� jX�j� j �X�:8t� � T:T 0 j �X�:T ! T 0
Pre-JudgementsP ::= � B Env j � B T Type j � B T � T
JudgementsJ ::= � ` Env j � ` T Type j � ` T � T
Bi-Environments� ::= () j �; (t�; t0�) � (T; T 0) j �; (X� = TX;�; YÆ = T 0Y;Æ)j �; T �X�j� j �; X�j� � T
Environments� ::= () j �; t� � T j �; X� = TX;�

In this variant, when a comparisonX�j� � U or T �Y�j� is met, this information is saved in the bi-environment.
This is only done for uniformity with the algorithmic ver-
sion, where this information is used to stop the subtype-
checking process. In this abstract version, this information
is not used. The Left, Right and Swap operations are now
defined according to the following table.(t�; u�) � (T; U) (X�=T; YÆ=U) T3U

Def (t�; u�) (X�; YÆ)
Swap (u� ; t�) � (U; T) (YÆ=U;X�=T) U3�1T
Left t� � T X�=T
Right u� � U YÆ=U
We now present the rules which define our subtyping

relation over recursive types; we will call this set of rules<1. These rules will be interpreted coinductively (Defini-
tion 3.8). We omit good formation rules.

Hereafter,u�j� will indicate that the occurrence label is
an arbitrary label; likewise for>�.

WF(�; T;>�)� ` T � >� (>�)(t�; u�) 2 Def(�) WF
��; t�j�; u�j��� ` t�j� � u�j� (Id�)(t�; u�) � (T 0; U 0) 2 �U 6= u�j� U 6= >� � ` T 0 � U� ` t�j� � U (AlgTrans�)�0 = �; (X�=�X�:8t� � T:U; Y�=�Y� :8u� � T 0:U 0)�0 ` T=T 0 �0; (t�; u�) � (T; T 0) ` U � U 0� ` �X�:8t� � T:U � �Y� :8u� � T 0:U 0 (8�)�0 = �; (X�=�X�:T ! U; Y�=�Y� :T 0 ! U 0)

Swap(�0) ` T 0 � T �0 ` U � U 0� ` �X�:T ! U � �Y� :T 0 ! U 0 (!�)X� = T 2 Left (�)�;X�j� � U ` T " � � U� ` X�j� � U (LUnf�)

Y� = U 2 Right(�)�; T � Y�j� ` T � U " �� ` T � Y�j� (RUnf�)
Observe that unfolding rules now use the relabeling op-

eration to rename the unfolded types.
If the pre-judgementP reduces toP 0 by one or more

backward applications of<1 rules, we indicate this fact
with P �1 P 0.

To simplify our study, we will restrict ourselves to the
pre-judgments which can be used to prove a closed judge-
ment, (Definition 3.7).

Definition 3.6 We call Start-J the set of pre-judgements() B T � U whereT; U are closed LR-Types, and all of
their variables have different faces.

Definition 3.7 We define Start-J1 as the set of all possible
subtyping pre-judgements that we obtain by reducing a pre-
judgement in Start-J by backward applications of<1 rules.
Formally:

Start-J1 = fP 0 : 9P 2 Start-J s.t.P �1 P 0g
The Start-J1 pre-judgements satisfy some invariants

which we prove in the full paper; in particular, they are well-
formed.

We now give our definition of inclusion between re-
cursive types; afailure pre-judgementis a pre-judgement
which does not match the conclusion of any rule.

Definition 3.8 For each pre-judgement� B T � U in
Start-J1:� `1 T � U , � a failure pre-judgement�0 B T 0 � U 0

s.t.� B T � U �1 �0 B T 0 � U 0
Equivalently,� `1 T � U holds when either a finite or

an infinite proof tree exists for it.

4 A subtyping algorithm

The rules presented in the previous section save the pairsX�j� � U or T � Y�j� in the bi-environments. Thus, fol-
lowing [3], we can use this information to stop backwards
rule application when such a pair of types is met for the
second time. Due to renaming, we cannot expect exactly
the same pair to be met twice. Hence the most natural idea
is to stop when we meet a pair which matches an already
met pair modulo�-renaming.

This algorithm is very inefficient because of the high
cost of�-equivalence comparison, but, before this study,
was widely accepted as the best guess for a correct and
complete algorithm. We will show in the next section that
this is not the case, and we consider this as an important,

though negative, result. The natural algorithm is correct,
but it is not complete since there exist provable judgements
which, during subtype checking, produce infinitely many
pairs which, though in some sense “similar”, always fail to
be�-equivalent to a previously met pair.

After this result, in order to define a complete subtyping
algorithm, one may look for an equivalence relation which
is slightly weaker than�-equivalence, and stop the algo-
rithm when a pair is met twice modulo this weaker equiv-
alence. Similarity (i.e. erasure equality') is the first can-
didate for this task. Unfortunately, it is too weak. The re-
sulting algorithm is complete, i.e. it always terminates, but
is not correct, as shown in Section 6.

However, the algorithm becomes complete and correct if
we use similarity but, instead of stopping the second time
we meet a pair, we wait until the same pair is met, modulo
similarity, for the third time, as formalized below.

Definition 4.1 We say thatT � U 2'n � if the bi-
environment� contains at leastn pairsT 0 � U 0 such thatT ' T 0 andU ' U 0.

The rules which define our algorithm are obtained by
adding two new termination rules to the<1 system, and
by modifying the unfolding rules as follows.X�j� � U 2'2 �� ` X�j� � U (LEnd�)

T � Y�j� 2'2 �� ` T � Y�j� (REnd�)X�j� � U 62'2 �X� = T 2 Left (�) �; X�j� � U ` T " � � U� ` X�j� � U
(LUnf2�)T � Y�j� 62'2 �Y� = U 2 Right(�) �; T � Y�j� ` T � U " �� ` T � Y�j� (RUnf2�)

With this extension we have a new set of rules which
we call<alg-2 and whose backwards application defines a
subtyping algorithm for recursive types (we outline the ter-
mination proof in the next section).

5 Soundness and completeness

The correctness and completeness of our algorithm, i.e.
the equivalence between<alg-2 and<1, is the main result
of this work. The proof is complex and very long, and is
reported in the full paper [11]. We can only give a short
outline here.

We first report the lemma that states a fundamental in-
variant which our proof exploits over and over again.DV(B)
are the variables defined insideB. Points 1.2 and 2.2 say

that, whenever� appears in a judgement, the last definition
in T of a variable with the same face as� is the definition of� itself. This fact, together with the fact that the comparison
in the (L/REnd�) rules is performed modulo similarity, im-
plies that labels can be ignored altogether during subtyping
checking, which makes it possible to have efficient imple-
mentations of this algorithm.

Lemma 5.1 For each�0 B T 0 � U 0 2Start-Jalgj1, if� 2FV(T 0) and� = Left(�0) (if � 2FV(U 0) and � =
Right(�0)):1: � = s�) 1:1 � = �0; s� � A;�001:2 s� 62'1 Def(Left(�00))2: � = Y�) 2:1 � = �0; Y� = A;�002:2 Y� 62'1 Def(Left(�00))
Theorem 5.2 (Soundness)For each() B T � U 2Start-
J: () `alg-2 T � U =) () `1 T � U
Proof outline. We prove soundness by describing a way to
transform any<alg-2 proof tree into an<1 proof tree. To
this end, we repeatedly choose one instance of the(L/REnd)
rule, and substitute it with an instance of the unfolding rule
together with its<alg-2 proof tree. We thus obtain a suc-
cession of proofs whose limit is an infinite proof with no
instance of theEndrule, i.e. an<1 proof. The difficult part
of the proof is to prove that for everyEnd-proved judge-
ment (which we call an “end-node” of the proof tree), its
unfolding (according to the corresponding unfolding rule)
admits a successful<alg-2 proof tree. We know that every
end-nodeJ is similar to two different unfolding-nodesJ 0
andJ 00 which have been met before (i.e. towards the root
of the proof tree) and have been proved by two<alg-2 sub-
proofsP 0 andP 00. For every rule instance inP 0 we can find
a'-similar rule instance to use to build a proofP for J ,
with the only exception of the instances of the(Id�) rule:
if t�, u� have been unified in the environment used inP 0
there is no way to be sure that two similar variablest�, u�
have been unified in the environment used to proveJ . This
is a real, deep problem. If you unfold the counterexample
given in Section 7, you will actually find an end-node whose
expansion admits no<alg-2 proof tree, and this is exactly be-
cause at� , u� pair was unified the first time a similar judge-
ment was met, but the similar pairt�, u� was not unified
later. Hence, in our proof we have to exploit the fact that the
end-nodeJ corresponds to two different similar judgementsJ 0 andJ 00 which have both been proved. We first prove
that, if we apply toJ 0 the same sequence of rules which
transformJ 00 into J we obtain a fourth similar judgementJ 000 which has an<alg-2 proof which is contained inside the
original judgement. Then we consider everyt� � u� com-
parison inside the proof ofJ 000. All of these comparisons

can be proved, either by rule (Id�) or by a sequence of
(AlgTrans�) applications followed by a final (Id�) appli-
cation; we have to prove that the same sequence of rules
can be used to prove the correspondingt� � u� compari-
son inside the unfolding ofJ . Recall that we have a rewrite
path() B T � U � J 0 � J 000 � � B t� � u� , and a
path() B T � U � J 0 � J 00 � J � � B t� � u�.
If t� � u� has been proved thanks to (Id�) (casea) thent� andu� have been both defined, and unified, along the
path fromT � U to J 0 (a.1), or from J 0 to J 000 (a.2),
or from J 000 to � B t� � u� (a.3). In case (a.3), we
prove thatt� andu� are also unified in the path fromJ to� B t� � u�. Similarly, in case (a.2) we prove thatt� andu� are also unified in the path fromJ 00 to � B t� � u�.
In case (a.1) we refer toJ 00 too and prove that if we ap-
ply to J 00 the same sequence of rules which transformJ
into � B t� � u� we obtain� B t� � uÆ, so we have

the path() B T � U � J 0 � J 00 � � B t� � uÆ.
Now, if � B t� � uÆ is proved by (Id�), we prove that� B t� � u� is proved by (Id�) and that� = � and� = Æ.
If t� � uÆ, has been reduced by transitivity tot0� 0 � uÆ,
then we reason as in caseb below.
If t� � u� has been reduced by transitivity tot0�0 � u�
(caseb) then we prove that transitivity also reducest� � u�
to t0�0 � u�. Now, if t0�0 � u� is proved by (Id�) then we
are in casea, otherwise, if transitivity is applied once again,
the proof follows by an induction reasoning.2
Theorem 5.3 (Completeness)For each () B T �U 2Start-J: () `1 T � U =) () `alg-2 T � U
Proof hint. We first prove that in any infinite branch of an<1 proof tree there is an infinite number of applications
of an unfolding rule. Every such application records a pairX � T 0 such thatX andT 0 are similar to subterms ofT andU , hence at least one of theseX � T 0 pairs is met, modulo
similarity, more than three times along that branch.2
6 Incompleteness of the�-based algorithm

For reasons of space, we only report here the simplest
judgement we have found which makes the�-based algo-
rithm diverge; this counterexample is commented on in the
full paper. To make its structure easier to grasp, we avoid
useless type and recursion variables, we do not write the
bound of top-bounded type variables, and we use covariant
pair types and a bottom type; both of them can be encoded
in kernel Fun, provided that? is never used as a bound for
a type variable. Observe that the counterexample does not
need bounded variables nor does it need contravariant type

constructors. However, it does need non-structural subtyp-
ing (either? or>) and, most importantly, the�:8:� nesting.
The diverging pre-judgement is the following:B �:8:�X:8t: (?� �Z:8:�:8: ((?� t�X)� Z))� �Y:8u:�K:8: ((u�>�K)� Y)
7 Unsoundness of the similarity-based algo-

rithm

The simplest pre-judgement we have found to prove the
non soundness of the algorithm which stops the first time it
meets a pair again, modulo similarity, is the following one.
The same comments as in the previous section apply.B �Z: (8t:�X: (X � (t� Z)))� �:8u:�Y: ((>� (u� (�:8v:Y)))�>)
8 Conclusions

We have studied the problem of subtyping recursive
types in kernel Fun. This problem is important because the
combination of subtyping, parametric polymorphism and
recursion is essential in the context of strongly typed object-
oriented languages.

The main result of this work is the definition of a sub-
typing algorithm for strongly recursive kernel Fun, which is
the only one known for this class of languages. We prove it
to be sound and complete and the proof is technically very
challenging. We have also been able to prove, by exhibiting
non trivial counterexamples, that the most natural algorithm
to attack the problem is not complete, and that its first obvi-
ous relaxation is not correct.

Moreover, we have proved that our algorithm can be
equivalently defined by eliminating variable renaming. This
makes the algorithm very efficient in practice since, if vari-
able renaming can be avoided, no memory allocation is
needed during the execution of the subtyping algorithm, and
the key step of similarity checking can be reduced to pointer
equality checking. Moreover, this property may be the key
to be able to adapt the efficient subtype checking algorithms
which are known for first order systems ([25]).

As a consequence of this work, we feel now the need
to study the more general field of “regular” trees with vari-
ables. Both our counterexamples involve infinite trees with
variables which can be finitely described but which are not
regular in the usual sense of the word. The problem of find-
ing a weaker notion of regularity which is satisfied by these
trees has some deep links with this research, and we have
some preliminary results.

Finally, since in our presentation there is no rule which
explicitly states the transitive property of the subtype rela-
tion, its transitivity is still to be proved. This is easier than

proving correctness, but requires similar techniques to be
used.

Acknowledgements

We gratefully thanks the anonymous referees for insight-
ful and constructive remarks. This work has been partially
supported by Esprit Working Groups 26142 - Applied Se-
mantics, and 22552 - PASTEL.

References

[1] M. Abadi and L. Cardelli.A Theory of Objects. Springer-
Verlag, 1996.

[2] M. Abadi and M. P. Fiore. Syntactic considerations on recur-
sive types. InProceedings, 11th Annual IEEE Symposium
on Logic in Computer Science[23], pages 242–252.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive types.
ACM Transactions on Programming Languages and Sys-
tems, 15(4):575–631, 1993.

[4] M. Brandt and F. Henglein. Coinductive axiomatization of
recursive type equality and subtyping. InProceedings of
the Typed Lambda Calculi And Application, Nancy, France,
number 1210 in LNCS, pages 63–81, Berlin, April 1997.
Springer Verlag.

[5] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object
encodings.Information and Computation, 1999.

[6] L. Cardelli. Notes about F!<:. Unpublished manuscript, Oct.
1990.

[7] L. Cardelli and G. Longo. A semantic basis for Quest.Jour-
nal of Functional Programming, 1(4):417–458, Oct. 1991.

[8] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An
extension of system F with subtyping.Information and
Computation, 109(1–2):4–56, 1994.

[9] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism.Computing Surveys,
17(4):471–522, Dec. 1985.

[10] F. Cardone. Relational semantics for recursive types and
bounded quantification. InProceedings of the Sixteenth In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, volume 372 ofLNCS, pages 164–178, Stresa,
Italy, July 1989. Springer-Verlag.

[11] D. Colazzo and G. Ghelli. Subtyp-
ing recursive types in kernel Fun, 1998.
file://ftp.di.unipi.it/pub/Papers/ghelli/recursive.ps.

[12] P. Curien and G. Ghelli. Coherence of subsumption, mini-
mum typing and type checking in F�. Mathematical Struc-
tures in Computer Science, 2(1):55–91, 1992.

[13] S. Danforth and C. Tomlinson. Type theories and object-
oriented programming.ACM Computing Surveys, 20(1):29–
72, Mar. 1988.

[14] K. Fisher and J. Mitchell. The development of type systems
for object-oriented languages.Theory and Practice of Ob-
ject Systems, 1(3):189–220, 1996.

[15] G. Ghelli. Proof Theoretic Studies about a Minimal Type
System Integrating Inclusion and Parametric Polymorphism.
PhD thesis, Dipartimento di Informatica, Università di Pisa,
March 1990. Tech. Rep. TD-6/90.

[16] G. Ghelli. Modelling features of object-oriented languages
in second order functional languages with subtypes. In
J. de Bakker, W. de Roever, and G. Rozenberg, editors,
Foundations of Object-Oriented Languages, number 489 in
LNCS, pages 311–340, Berlin, 1991. Springer Verlag.

[17] G. Ghelli. Recursive types are not conservative over F�. In
M. Bezen and J. Groote, editors,Proceedings of the Typed
Lambda Calculi And Application, Utrecht, The Netherlands,
number 664 in LNCS, pages 146–162, Berlin, March 1993.
Springer Verlag.

[18] G. Ghelli. Divergence of F� type checking. Theoretical
Computer Science, 139(1-2):131–162, 1995.

[19] G. Ghelli. Complexity of kernel Fun subtype checking.
In Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming, pages 134–145,
Philadelphia, Pennsylvania, 24–26 May 1996.

[20] M. Gordon, R. Milner, and C. Wadsworth.Edinburgh LCF,
volume 78 ofLNCS. Springer Verlag, 1979.

[21] C. A. Gunter.Semantics of Programming Languages: Struc-
tures and Techniques. Foundations of Computing. The MIT
Press, 1992.

[22] C. A. Gunter and J. C. Mitchell.Theoretical Aspects of
Object-Oriented Programming: Types, Semantics, and Lan-
guage Design. The MIT Press, 1994.

[23] IEEE Computer Society Press.Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, 27–30 July
1996.

[24] A. Kennedy, 1998. personal communication.
[25] D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient

recursive subtyping. InProceedings POPL ’93, pages 419–
428, 1993.

[26] G. Nelson. Systems Programming in Modula-3. Prentice
Hall, 1991.

[27] B. C. Pierce. Bounded quantification is undecidable.Infor-
mation and Computation, 112(1):131–165, July 1994.

[28] J. Tiuryn and P. Urzyczyn. The subtyping problem for
second-order types is undecidable. InProceedings, 11th An-
nual IEEE Symposium on Logic in Computer Science[23],
pages 74–85.

Appendix A

The�-based algorithm can be defined by adopting the
following stop rule, instead of our (L/REnd) rules.T 0 � U 0 2 � T '� T 0 U '� U 0 WF(�; T; U)� ` T � U (End��)

Our complete algorithm records a pairT � U only when
the unfolding rule is applied, which gives the end-rule less
possibilities to be applicable, but is still enough to make
it complete. We show here that the incompleteness of the�-based algorithm is not a consequence of this choice, by
studying a version of the algorithm which recordseverymet
pair.

We prove incompleteness of the algorithm defined
by <alg-� rules by exhibiting a particular provable pre-
judgement which makes the algorithm diverge.

To this end, we first fix some conventions we will use
in the proof. Hereafter we assume that:8t�:T indicates
the type8t� � >:T wheret� may occur free inT ; 8:T
indicates a type8t� � >:T wheret� doesn’t occur free
in T ; �:T indicates a type�X�:T whereX� doesn’t occur
free inT . Moreover, we will not write the variable labels
(but we behave as if they were present).

The diverging pre-judgement is() B T � U where:T = �:8:�X:8t: (?� �Z:8:�:8: ((?� t�X)� Z))U = �Y:8u:�K:8: ((u�>�K)� Y)
To simplify things, we have used a type? which is the

subtype of every type, associated to the following termina-
tion rule:

WF(�;?�; T)� ` ?� � T (?�)
We also use pair types with the usual covariant rule, i.e.

the following reduction rules, where�00 is defined as in rule
(!�) and where it is explicitly indicated if the reduction is
to the left or right pre-judgement.� ` �X�:T � U � �Y� :T 0 � U 0 (��)l�! �00 ` T � T 0� ` �X�:T � U � �Y� :T 0 � U 0 (��)r�! �00 ` U � U 0

Pair and bottom types make our counterexample much
more readable, and we can encode both of them in system
kernel Fun, as soon as one never uses? as the bound of a
type variable.

If we ignore for a moment some superfluous� and8,
both the typesT andU present a particular kind of nested
recursion�-8-� : a type variable is defined between two
definitions of recursion variables. Moreover, in the inner
type of each of them there are occurrences of all three de-
fined variables. We will see that in comparing these types,
the outer left hand-side type (the type�X:8t: (: : :)) will be
always compared with the inner right hand-side type (the
type�K:8: (: : :)) and viceversa, and for this reason no pair
of types created in the reduction will be�-equivalent to an
already met pair. We believe that divergence problem arises
when types with at least such a structure are compared, but
we do not prove this fact.

We omit obvious reduction steps and in each reduction
we only write the last element added to the bi-environment.

Moreover, in each reduction step we will implicitly
assume that the current comparison is saved in the bi-
environment.

Finally, we omit proof branches concerning well-
formedness (as already mentioned, in [11] we prove that,
for Start-J pre-judgements, well-formedness is always guar-
anteed).

With these conventions, using<alg-� rules, we have the
following reduction chain for our pre-judgement; starting

from the eleventh judgement, every pair of compared types
is similar to the one which has been met nine steps before.
However, every time it differs in some free variables. For
example, if we consider the last nine steps, all the judge-
ments from 12 to 17 contain the free variablet which is
different from the one met nine steps before. Step 18 differs
from 9 due toX andK. Step 19 differs from 10 due toK.
Step 20 differs from 11 due tou andY .

1. () B T � U
2.

(8�)�! ::: �� = T ; Y = U� ; (�;u) � (>;>) B�X:8t: (?� �Z:8:�:8: ((?� t�X) � Z))� �K:8: ((u�>�K)� Y)
3.

(8�)�! :::(X = �X:8t: (?� �Z:8:�:8: ((?� t�X)� Z)) ;K = �K:8: ((u�>�K)� Y));(t;�) � (>;>) B(?� �Z:8:�:8: ((?� t�X)� Z))� ((u�>�K)� Y)
4.

(��)r�! :::(� = (?� �Z:8:�:8: ((?� t�X)� Z)) ;� = ((u�>�K)� Y)) B�Z:8:�:8: ((?� t�X) � Z) � Y
5.

(RUnf�)�! ::: B �Z:8:�:8: ((?� t�X) � Z)� �Y:8u:�K:8: ((u�>�K)� Y)
6.

(8�)�! :::(Z = 8:�:8: ((?� t�X) � Z) ;Y = �Y:8u:�K:8: ((u�>�K)� Y));(�;u) � (>;>) B�:8: ((?� t�X)� Z)� �K:8: ((u�>�K)� Y)
7.

(8�)�! :::(� = �:8: ((?� t�X)� Z) ;K = �K:8: ((u�>�K)� Y));(�;�) � (>;>) B(?� t�X)� Z � (u�>�K)� Y
8.

(��)l�! ::: (� = (?� t�X) � Z;)� = (u�>�K)� Y) B(?� t)�X � (u�>)�K
9.

(��)r�! ::: (� = ((?� t) �X) ; � = ((u�>)�K)) BX � K
10.

(LUnf�)�! ::: B �X:8t: (?� �Z:8:�:8: ((?� t�X)� Z))� K
11.

(RUnf�)�! ::: B �X:8t: (?� �Z:8:�:8: ((?� t�X) � Z))� �K:8: ((u�>�K)� Y)
12.

(8�)�! :::(X = �X:8t: (?� �Z:8:�:8: ((?� t�X)� Z)) ;K = �K:8: ((u�>�K)� Y));(t;�) � (>;>) B(?� �Z:8:�:8: ((?� t�X)� Z))� ((u�>�K)� Y)
13.

(��)r�! :::(� = (?� �Z:8:�:8: ((?� t�X)� Z)) ;� = ((u�>�K)� Y)) B�Z:8:�:8: ((?� t�X) � Z) � Y
14.

(RUnf�)�! ::: B �Z:8:�:8: ((?� t�X) � Z)� �Y:8u:�K:8: ((u�>�K)� Y)

15.
(8�)�! :::(Z = 8:�:8: ((?� t�X)� Z) ;Y = �Y:8u:�K:8:((u�>�K)� Y));(�; u) � (>;>) B�:8: ((?� t�X)� Z)� �K:8: ((u�>�K)� Y)

16.
(8�)�! :::(� = �:8: ((?� t �X) � Z) ;K = �K:8: ((u�>�K)� Y));(�;�) � (>;>) B(?� t�X)� Z � (u�>�K)� Y

17.
(��)l�! ::: (� = (?� t�X)� Z;)� = (u�>�K)� Y) B(?� t) �X � (u�>)�K

18.
(��)r�! ::: (� = ((?� t)�X) ; � = ((u�>)�K)) BX � K

19.
(LUnf�)�! ::: B �X:8t: (?� �Z:8:�:8: ((?� t�X)� Z))� K

20.
(RUnf�)�! ::: B �X:8t: (?� �Z:8:�:8: ((?� t�X)� Z))� �K:8: ((u�>�K)� Y)

Remark 1 Another kind of renaming could be used in the
unfolding rules. WhenX�j� is defined by�X�:T , our un-
folding rule substitutesX�j� with (�X�:T) "�, according
with the meaning we gave to recursive types. It would also
be possible, however, to substituteX�j� with just the bodyT "�. In this way, we do not create a newX variable, since
relabeling applies only to the variables which are defined
insideT . By not renaming the outermost recursive vari-
able, this variant has better hopes of meeting an already
met pair. We believe that this variant is sound, but we did
not prove this fact. However, it is still not complete. Con-
sider our judgement. Every time we meet a pair of types
which is similar to a previous one, it differs because of the
free type variables, and this difference remains if we move
to the variant algorithm. The only exception are the judge-
ments in steps 18 and 19, which only contain free recursion
variables. Indeed, with the variant algorithm, theX at step
9 would be the same as in step 18, while in the basic algo-
rithm they are different variables. However, theK would
still be different, since a new�K is generated every timeY
is unfolded in step9 � i + 5. Hence, the variant algorithm
is not complete.

This alternative way of renaming corresponds the fol-
lowing chain of equivalences:�X:T = �X: [T=X℄T = �X: [T=X℄ ([T=X℄T)
instead of the following chain that we exploit:�X:T = [�X:T =X℄T = [[�X:T =X℄ T =X℄T : : :

It would be interesting to try and prove the soundness of
this alternative algorithm, since it may be more convenient
in some situations. We leave this as an open problem.

