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turns out to be quite expressive. Its strong foundations and the equivalences thathold in the ambient logic are helpful in the de�nition of the language semanticsand execution model.The paper is structured as follows. In this section we present a preview of thequery language, and compare it with related proposals. In Section 2 we de�nethe tree data model. In Section 3 we present the logic, upon which the querylanguage, de�ned in Section 4, is de�ned. In Section 5 we present the evaluationmodel. In Section 6 we draw some conclusions.1.1 A PreviewConsider the following bibliography, expressed in the syntax of our languageTQL, which we explain in detail later. Informally, a[F] represents a piece of datalabeled a with contents F. The contents can be a collection of similar pieces ofdata, separated by \j". When the collection is empty, we can omit the brackets,so that, for example, POPL[ ] can be written as POPL.The bibliography below consists of a set of references all labeled article. Eachentry contains a number of author �elds, a title �eld, and possibly other �elds.ARTICLES=article[ author[Cardelli] j author[Gordon] j title[Anytime Anywhere]j conference[POPL] j year[2000]j keyword[Ambient Calculus] j keyword[Logic] ] jarticle[ author[Cardelli] j title[Wide Area Computation]j booktitle[ICALP] j year[1999] j pages[403-444] j publisher[SV] ] jarticle[ author[Ghelli] j author[Pierce] j title[Bounded Existentials]j journal[TCS] j year[1998] ]Suppose we want to �nd all the papers in ARTICLES where one author isCardelli ; then we can write the following query:from ARTICLES � .article[X]X � .author[Cardelli]select paper[X]The query consists of a list of matching expressions contained between fromand select , and a reconstruction expression, following select . The matching ex-pressions bind X with every piece of data that is reachable from the rootARTICLES through an article path, and such that a path author goes fromX to Cardelli ; the answer is paper [author [Cardelli ] j author [Gordon ] j : : :] jpaper [author [Cardelli ] j title[Wide Area Computation ] j : : :], i.e. the �rst twoarticles in the databases, with the outer article rewritten as paper .This query language is characterized by the fact that a matching expressionis actually a logic expression combining matching and logical operators. Forexample, the following query combines path expressions and logical implication()) to retrieve papers with no other author then Cardelli. Informally, T matchesanything, hence the second condition says: if X is an author, then it is Cardelli.2



from ARTICLES � .article[X]X � .author[T] ) .author[Cardelli]select XMoreover, queries can be nested, giving us the power to restructure the collection,as we explain later.1.2 Comparisons with Related ProposalsIn this paper we describe a logic, a query language, and an abstract evaluationmechanism.The tree logic can be compared with standard �rst order formalizations oflabelled trees. Using the terminology of [3], we can encode a labeled tree with arelation Ref(source:OID, label:�, destination:OID). The nodes of the tree are theOIDs (Object IDenti�ers) that appear in the source and destination columns,and any tuple in the relation represents an edge, with label label. Of course,such a relation can represent a graph as well as a tree. It represents a forest ifdestination is a key for the relation, and if there exists an order relation on theOIDs such that, in any tuple, the source strictly precedes the destination.First order formulas de�ned over this relation already constitute a logicallanguage to describe tree properties. Trees are represented here by the OID oftheir root. We can say that, for example, \the tree x is a[]" by saying:9y: Ref (x; a; y) ^ (8y0; y00: :Ref (y; y0; y00)) ^ (8x0; x00: x00 6= y ) :Ref (x; x0; x00))There are some di�erences with our approach. First, our logic is `modal', whichmeans that a formula A is always about one speci�c `subject', that is the part ofthe database currently being matched against A. First order logic, instead, doesnot have an implicit subject: one can, and must, name a subject. For example,our modal formula a[] implicitly describes the `current tree', while its translationinto �rst order logic, given above, gives a name x to the tree it describes.Being `modal' is neither a merit nor a fault, in itself; it is merely a di�erence.Modality makes it easier to decribe just one tree and its structure, whereas itmakes it more di�cult to describe a relationship between two di�erent trees.Apart from modality, another feature of the ambient logic is that its funda-mental operators deal with one-step paths (a[A]) and with the composition oftrees (A j A0), whereas the �rst order approach describes everything in terms ofone-step paths (Ref (o1; a; o2)). Composition is a powerful operator, at least forthe following purposes:{ it makes it easy to describe record-like structures both partially (b[] j c[] j Tmeans: contains b[], c[], and possibly more �elds) and completely (b[] j c[]means: contains b[]; c[] and only b[]; c[]); complete descriptions are di�cult inthe path based approach;{ it makes it possible to bind a variable to `the rest of the record', as in `X iseverything but the title': paper [title[T] j X ].3



The query language we described derives its essential from-select structurefrom set-theoretics comprehension, in the SQL tradition, and this makes it sim-ilar to other query languages for semistructured data, such as StruQL [14, 15],Lorel [5, 18], XML-QL [13], Quilt [11], and, to some extent, YATL [12]. An in-depth comparison between the XML-QL, YATL, and Lorel languages is carriedout in [16], based on the analysis of thirteen typical queries. In [17] we wrotedown those same queries in TQL; the result of this comparison is that, for thethirteen queries in [16], their TQL expression is very similar to the correspond-ing XML-QL, with a couple of exceptions. First, those XML-QL queries that,in [16], are expressed using Skolem functions, have to be expressed in a di�erentway in TQL, since we do not have Skolem functions in the current version ofTQL. However, our Skolem-free version of these queries is not complex. Second,XML-QL does not seem to have a general way of expressing universal quanti�-cation, and this problem shows up in the query that asks for pairs of books withthe same set of authors; this is rather complex to express in XML-QL, but it isnot di�cult in TQL. Another related class of queries that are simpler to expressusing TQL are those related to the non-existence of paths, such as `�nd all thepapers with no title' or `�nd all the papers whose only author, if any, is Ghelli'.Lorel does not have these problems, since it allows universal quanti�cation. Quiltand XDuce [19] are Turing complete, hence are more expressive than the otherlanguages we cited here.One important feature of TQL is that it has a clean semantic interpretation,which pays o� in several ways. First, the semantics should make it easier toprove the correctness and completeness of a speci�c implementation. Moreover,it simpli�es the task of proving equivalences between di�erent logic formulas orqueries. To our knowledge, no such formal semantics has been de�ned for YATL.The semantics of Lorel has been de�ned, but looks quite involved, because oftheir extensive use of coercions.2 Information TreesWe represent semistructured data as information trees. In this section we �rstde�ne information trees, then we give a syntax to denote them, and �nally wede�ne an equivalence relation that determines when two di�erent expressionsdenote the same information tree.2.1 Information TreesWe represent labeled trees as nested multisets; this corresponds, of course, tounordered trees. Ordered trees (e.g. XML data) could be represented as nestedlists. This option would have an impact on the logic, where the symmetric A j Boperator could be replaced by an asymmetric one, A;B. This change mightactually simplfy some aspects of the logic, but in this paper we stick to theoriginal notion of unordered trees from [10], which also matches some recentdirections in XML [1]. 4



For a given set of labels �, we de�ne the set IT of information trees, rangedover by I , as the smallest collection such that:{ the empty multiset, fg, is in IT ;{ if m is in � and I is in IT then the singleton multiset fhm; Iig is in IT ;{ IT is closed under multiset union Uj2J M(j), where J is an index set, andM 2 J ! IT .2.2 Information TermsWe denote �nite information trees by the following syntax of information term(info-terms), borrowed from the ambient calculus [9]. We de�ne a function [[F ]]mapping the info-term F to the denoted information tree. To this aim, we de�nethree operators, 0, m[ ] and j, on the domain of the information trees, which weuse to interpret the corresponding operations on info-terms.Info-terms and their information tree meaningF ::= info-term0 denoting the empty multisetm[F ] denoting the multiset fhm;F igF j F denoting multiset union[[0]] =def 0 =def fg[[m[F ]]] =def m[[[F ]]] =def fhm; [[F ]]ig[[F 0 j F 00]] =def [[F 0]] j [[F 00]] =def [[F 0]] ] [[F 00]]We use � to denote the set of all terms generated by this grammar, alsousing parentheses for precedence. We often abbreviate m[0] as m[], or as m. Weassume that � includes the disjoint union of each basic data type of interest(integers, strings. . . ), hence 5[0], or 5, is a legitimate info-term. We assume that\j" associates to the right, i.e. F j F 0 j F 00 is read F j (F 0 j F 00).2.3 Congruence over Info-TermsThe interpretation of info-terms as information trees induces an equivalencerelation F � F 0 on info-terms. This relation is called info-term congruence, andit can be axiomatized as follows.Congruence over info-termsF � FF 0 � F ) F � F 0F � F 0; F 0 � F 00 ) F � F 00F � F 0 ) m[F ] � m[F 0]F � F 0 ) F j F 00 � F 0 j F 00F j 0 � F 5



F j F 0 � F 0 j F(F j F 0) j F 00 � F j (F 0 j F 00)This axiomatization of congruence is sound and complete with respect to theinformation tree semantics. That is, F � F 0 if and only if F and F 0 representthe same information tree.2.4 Information Trees, OEM Trees, UnQL TreesWe can compare our information trees with two popular models for semistruc-tured data: OEM data [24] and UnQL trees [6]. The �rst obvious di�erence isthat OEM and UnQL models can be used to represent both trees and graphs,while here we focus only on trees. We are currently working on extending ourmodel to include labeled graphs as well, but we prefer to focus on the simplerissue of trees, which is rich enough to warrant a separate study.UnQL trees are characterized by the fact that they are considered modulobisimulation, which essentially means that information trees are seen as setsinstead of multisets. For example, m[n[] j n[]] is considered the same as m[n[]];hence UnQL trees are more abstract, in the precise sense that they identify moreterms than we do.On the other hand, information trees are more abstract than OEM data,since OEM data can distinguish a DAG from its tree-unfolding.3 The Tree LogicIn this section we present the tree logic. The tree logic is based on Cardelli andGordon's modal ambient logic, de�ned with the aim of specifying spatial andtemporal properties of the mobile processes that can be described through theambient calculus [10]. The ambient logic is particularly attractive because it isequipped with a large set of logical laws for tree-like structures, in particularlogical equivalences, that can provide a foundation for query rewriting rules andquery optimization.We start here from a subset of the ambient logic as presented in [10], but weenrich it with information tree variables, label comparison, and recursion.3.1 FormulasThe syntax of the tree logic formulas is presented in the following table.The symbol �, in the label comparison clause, stands for any label compar-ison operator chosen in a prede�ned family �; we will assume that � at leastcontains equality, the SQL string matching operator like , and their negations.The positivity condition on the recursion variable � means that an even numberof negations must be traversed in the path that goes from each occurrence of �to its binder. 6



Formulas:� ::= label expressionn label constantx label variableA;B ::= formula0 empty tree�[A] locationA j B compositionT true:A negationA^ B conjunctionX tree variable9x:A quanti�cation over label variables9X :A quanti�cation over tree variables� � �0 label comparison� recursion variable��:A recursive formula (least �xpoint); � may appear only positivelyThe interpretation of a formula A is given by a semantic map [[A]]�; � that mapsA to a set of information trees, with respect to the valuations � and �. Thevaluation � maps label variables x to labels (elements of �) and tree variablesX to information trees, while � maps recursion variables � to sets of informationtrees.Formulas as sets of information trees[[0]]�; � =def f0g[[�[A]]]�; � =def f�(�)[I ] j I 2 [[A]]�; �g[[A j B]]�; � =def fI j I 0 j I 2 [[A]]�; �; I 0 2 [[B]]�; �g[[T]]�; � =def IT[[:A]]�; � =def IT n [[A]]�; �[[A ^ B]]�; � =def [[A]]�; � \ [[B]]�; �[[X ]]�; � =def f�(X )g[[9x:A]]�; � =def Sn2� [[A]]�[x7!n]; �[[9X :A]]�; � =def SI2IT [[A]]�[X 7!I]; �[[� � �0]]�; � =def if �(�) � �(�0) then IT else ;[[��:A]]�; � =def T fS � IT j S � [[A]]�; �[� 7!S]g[[�]]�; � =def �(�)This style of semantics makes it easier to de�ne the semantics of recursiveformulas. Some consequences of the semantic de�nition are detailed shortly.[[0]]�; � is the singleton f0g. [[�[A]]]�; � contains the information tree m[I ], ifm = �(�) and I is in [[A]]�; �. (We assume that � maps any label in � to itself,so that we can apply � to � even when � is not a variable.) For each I in [[A]]�; �7



and I 0 in [[B]]�; � , [[A j B]]�; � contains the information tree I j I 0. [[T]]�; � is the setof all information trees (while its negation F denotes the empty set). [[:A]]�; � isthe complement of [[A]]�; � with respect to the set of all information trees IT . Iis in [[A ^ B]]�; � if it is in [[A]]�; � and in [[B]]�; �. I is in [[9x:A]]�; � if there existssome value n for x such that I is in [[A]]�[x7!n]; � . Here �[x 7! n] denotes thesubtitution that maps x to n and otherwise coincides with �. [[� � �0]]�; � is theset IT if the comparison holds, else it is the empty set. [[��:A]]�; � is the least�xpoint (with respect to set inclusion) of the monotonic function that maps anyset of information trees S to [[A]]�; �[� 7!S].The meaning of a variable X is given by the valuation �. Valuations connectour logic to pattern matching; for example, [[m[n[0]]]] is in [[x[X ]]]�; � if � maps xto m and X to [[n[0]]]. The process of �nding all possible �'s such that I 2 [[A]]�; �is our logic-based way of �nding all possible answers to a query with respect toa database I .We say that F satis�es A under �; �, when the information tree [[F ]] is in theset [[A]]�; �, and then we write F ��;� A:F ��;� A =def [[F ]] 2 [[A]]�; �Satisfaction enjoys the following properties, which are easily derived and helpmaking the above semantic de�nition more explicit. These properties may formthe basis of a matching algorithm of F against A.Some properties of satisfactionF ��;� 0 , F � 0F ��;� �[A] , 9F 0: F � �(�)[F 0] ^ F 0 ��;� AF ��;� A j B , 9F 0; F 00: F � F 0 j F 00 ^ F 0 ��;� A ^ F 00 ��;� BF ��;� TF ��;� :A , :(F ��;� A)F ��;� A ^ B , F ��;� A ^ F ��;� BF ��;� 9x:A , 9m2�: F ��[x7!m];� AF ��;� 9X :A , 9I 2IT : F ��[X 7!I];� AF ��;� � � �0 , �(�) � �(�0)F ��;� ��:A , F ��;� Af�  ��:AgF ��;� X , [[F ]] = �(X )F ��;� � , [[F ]] 2 �(�)3.2 Some Derived FormulasAs usual, negation allows us to de�ne many useful derived operators, as describedin the following table.
8



Derived formulas:�[) A] =def :(�[:A]) A jj B =def :(:A j :B)F =def :T A _ B =def :(:A ^ :B)8x:A =def :(9x::A) 8X :A =def :(9X ::A)��:A =def :(��::Af�  :�g)F � m[) A] means that `it is not true that, for some F 0, F � m[F 0] and notF 0 � A', i.e. `if F has the shapem[F 0], then F 0 � A'. To appreciate the di�erencebetween m[A] and its dual m[) A], consider the following statements.{ F is an article where Ghelli is an author: F � article [author [Ghelli ]jT]{ If F is an article, then Ghelli is an author: F � article [) author [Ghelli ]jT]F � A jj B means that `it is not true that, for some F 0 and F 00, F � F 0 j F 00and F 0 � :A and F 00 � :B', which means: for every decomposition of F intoF 0 j F 00, either F 0 � A or F 00 � B. To appreciate the di�erence between the jand the jj operators, consider the following statements.{ There exists a composition of F into F 0 and F 00, such that F 0 satis�esarticle [A], and F 00 sats�es T; i.e., there is an article inside F that satis-�es A: F � article [A] j T{ For every decomposition of F into F 0 and F 00, either F 0 satis�es article [) A],or F 00 satis�es F; i.e., every article inside F satis�es A: F � article [) A] jj FThe dual of the least �xpoint operator ��:A is the greatest �xpoint opera-tor ��:A. For example ��:� is equivalent to F, while ��:� is equivalent to T.More interestingly, ��:0 _ m[�] describes every information tree that matchesm[m[: : :m[]]], and, on �nite trees, it is equivalent to ��:0 _ m[�]. However, ifwe consider in�nite trees, the distinction between least and greatest �xpoint be-comes more important. For example, the in�nite tree m[m[: : :]] satis�es ��:0 _m[�], but does not satisfy ��:0_m[�]. When we consider only �nite trees, as wedo here, the � and � operators are quite similar in practice, since most interestingformulas have a single �xpoint.Satisfaction over the derived operators enjoys the following properties, mostof which are easily derived from the de�nition, while others are more subtle.For example, the properties of greatest �xpoints include a coinduction principle.Again, these properties may form the basis for a matching algorithm.Some properties of satisfaction for derived formulas:F ��;� FF ��;� �[) A], 8F 0: (F � �(�)[F 0] ) F 0 ��;� A)F ��;� A jj B , 8F 0; F 00: F � F 0 j F 00 ) (F 0 ��;� A _ F 00 ��;� B)F ��;� A _ B , F ��;� A _ F ��;� BF ��;� 8x:A , 8m2�: F ��[x7!m];� AF ��;� 8X :A , 8I2IT : F ��[X 7!I];� AF ��;� ��:A , F ��;� Af�  ��:AgF ��;� ��:A , 9B: F ��;� B ^ 8F 0: F 0 ��;� B ) F 0 ��;� Af�  Bg9



Many logical equivalences have been derived for the ambient logic, and are in-herited by the tree logic. We list some of them here. These equivalences couldbe exploited by a query logical optimizer.Some equations�[A] , �[T] ^ �[) A] �[) A] , �[T] ) �[A]�[F] , F �[) T] , T�[A ^ A0] , �[A] ^ �[A0] �[) A_A0] , �[) A] _ �[) A0]�[A _ A0] , �[A] _ �[A0] �[) A^A0] , �[) A] ^ �[) A0]�[9x:A] , 9x:�[A] (x 6= �) �[) 8x:A] , 8x:�[) A] (x 6= �)�[8x:A] , 8x:�[A] (x 6= �) �[) 9x:A] , 9x:�[) A] (x 6= �)�[9X :A] , 9X :�[A] �[) 8X :A] , 8X :�[) A]�[8X :A] , 8X :�[A] �[) 9X :A] , 9X :�[) A]A j A0 , A0 j A A jj A0 , A0 jj A(A j A0) j A00 , A j (A0 j A00) (A jj A0) jj A00, A jj (A0 jj A00)A j F , F A jj T , TT j T , T F jj F , FA j (A0 _ A00), (A j A0) _ (A j A00) A jj (A0 ^ A00), (A jj A0) ^ (A jj A00)A j 9x:A0 , 9x:A j A0 (x =2FV(A)) A jj 8x:A0 , 8x:A jj A0 (x =2FV(A))A j 8x:A0 , 8x:A j A0 (x =2FV(A)) A jj 9x:A0 , 9x:A jj A0 (x =2FV(A))3.3 Path FormulasAll query languages for semistructured data provide some way of retrieving alldata that is reachable through a path described by a regular expression. The treelogic is powerful enough to express this kind of queries. We show this fact hereby de�ning a syntax for path expressions, and showing how these expressionscan be translated into the logic. This way, we obtain also a more compact andreadable way of expressing common queries, like those outlined in the previoussection.Consider the following statement: X is some article found in the ARTICLEScollection, and some author of X is Cardelli . We can express it in the logic usingthe m[A] j T pattern as:ARTICLES � article [X ^ (author [Cardelli ] j T)] j TUsing the special syntax of path expressions, we express the same condition asfollows. ARTICLES � :article(X ):author [Cardelli ]Our path expressions support also the following features:{ Universally quanti�ed paths: X is an article and every author of X is Cardelli.ARTICLES � :article(X )!author [Cardelli ]10



{ Label negation: X is an article where Ghelli is the value of a �eld, but is notthe author. ARTICLES � :article(X ):(:author )[Ghelli ]{ Path disjunction: X is an article that either deals with SSD or cites somepaper Y that only deals with SSD.ARTICLES � :article(X )(:keyword _ :cites :article(Y)!keyword)[SSD]{ Path iteration (Kleene star): X is an article that either deals with SSD, orfrom which you can reach, through a chain of citations, an article that dealswith SSD.ARTICLES � :article(X )(:cites :article)�:keyword[SSD]{ Label matching: there exists a path through which you can reach some �eldX whose label contains e and mail (% matches any substring).ARTICLES � (:%)�(:%e%mail%)[X ]We now de�ne the syntax of paths and its interpretation.Path formulas:� ::= label matching expression� matches any n such that n like �:� matches whatever � does not match� ::= path element:� some edge matches �!� each edge matches �p; q ::= path� elementary pathpq path concatenationp� Kleene starp _ q disjunctionp(X ) naming the tree at the end of the pathA path-based formula p[A] can be translated into the tree logic as shown below.We �rst de�ne the tree formula Matches(x; �) as follows:Matches(x; �) =def x like �Matches(x;:�) =def :Matches(x; �)Path elements are interpreted by a translation, [[ ]]p, into the logic, using thepatterns m[A] j T and m[) A] jj F that we have previously presented:[[:�[A]]]p =def (9x:Matches(x; �) ^ x[[[A]]p]) j T[[!�[A]]]p =def (8x:Matches(x; �) ) x[) [[A]]p]) jj F11



General paths are interpreted as follows. p�[A] is recursively interpreted as `eitherA holds here, or p�[A] holds after traversing p'. Target naming p(X )[A] means:at the end of p you �nd X , and X satis�es A; hence it is interpreted usinglogical conjunction. Formally, path interpretation is de�ned as shown below; pathinterpretation translates all non-path operators as themselves, as exempli�ed forT and j.[[pq[A]]]p =def [[p[q[A]]]]p [[p�[A]]]p =def ��:A _ [[p[�]]]p[[(p _ q)[A]]]p =def [[p[A]]]p _ [[q[A]]]p [[p(X )[A]]]p =def [[p[X ^ A]]]p[[T]]p =def T [[A j A0]]p =def [[A]]p j [[A0]]p3.4 Tree Logic and SchemasPath formulas explore the vertical structure of trees. Our logic can also expresseasily horizontal structure, as is common in schemas for semistructured data.(E.g. in XML DTDs, XDuce [19] and XMLSchema [1]. However, the presentversion of our logic deals directly only with unordered structures.)For example, we can extract the following regular-expression-like sublan-guage, inspired by XDuce types. Every expression of this language denotes aset of information trees:0 the empty treeA j B an A next to a BA _ B either an A or a Bn[A] an edge n leading to an AA� =def ��: 0 _ (A j �) a �nite multiset of zero or more A'sA+ =def A j A� a �nite multiset of one or more A'sA? =def 0 _ A optionally an AIn general, we believe that a number of proposals for describing the shape ofsemistructured data can be embedded in our logic. Each such proposal usuallycomes with an e�cient algorithm for checking membership or other properties.These e�cient algorithms, of course, do not fall out automatically from a generalframework. Still, a general frameworks such as our logic can be used to comparedi�erent proposals.4 The Tree Query LanguageIn this section we build a full query language on top of the logic we have de�ned.4.1 The Query LanguageA query language should feature the following functionalities:{ binding and selection: a mechanism to select values from the database andto bind them to variables; 12



{ construction of the result: a mechanism to build a result starting from thebindings collected during the previous stage.Our Tree Query Language (TQL) uses the tree logic for binding and selection,and tree building operations to construct the result. Logical formulas A are aspreviously de�ned.TQL queries:Q ::= queryfrom Q � A select Q0 valuation-collecting queryX matching variable0 empty resultQ j Q composition of results�[Q] nesting of resultf(Q) tree function, for any f in a �xed set �We allow some tree functions f , chosen from a set � of functions of typeIT ! IT , to appear in the query. For example:{ count(I), which yields a tree n[0], where n is the cardinality of the multisetI ;{ op(I), where op is a commutative, associative integer function with a neutralelement; if all the pairs in I have a shape n[I 0], where n is a natural number,then op(I) combines all the n's using the op operation obtaining the integerr, and returns r[0].In practice, these functions would include user-de�ned functions written in anexternal programming language.4.2 Query SemanticsThe semantics of a query is de�ned in the following table. The interesting caseis the one for from Q � A select Q0. In this case, the subquery Q0 is evaluatedonce for each valuation �0 that extends the input valuation � and such that[[Q]]� 2 [[A]]�0; �; all the resulting trees are then combined using the j operator.The notation �0V0 � �V means that V0 � V and that �0V0 and �V coincideover V. For F 2 RV ! IT , we de�ne Par�V2RV F (�V) =def U�V2RV F (�V),where ] is multiset union, namely the information tree operator that is used tointerpret j.Query semantics[[X ]]�V = �V(X )[[0]]�V = 0[[Q j Q0]]�V = [[Q]]�V j [[Q0]]�V13



[[m[Q]]]�V = m[[[Q]]�V ][[x[Q]]]�V = �V(x)[[[Q]]�V ][[f(Q)]]�V = f([[Q]]�V )[[from Q � A select Q0]]�V= Par�0V02f�0V0 j V0=V[FV(A); �0V0� �V; [[Q]]�V2[[A]]�0V0 ; �g [[Q0]]�0V0According to this semantics, the result of a query from Q0 � A select Q00 canbe an in�nite multiset. Therefore, in a nested query, the database Q0 can bein�nite, even if we start from a �nite initial database. Obviously, one would notlike this to happen in practice. One possible solution is to syntactically restrictQ0 to a variable X . Another solution is to have a static or dynamic check on the�niteness of the result; one such option is dicussed in Section 4.4.4.3 Examples of QueriesWe explain the query operators through examples. As in Section 1.1, we abbre-viate a query from Q � A select from Q0 � A0 select Q00as from Q � A; Q0 � A0 select Q00 :The database ARTICLES is the one given in Section 1.1.All papers whose only author (if any) is Cardelli can be retrieved by thefollowing query (where we use X ^ : : : as an alternative to a nested binderX � : : :):from ARTICLES � :article [X ^ !author [Cardelli ]] select XWe may use disjunction to �nd both e-mails and emails inside some author�eld.from ARTICLES � :article [:author [:e-mail [X ] _ :email [X ]]]select e-mail [X ]Using recursion, we look for e-mail at the current level or, recursively, at anyinner nesting level.1from ARTICLES � ��: :e-mail [X ] _ :email [X ] _ 9x: :x[�]select e-mail [X ]The following query binds two label variables y and z to the label and thecontent of a �eld y[z], where z is `like %Ghelli% ' (like matches '%' to anysubstring). Recursion may be used to look for such �elds at any depth.1 When every X is inside an m[] operator, like in this example, recursion is guaranteedto terminate, but we still have enough 
exibility to express complex queries, such asqueries that evaluate boolean circuits [22].14



from ARTICLES � :article [:y[z] ^ z like %Ghelli%]select found [label[y] j content[z]]Query nesting allows us to restructure data. For example, the following queryrearranges papers according to their year of publication: for each year X (outerfrom), it collects all the papers of that year. The composition Year [X ] j Z bindsZ to all �elds but the year; this way of collecting all the siblings except one isimpossible, or di�cult, in most other query languages.from ARTICLES � :article [:Year [X ]]select publications by year [ Year [X ]j (from ARTICLES � :article [Year [X ] j Z ]select article [Z ] )]Relational-style join queries can be easily written in TQL either by matchingthe two data sources with two logical expressions that share some variables (equi-joins) or by exploiting the comparison operators. Universal quanti�cation can beexpressed both on label and tree variables; more examples can be found in [17].4.4 Safe QueriesIt is well-known that disjunction, negation, and universal quanti�cation create`safety' problems in logic-based query languages. The same problems appear inour query language.Consider for example the following query:from db � (author [X ] _ autore [Y ]) j T select author [X ] j autore[Y ]Intuitively, every entry in db that is an author binds X but not Y , and vice-versa for autore entries. Formally, both situations generate an in�nite amountof valuations; for example, if �(db) = author [m[]], then f�0 j [[db]]� 2 [[A]]�0; �g isthe in�nite set f(db 7!author [m[]]; X 7!m[]; Y 7!I) j I 2 IT g :Negation creates a similar problem. Consider the following query.from db � :author [X ] select notauthor [X ]Its binder, with respect to the above input valuation, generates the followingin�nite set of bindings:f(db 7!author [m[]]; X 7!I) j I 2 IT ; I 6= m[]gg ;and the query has the following in�nite result:fnotauthor [I ] j I2IT ; I 6= m[]g :These queries present two di�erent, but related, problems:15



{ their semantics depends on the sets � and IT of all possible labels andinformation trees;{ their semantics is in�nite.We say that a query is safe when its semantics is �nite. Query safety isknown to be undecidable for the relational tuple calculus [4], and we suspectit is undecidable for our calculus too. However, as in relational calculi, it is notdi�cult to devise some su�cient syntactical conditions for safety, and to solve thenon-safety problem by restricting the language to the syntactically safe queries.A di�erent way to solve the problem is to allow unsafe queries, and to designa query processor for them. Our semantics accounts for unsafe queries, since itdoes not restrict the set of valuations generated by a binder to be �nite, nordoes it restrict the query answer to be �nite.5 Query EvaluationIn this section we de�ne a query evaluation procedure. This procedure is reallya re�ned semantics of queries, which is intermediate in abstraction between thesemantics of Section 4.2 and an implementation algorithm. It is based on analgebra of trees and tables that is suggestive of realistic implementations, andmay be seen as a speci�cation of such implementations. In Pisa we have realizedone such implementation, which is described in [23, 8].The query evaluation procedure is based on the manipulation of sets of val-uations. These sets, unfortunately, may be in�nite. For a real implementation,one must typically �nd a �nite representation of in�nite sets. Moreover, at thelevel of query manipulations, one would like to push negation to the leaves, in-troducing dualized logical operators as indicated in the �rst table in Section 3.2.These dualized operators also become part of an implementation. We do not dealhere with the possible ways of �nitely representing these in�nite sets, or how toimplement operators over them. In [23, 8], though, we describe a technique for�nitely representing sets of valuations in terms of a �nite disjunction of a set ofconjunctive constraints over the valuations, in the style of [20, 21].Any practical implementation of a query language is based on the use ofparticular e�ciently implementable operators, such as relational join and union.We write our query evaluation procedure in this style as much as possible, butwe naively use set complement to interpret negation, and we do not deal withdualized operators.Our query evaluation procedure shows how to directly evaluate a query to aresulting set of trees. In database technology, instead, it is typical to translatethe query into an expression over algebraic operators (which, in [23, 8] and inXML Query Algebra [2], include also operators such as if-then-else, iterationand �xpoint). These expressions are �rst syntactically manipulated to enhancetheir performance, and �nally evaluated. We ignore here issues of translationand manipulation of intermediate representations.The core of the query evaluation problem is binder evaluation. A binderevaluation procedure takes an information tree I and a formula A, that is used16



as a pattern for matching against I . The procedure takes also a valuation � andreturns the set of all the valuations for the free variables of A that are not inthe domain of �.To describe the procedure, we �rst introduce an algebra over tables. Tablesare sets of valuations (here called rows). We then use this algebra to de�ne theevaluation procedure.5.1 The Table AlgebraLet V = V1; :::; Vn be a �nite set of variables, where each variable Vi is either aninformation tree variable X , whose universe U (X ) is de�ned to be the set ITof all information trees, or a label variable x, whose universe U (x) is de�ned tobe the set � of all labels.A row with schemaV is a function that maps each Vi to an element of U (Vi);we use �V as a meta-variable to range over rows with schema V (or just � whenV is clear from context). A table with schema V is a set of rows over V; we useT V for the set of tables with schema V, and RV as a meta-variable to rangeover T V. When V is the empty set, we have only one row over V, which wedenote with �; hence we have only two tables with schema ;, the empty one, ;,and the singleton, f�g. We use 1V to denote the largest table with schema V,i.e. the set of all rows with schema V.The table algebra is based on �ve primitive operators: union, complement,product, projection, and restriction, each carrying schema information. Theycorrespond to the standard operations of relational algebra.The operators of table algebra:RV [V R0V =def RV [R0V � 1VCoV(RV) =def 1V nRV � 1VV0 \V = ; : RV �V;V0 R0V0 =def f�; �0 j � 2 RV; �0 2 R0V0g � 1V[V0V0 � V : QVV0RV =def f�0 j �021V0 ; 9� 2 RV: � � �0g � 1V0FV(�; �0) � V : �V���0RV =def f� j � 2 RV; �V+(�) � �V+(�0)g � 1VThe table union RV [V R0V is de�ned as the set-theoretic union of two tableswith the same schema V.The table complement CoV(RV) is de�ned as the set-theoretic di�erence1V nRV.If RV and R0V0 are two tables whose schemas are disjoint, their table carte-sian product RV �V;V0 R0V0 is de�ned as the set containing all rows obtainedby concatenating each row of RV with each row of R0V0 . The result has schemaV [V0.If V0 is a subset of V, the projection QVV0RV is de�ned as the set of all rowsin RV restricted to the variables in V0.17



Let �V+ be the function that coincides with �V overV, and maps every � 62 Vto �. If FV(�; �0) � V, then the restriction �V���0RV is the setf�V j �V 2 RV and �V+(�) � �V+(�0)g ;where � is a label comparison operator, as in Section 3.We will also use some derived operators, de�ned in the following table.Table algebra, derived operators:V � V0 : ExtVV0(RV) =def RV �V;V0nV 1V0nV � 1V0RV \V R0V =def CoV(CoV(RV) [V CoV(R0V)) � 1VRV 1V;V0 R0V0 =def ExtVV[V0(RV) \V[V0 ExtV0V[V0(R0V0) � 1V[V0RV �V;V0 R0V0 =def ExtVV[V0(RV) [V[V0 ExtV0V[V0(R0V0) � 1V[V0V0 � V : `VV0 RV =def CoV0(QVV0CoV(RV)) � 1V0The operator RV 1V;V0 R0V0 is well-known in the database �eld. It is called`natural join', and can be also de�ned as follows: the set containing all rowsobtained by concatenating each row � in RV with those rows �0 in R0V0 suchthat � and �0 coincide over V \ V0. One important property of natural joinis that it always yields �nite tables when is applied to �nite tables, even if itsde�nition uses the extension operator. Moreover, the optimization of join hasbeen extensively studied; for this reason we will use this operator, rather thanextension plus intersection, in the de�nition of our query evaluation procedure.Outer union RV �V;V0R0V0 and co-projection`VV0 RV are useful for treatingthe dualized operators.Outer union is dual to join, in the following sense:RV �V;V0 R0V0 = CoV[V0(CoV(RV) 1V;V0 CoV0(R0V0))Projection and co-projection are both left-inverse of extension:QV0V (ExtVV0(RV)) = RV`V0V (ExtVV0(RV)) = RVHowever, they represent two di�erent ways of right-inverting extension:QVV0RV = TfR0V0 j ExtV0V (R0V0) � RVg`VV0 RV = SfR0V0 j ExtV0V (R0V0) � RVg5.2 Query EvaluationWe specify here an evaluation procedure Q(Q)� that, given a query Q and a row� that speci�es a value for each free variable of Q, evaluates the corresponding18



information tree. A closed query \from Q � A select Q0" is evaluated by �rstevaluating Q to an information tree I . The pair I;A is then evaluated to yielda table RV whose schema contains all the free variables in A. Finally, Q0 isevaluated once for each row � of RV; all the resulting information trees arecombined using j, to obtain the query result. This process is expressed in thelast case of the table below.The �rst part of the table describes how a quadruple I;A; �V; 
 is evaluatedby a binder evaluation procedure B to return a table with schema S(A;V; 
̂).The schema function S is speci�ed in the table that follows, and enjoys theproperty that S(A;V; �̂) = FV(A) n V. Here 
 is an environment that mapsrecursion variables � to functions from information trees to tables. We assumethat 
 is always given together with a schema 
̂ mapping recursion variables tosets of variables V, such that 
(�) 2 IT ! T 
̂(�).The notation f(x 7! n)g represents a table that contains only the row thatmaps x to n, and similarly for f(X 7!I)g.Binder and query evaluationB(I;0)�V;
 = if I = 0 then f�g else ;B(I; n[A])�V;
 = if I = n[I 0] then B(I 0;A)�V;
 else ;B(I; x[A])�V;
 = B(I; �V(x)[A])�V;
 if x 2 VB(I; x[A])�V;
 = if x 62 Vif I = n[I 0] then f(x 7!n)g 1fxg;S(A;V;
̂) B(I 0;A)�V;
else ;B(I;A j B)�V;
 =SS(AjB;V;
̂)I0;I002fI0;I00 j I0jI00=Ig (B(I 0;A)�V;
 1S(A;V;
̂);S(B;V;
̂) B(I 00;B)�V;
)B(I;T)�V;
 = f�gB(I;:A)�V;
 = CoS(A;V;
̂)(B(I;A)�V;
)B(I;A^ B)�V;
 = B(I;A)�V;
 1S(A;V;
̂);S(B;V;
̂) B(I;B)�V;
B(I;X )�V;
 = if I = �V(X ) then f�g else ; if X 2 VB(I;X )�V;
 = f(X 7!I)g if X 62 VB(I; 9X : A)�V;
= QS(A;V;
̂)S(A;V;
̂)nfXgB(I;A)�V;
B(I; 9x: A)�V;
 = QS(A;V;
̂)S(A;V;
̂)nfxgB(I;A)�V;
B(I; � � �0)�V;
 = �S(���0;V;
̂)�V+(�)��V+(�0)1S(���0;V;
̂)B(I; ��:A)�V;
 = Fix (�M 2IT ! T S(��:A;V;
̂):�Y :B(Y ;A)�V;
[� 7!M ])(I)B(I; �)�V;
 = 
(�)(I)Q(X )�V = �V(X )Q(0)�V = 0Q(Q j Q0)�V = Q(Q)�V j Q(Q0)�VQ(m[Q])�V = m[Q(Q)�V ]Q(x[Q])�V = �V(x)[Q(Q)�V ]Q(f(Q))�V = f(Q(Q)�V)19



Q(from Q � A select Q0)�V = let I = Q(Q)�V and RFV(A)nV = B(I;A)�V; �in Par�02RFV(A)nV Q(Q0)(�V ;�0)The schema function SS(0;V; � ) = ;S(n[A];V; � ) = S(A;V; � )S(x[A];V; � ) = S(A;V; � ) [ (fxg nV)S(A j B;V; � ) = S(A;V; � ) [ S(B;V; � )S(T;V; � ) = ;S(:A;V; � ) = S(A;V; � )S(A ^ B;V; � ) = S(A;V; � ) [ S(B;V; � )S(X ;V; � ) = fXg nVS(9X : A;V; � )= S(A;V; � ) n fXgS(9x: A;V; � ) = S(A;V; � ) n fxgS(� � �0;V; � ) = FV(�; �0) nVS(��:A;V; � ) = S(A;V; � [� 7! ;])S(�;V; � ) = � (�)Since the rule for comparisons � � �0 is subtle, we expand here some specialcases.Some special cases of comparison evaluationB(I; x � x0)�V;
 = �fx;x0gx�x0 1fx;x0g if x 62 V; x0 62 VB(I; x � x0)�V;
 = �fxgx��V(x0)1fxg if x 62 V; x0 2 VB(I; x � x0)�V;
 = �;�V(x)��V(x0)1; if x 2 V; x0 2 VB(I; x � n)�V;
 = �fxgx�n1fxg if x 62 VB(I; n � n0)�V;
= �;n�n01; (i:e: if n � n0 then f�g else ;)Lemma 1. S(��:A;V; 
̂) = S(A;V; 
̂[� 7! S(��:A;V; 
̂)])B(I;A)�V;
 2 T S(A;V;
̂):Lemma 2. Let A be a formula, V be a set of variables, let � be a set f�ig i2I ofrecursion variables that includes those that are free in A, and let 
 be a functionde�ned over � such that, for every �i, 
(�i) 2 IT ! T 
̂(�i), where 
̂(�i) isdisjoint from V. then:8� 2 1V; I 2 IT : B(I;A)�;
 = f�0 j �0 2 1S(A;V;
̂); I2 [[A]](�0 ;�); �
(�0)gwhere �
(�) = �� :�:fI j � 2 
(�)(I)g .20



The following proposition states that the query evaluation procedure is equiv-alent to the query semantics of Section 4.2. The proof uses Lemma 2 in thefrom-select case.Proposition 1. 8Q; V � FV (Q); �V: Q(Q)�V = [[Q]]�V6 Conclusions and Future DirectionsWe have de�ned a query language that operates on information representedas unordered trees. One can take di�erent views of how information should berepresented. For example as ordered trees, as in XML, or as unordered graphs,as in semistructured data. We believe that each choice of representation wouldlead to a (slightly di�erent) logic and a query language along the lines describedhere. We are currently looking at some of these options.There are currently many proposals for regular pattern languages for semi-structured data, many having in common the desire to describe tree shapes andnot just linear paths. Given the expressive power of general recursive formulas��:A, we believe we can capture many such proposals, even though an importantpart of those proposals is to describe e�cient matching techniques.In this study we have exploited a subset of the ambient logic. The ambi-ent logic, and the calculus, also o�er operators to specify and perform treeupdates [7]. Possible connections with semistructured data updates should beexplored.An implementation of TQL is currently being carried out, based on the im-plementation model we described. The current prototype can be used to queryXML documents accessible through �les or through web servers.Acknowledgements Andrew D. Gordon contributed to this work with many use-ful suggestions. Giorgio Ghelli was partially supported by \Ministero dell'Univer-sit�a e della Ricerca Scienti�ca e Tecnologica", project DATA-X, by MicrosoftResearch, and by the E.U. workgroup APPSEM.References1. XML schema. Available from http://www.w3c.org, 2000.2. XML query. Available from http://www.w3c.org, 2001.3. S. Abiteboul, P. Buneman, and D. Suciu. Data on the WEB: From Relations toSemistructured Data and XML. Morgan Kaufmann, San Mateo, CA, October 1999.4. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,Reading, MA, 1995.5. Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.Wiener. The Lorel query language for semistructured data. International Journalon Digital Libraries, 1(1):68{88, 1997.6. P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A query language andoptimization techniques for unstructured data. In Proc. of the 1996 ACM SIGMODInternational Conference on Management of Data (SIGMOD), Montreal, Quebec,Canada, pages 505{516, 4{6 June 1996. SIGMOD Record 25(2), June 1996.21
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