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Abstract. We define an operational semantics and a type system for manipulating
semistructured data that contains hidden information. The data model is simple la-
beled trees with a hiding operator. Data manipulation is based on pattern matching,
with types that track the use of hidden labels.

1  Introduction
1.1  Languages for Semistructured Data
XML and semistructured data [1] are inspiring a new generation of programming and query
languages based on more flexible type systems [26, 5, 6, 15]. Traditional type systems are
grounded on mathematical constructions such as cartesian products, disjoint unions, function
spaces, and recursive types. The type systems for semistructured data, in contrast, resemble
grammars or logics, with untagged unions, associative products, and Kleene star operators.
The theory of formal languages, for strings and trees, provides a wealth of ready results, but
it does not account, in particular, for functions. Some integration of the two approaches to type
systems is necessary [26, 5].

While investigating semistructured data models and associated languages, we became
aware of the need for manipulating private data elements, such as XML identifiers, unique
node identifiers in graph models [7], and even heap locations. Such private resources can be
modeled using names and name hiding notions arising from the π-calculus [27]: during data
manipulation, the identity of a private name is not important as long as the distinctions be-
tween it and other (public or private) names are preserved. Recent progress has been made in
handling private resources in programming. FreshML [21] pioneers the transposition [30], or
swapping, of names, within a type systems that prevents the disclosure of private names. 

Other recent techniques can be useful for our purposes. The spatial logics of concurrency
devised to cope with π-calculus restriction and scope extrusion [27], and the separation logics
used to describe data structures [28,29], provide novel logical operators that can be used also
in type systems. Moreover, the notion of dependent types, when the dependence is restricted
to names, is tractable [25].

In this paper we bring together a few current threads of development: the effort to devise
new languages, type systems, and logics for data structures, the logical operators that come
from spatial and nominal logics for private resources, the techniques of transpositions, and the
necessity to handle name-dependent types when manipulating private resources. We study
these issues in the context of a simplified data model: simple labeled trees with hidden labels,
and programs that manipulate such trees. The edges of such trees are labeled with names. Our
basic techniques can be applied to related data models, such as graphs with hidden node and
edge labels, which will be the subject of further work. 

1.2  Data Model
The data model we investigate here has the following constructors. Essentially, we extend a
simple tree model (such as XML) in a general and orthogonal way with a hiding operator. 

0 the tree consisting of a single root node;
n[P] the tree with a single edge from the root, labeled n, leading to P;
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P | Q the root-merge of two trees (commutative and associative);
(νn)P the tree P where the label n is hidden/private/restricted.

As in π-calculus, we call restriction the act of hiding a name.

Trees are inspected by pattern matching. For example, program (1) below inspects a tree t hav-
ing shape n[P] | Q, for some P,Q, and produces P | m[Q]. Here n,m are constant (public) labels,
x,y are pattern variables, and T is both the pattern that matches any tree and the type of all
trees. It is easy to imagine that, when parameterized in t, this program should have the type
indicated.

match t as (n[x:T] | y:T) then (x | m[y] ) (1)
transforms a tree  t = n[P] | Q  into P | m[Q]
expected typing: (n[T] | T) → (T | m[T])

Using the same pattern match as in (1), let us now remove the public label n and insert a
private one, p, that is created and bound to the program variable z at “run-time”:

match t as (n[x:T] | y:T) then (νz) (x | z[y]) (2)
transforms t = n[P] | Q into (νp) (P | p[Q]) for a fresh label p
expected typing: (n[T] | T) → (Hz. (T | z[T]))

In our type system, the hidden name quantifier H is the type construct corresponding to the
data construct ν [10]. More precisely, Hz.� means that there is a hidden label p denoted by
the variable z, such that the data is described by �{z←p}. (Scope extrusion [27] makes the
relationship non trivial, see Sections 2 and 4.) Because of the Hz.� construct, types contain
name variables; that is, types are dependent on names.

The first two examples pattern match on the public name n. Suppose instead that we want
to find and manipulate private names. The following example is similar to (2), except that now
a private label p from the data is matched and bound to the variable z.

match t as ((νz) (z[x:T] | y:T)) then x | z[y] (3)
transforms t = (νp)(p[P] | Q) into (νp)(P | p[Q])
expected typing: (Hz. (z[T] | T)) → (Hz. (T | z[T]))

Note that the restriction (νp) in the result is not apparent in the program: it is implicitly applied
by a match that opens a restriction, so that the restricted name does not escape. 

As the fourth and remaining case, we convert a private name in the data into a public one.
The only change from (3) is a public name m instead of z in the result:

match t as ((νz) (z[x:T] | y:T)) then x | m[y] (4)
transforms t = (νp) (p[P] | Q) into (νp)(P | m[Q])
expected typing: (Hz. (z[T] | T)) → (Hz. (T | m[T]))

This program replaces only one occurrence of p: the residual restriction (νp) guarantees that
any other occurrences inside P,Q remain bound. As a consequence, the binder Hz has to re-
main in the result type. Note that, although we can replace a private name with a public one,
we cannot “expose” a private name, because of the rebinding of the output.

As an example of an incorrectly typed program consider the following attempt to assign
a simpler type to the result of example (4), via a typed let biding:

let w : (T | m[T]) = match t as ((νz) (z[x:T] | y:T)) then x | m[y]

Here we would have to check that Hz. (T | m[T]) is compatible with (T | m[T]). This would
work if we could first show that Hz. (T | m[T]) is a subtype of (Hz. T) | (Hz. m[T]), and then
simplify. But such a subtyping does not hold since, e.g., (νp)(p[0] | m[p[0]]) matches the
former type but not the latter, because the restriction (νp) cannot be distributed.



FOSSACS’03 3

So far, we have illustrated the manipulation of individual private or public names by pat-
tern matching and data constructors. However, we may want to replace throughout a whole
data structure a public name with another, or a public one with a private one, or vice versa.
We could do this by recursive analysis, but it would be very difficult to reflect what has hap-
pened in the type structure, likely resulting in programs of type T→T. So, we introduce a
transposition facility as a primitive operation, and as a corresponding type operator. In the
simplest case, if we want to transpose (exchange) a name n with a name m in a data structure
t we write t�n↔m�. If t has type �, then t�n↔m� has type ��n↔m�. We define rules to ma-
nipulate type level transpositions; for example we derive that, as types, n[0]�n↔m� = m[0].

Transposition types are interesting when exchanging public and private labels. Consider
the following program and its initial syntax-driven type:

λx:n[T]. (νz) x�m↔z� : n[T]→Hz.n[T]�m↔z� ( = n[T]→n[T] ) (5)

This program takes data of the form n[P], creates a fresh label p denoted by z, and swaps the
public m with the fresh p in n[P], to yield (νp)n[P]�m↔p�, where the fresh p has been hidden
in the result. Since n is a constant different from m, and p is fresh, the result is in fact
(νp)n[P�m↔p�]. The result type can be similarly simplified to Hz.n[T�m↔z�]. Now, swap-
ping two names in the set of all trees, T, produces again the set of all trees. Therefore, the re-
sult type can be further simplified to Hz.n[T]. We then have that Hz.n[T] = n[T], since a
restriction can be pushed through a public label, where it is absorbed by T. Therefore, the type
of our program is n[T]→n[T].

Since we already need to handle name-dependent types, we can introduce, without much
additional complexity, a dependent function type Πw. �. This is the type of functions λw:N.t
that take a name m (of type N) as input, and return a result of type �{w←m}. We can then
write a more parametric version of example (5), where the constant n is replaced by a name
variable w which is a parameter:

λw:N. λx:w[T]. (νz) x�m↔z� : Πw. (w[T] → Hz. w[T]�m↔z� ) (6)

Now, the type Hz. w[T]�m↔z� simplifies to Hz. w�m↔z�[T], but no further, since m can in
fact be given for w, in which case it would be transposed to the private z. 

Transpositions are emerging as a unifying and simplifying principle in the formal manip-
ulation of binding operators [30], which is a main goal of this paper. If some type-level ma-
nipulation of names is of use, then transpositions seem a good starting point. 

1.3  Related and Future Work
It should be clear from Section 1.2 that sophisticated type-level manipulations are required for
our data model, involving transposition types (which seem to be unique to our work), hiding
quantifiers, and dependent types. Furthermore, we work in the context of a data model and
type system that is “non-structural”, both in the sense of supporting grammar-like types (with
∧ ∨ ¬) and in the sense of supporting π-calculus-style extruding scopes. In both these aspects
we differ from FreshML [31], although we base much of our development on the same foun-
dations [30]. Our technique of automatically rebinding restrictions sidesteps some complex
issues in the FreshML type system, and yet seems to be practical for many examples. Fresh-
ML uses “apartness types” �#w, which can be used to say that a function takes a name denot-
ed by w and a piece of data ��that does not contain that name. We can express that idiom
differently as Πw. (� ∧ ¬©w) → �, where the operator ©w [10] means “contains free the
name denoted by w”.

Our calculus is based on a pattern matching construct that performs run-time type tests;
in this respect, it is similar to the XML manipulation languages XDuce [26] and CDuce [5].
However, those languages do not deal with hidden names, whose study is our main goal.
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XDuce types are based on tree grammars: they are more restrictive than ours but are based on
well-known algorithms. CDuce types are in some aspects richer than ours: they mix the logi-
cal and functional levels that we keep separate; such mixing would not easily extend to our
Hx.� types. Other differences stem from the data model (our P | Q is commutative), and from
auxiliary programming constructs.

The database community has defined many languages to query semistructured data
[1,3,6,8,15,17,19,20], but they do not deal with hidden names. The theme of hidden identifiers
(OIDs) has been central in the field of object-oriented database languages [2, 4]. However, the
debate there was between languages where OIDs are hidden to the user, and lower-level lan-
guages where OIDs are fully visible. The second approach is more expressive but has the se-
vere problem that OIDs lose their meaning once they are exported outside their natural scope.
We are not aware of any proposal with operators to define a scope for, reveal, and rehide pri-
vate identifiers, as we do in our calculus.

In TQL [15], the semistructured query language closest to this work, a programmer
writes a logical formula, and the system chooses a way to retrieve all pieces of data that satisfy
that formula. In our calculus, such formulas are our tree types, but the programmer has to write
the recursion patterns that collect the result (as in Section 8). The TQL approach is best suited
to collecting the subtrees that satisfy a condition, but the approach we explore here is much
more expressive; for example, we can apply transformations at an arbitrary depth, which is
not possible in TQL. Other query-oriented languages, such as XQuery [6], support structural
recursion as well, for expressiveness. 

As a major area of needed future work, our subtyping relation is not prescribed in detail
here (apart for the non-trivial subtypings coming from transposition equivalence). Our type
system is parameterized by an unspecified set of ValidEntailments, which are simply assumed
to be sound for typing purposes. The study of related subtyping relations (a.k.a. valid logical
implications in spatial logics [11]) is in rapid development. The work in [12] provides a com-
plete subtyping algorithm for ground types (i.e. not including Hz.�), and other algorithms are
being developed that include Kleene star [18]. Such theories and algorithms could be taken as
the core of our ValidEntailments. But adding quantifiers is likely to lead to either undecidabil-
ity or incompleteness. In the middle ground, there is a collection of sound and practical inclu-
sion rules [10,11] that can be usefully added to the ground subtyping relation (e.g., Hz.n[�]
<: n[Hz.�] for example (5)). By parameterizing over the ValidEntailments, we show that
these issues are relatively orthogonal to the handling of transpositions and hiding.

A precursor of this work handles a simpler data model, with no hiding but with a similarly
rich type system based on spatial logic [12]. However, even the richer data model considered
in this paper is not all one could wish for. For example, hiding makes better sense for graph
nodes [14], or for addresses in heaps [29], than for tree labels. More sophisticated data models
include graphs, and combinations of trees and graphical links as in practical uses of XML (see
example in Section 8). In any case, the manipulation of hidden resources in data structures is
fundamental.

2  Values
Our programs manipulate values; either name values (from a countable set of names Λ), tree
values, or function values (i.e., closures). Over the tree values, we define a structural congru-
ence relation � that factors out the equivalence laws for | and 0, and the scoping laws for re-
striction. Function values are triples of a term t (Section 3) with respect to an input variable x
(essentially, λx.t) and a stack for free variables ρ. A stack ρ is a list of bindings of variables
to values. Name transpositions are defined on all values.
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2-1  Definition: Tree Values

We define an actual transposition operation on tree values, P��m↔m’�, that blindly
swaps free and bound names m,m’ within P. The interaction of transpositions with binders
such as (νn)P supports a general formal treatment of bound names [30].

2-2  Definition: Actual Transposition of Names and Tree Values.
n��n↔m� = m 0��m↔m’� = 0
n��m↔n� = m (P | Q)��m↔m’� = P��m↔m’� | Q��m↔m’�
n��m↔m’� = n if n≠m and n≠m’ n[P]��m↔m’� = n��m↔m’�[P��m↔m’�]

((νn)P)��m↔m’� = (νn��m↔m’�)P��m↔m’�

Transpositions are used in the definition of α-congruence and capture-avoiding substitution.
Structural congruence is analogous to the standard definition for π-calculus [27]; the “scope
extrusion” rule for ν over -|- is written in an equivalent equational style.

2-3  Definition: α-Congruence and Structural Congruence on Tree Values.
α-congruence, �α, is the least congruence relation on tree values such that:

(νn)P �α (νm)(P��n↔m�) where m�na(P)
Structural congruence, �, is the least congruence relation on tree values such that:

P �α Q � P � Q (νn)0 � 0
P | Q � Q | P (νn)m[P] � m[(νn)P] if n≠m
(P | Q) | R � P | (Q | R) (νn)(P | (νn)Q) � ((νn)P) | ((νn)Q)
P | 0 � P (νn)(νm)P � (νm)(νn)P

N.B.: This notion of α-congruence can be shown equivalent to the standard one.

2-4  Definition: Free Name Substitution on Tree Values.
0{n←m} = 0 (P | Q){n←m} = P{n←m} | Q{n←m}
p[P]{n←m} = p{n←m}[P{n←m}]
((νp)P){n←m} = (νq)((P��p↔q�){n←m}) for q�na((νp)P)∪{n,m}

N.B.: different choices of q in the last clause, lead to α-congruent results.

We next define high values and transpositions over them (see also Definition 3-1 for the
syntax of terms t). A stack ρ is a list of pairs of the form �[x1←F1]...[xn←Fn], where xi are
variables (distinct from names), Fi are high values, ρ(xi) � Fj where j is the largest index such
that xi= xj, and dom(ρ) � {x1, ..., xn}. Variables are not affected by transpositions.

�ρ, x, t���n↔n’�����ρ��n↔n’�, x, t��n↔n’��
���n↔n’� ����
ρ[x←F]��n↔n’����ρ��n↔n’�[x←F��n↔n’�]

2-5  Definition: High Values and Stacks

Λ Names: a countable set of names n, m, p, ...
P,Q,R ::=

0
P | Q
n[P]
(νn)P

Tree values
void
composition
location
restriction

All names: na(P)
na(0) � {}
na(P | Q) � na(P) ∪ na(Q)
na(n[P]) � {n} ∪ na(P)
na((νn)P) � {n} ∪ na(P)

Free names: fn(P)
fn(0) � {}
fn(P | Q) � fn(P) ∪ fn(Q)
fn(n[P]) � {n} ∪ fn(P)
fn((νn)P) � fn(P) - {n}

F,G,H ::=
n
P
�ρ, x, t�

High Values
name values
tree values
function values 

All names: na(F)
na(n) � {n}
na(P): see tree values
na(�ρ, x, t�) � na(t)∪na(ρ)
na(ρ) � �x�dom(ρ) na(ρ(x))

Free names: fn(F)
fn(n) � {n}
fn(P): see tree values
fn(�ρ, x, t�) � fn(t)∪fn(ρ)
fn(ρ) � �x�dom(ρ) fn(ρ(x)) 
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3  Syntax
Our λ-calculus is stratified in terms of low types and high types. The low types are the tree
types and the type of names, N. (Basic data types such as integers could be added to low
types.) The novel aspects of the type structure are the richness of the tree types, which come
from the formulas of spatial logics [16, 10], and the presence of transposition types. We then
have higher types over the low types: function types and name-dependent types. The precise
meaning of types is given in Section 4.

The same stratification holds on terms, which can be of low or high type, as is more ap-
parent in the operational semantics of Section 5 and in the type rules of Section 7.

3-1  Definition: Syntax

Underlined variables indicate binding occurrences. The scoping rules should be clear, ex-
cept that: in location match y scopes u; in composition match x and y scope u; in restriction
match x scopes � and u, and y scopes u; in tree type test x scopes u and v. We define name
sets, such as na(�), and actual transpositions on all syntax, such as t��n↔m�, in the obvious
way (there are no name binders in the syntax). We also define free-variable sets fv(-) on all
syntax (based on the mentioned binding occurrences), and capture-avoiding substitutions of
name expressions for variables: �{x←�}, �{x←�}, and �{x←�}.

Name expressions, tree types, and terms include (formal) transposition operations that
are part of the syntax; they represent (actual) transpositions on data, indicated by the ��symbol. 

The tree types are formulas in a spatial logic, so we can derive the standard types (for-
mulas) for negation ¬� � ��F�and disjunction �∨� � ¬(¬�∧¬�). 

The terms include a standard λ-calculus fragment, the basic tree constructors, and some
matching operators for analyzing tree data. The tree type test construct (distinguished by the
character ‘?’) performs a run-time check to see whether a tree has a given type: if tree t satis-
fies type � then u is run with x of type ��bound to t; otherwise v is run with x of type ¬�

bound to t. In addition, one needs matching constructs (distinguished by the character ‘÷’) to
decompose the tree: composition match splits a tree in two components, location match strips
an edge from a tree, and restriction match inspects a hidden label in a tree. A zero match is
redundant because of the tree type test construct. These multiple matching constructs are de-
signed to simplify the operational semantics and the type rules. In practice, one would use a
single case statement with patterns over the structure of trees, but this can be encoded. 

In the quantifier Hx.� and in the restriction match construct, the type ��is dependent on

�,�,�,� ::=
x,  n, ���↔�	�

Name Expressions
name variable, name constant, name transposition

�,� ::=
0,  �[�],  � | �,  Hx.�, �,
F,  �∧�, ���, ���↔�	�

Tree Types
void, location, composition, hiding, occurrence,
false, conjunction, implication, type transposition

�,
,� ::=
�,  N,
�→
,  Πx.


High Types
tree types, name type,
function types (�≠N), dependent types (x:N)

t,u,v ::=
0,  �[u],  t | u, (νx)t,
t÷(�[y:�]).u, t÷(x:� | y:�).u,
t÷((νx)y:�).u, t?(x:�).u,v,
t��↔�	�,
x, �, λx:�.t, t(u)

Terms
void, location, composition, restriction,
location match, composition match,
restriction match, tree type test,
term transposition,
high variable, name expr, function, application
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variable x (denoting a hidden name). This induces the need for handling dependent types, and
motivates the Πx.
 dependent function type constructor. The type dependencies, however, are
restricted to name variables, which may be replaced only by name expressions (that is, not by
general computations on names). Because of this, these dependent types are relatively easy to
handle.

4  Satisfaction
The satisfaction relation, written �, relates values to types, and thus provides the semantic
meaning of typing that is enforced by the type system of Section 7. For type constructs such
as ∧ and �, this is related to the notion of satisfaction from modal logic. Over tree types we
have essentially the relation studied in [16, 10], extended to hiding and transpositions. Satis-
faction is then generalized to high types, where it depends on the operational semantics �ρ of
Section 5, which depends on satisfaction at tree types only.

4-1  Definition: Satisfaction

(We will omit the subscripts on �.) The constructs Hx.� and � are derived operators in
[10], and are taken here as primitive, in the original spirit of [9]. In the definition of Hx.�, the
clause P�(νn)P’ pulls a restriction (even a dummy one) from elsewhere in the data, via scope
extrusion (Definition 2-3). The type Hw.©w is the type of non-redundant restrictions, with the
quantifier Hw revealing a restricted name n, and ©w declaring that this n is used in the data.
The meaning of formal transpositions relies on actual transpositions. At high types, a closure
�ρ, z, t� satisfies a function type �→
 if, on any input satisfying �, every output satisfies 
;
similarly for Πx. 
.

4-2  Proposition: Tree Satisfaction Under Structural Congruence.
If P � � and P � Q then Q � �.

4-3  Lemma: Name and Tree Satisfaction Under Actual Transposition.
If n � � then n��m↔m’� � ���m↔m’���If P � � then P��m↔m’� � ���m↔m’�.

On Name Expressions: n �N �, for ��closed (no free variables), is defined by:
 n �N m iff m = n
 n �N ���↔�	� iff �m,m’. m �N � and m’ �N �	 and n��m↔m’� �N �

On Tree Types: P �T �, for ��closed, is defined by:
 P �T 0 iff P � 0
 P �T �[�] iff �n,P’. n �N � and P � n[P’] and P’ �T �
 P �T � | � iff �P’,P”. P � P’ | P” and P’ �T � and P” �T �
 P �T Hx.� iff �n,P’. P�(νn)P’ and n�na(�) and P’ �T �{x←n}
 P �T � iff �n. n �N � and n�fn(P)
 P �T F never
 P �T � ∧ � iff P �T � and P �T �
 P �T � � � iff P �T � implies P �T �
 P �T ���↔�	� iff �m,m’. m �N � and m’ �N �	 and P��m↔m’� �T �

On High Types: F �H �, for ��closed, is defined by:
 F �H N iff F �N � for some �
 F �H � iff F �T �
 H �H �→
 (�≠N) iff H = �ρ, z, t� and �F,G. (F �H �� ∧ t �ρ[z←F]�G) � G �H 

 H �H Πx. 
 iff H = �ρ, z, t� and �n,G. t �ρ[z←n]�G � G �H 
{x←n}
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5  Operational Semantics
We give a big step operational semantics that is later used for a subject reduction result (The-
orem 7-4). This style of semantics, namely a relation between a program and all its potential
final results, is sufficient to clarify the intended behavior of our operations. It could be extend-
ed with error handling. Alternatively, a small step semantics could be given. In either case,
one could go further and establish a type soundness theorem stating that well-typed programs
(preserve types and) do not get stuck. All this is relatively routine, and we opt to give only the
essential semantics.

The operational semantics is given by a relation t �ρ F between terms t, stacks ρ, and val-
ues F, meaning that t can evaluate to F on stack ρ. An auxiliary relation, � 	ρ n, deals with
evaluation of name expressions. The semantics of run-time tests makes use of the satisfaction
relation from Section 4. We use, t �ρ P to indicate that t evaluates to a tree value. We use t
�ρ��P as an abbreviation for t �ρ Q and�Q ��P, for some Q.

5-1  Definition: Operational Semantics

The operations (Red ÷ -) and (Red ? -) can execute run-time type tests on dependent types
that are run-time instantiated; e.g., note the role of x in λx:N. t?(y:x[0]).u,v. Here, ρ(�) replac-
es every free variable x�dom(ρ) in ��with ρ(x). The rules are applicable only if ρ(�) is a well-
formed type: the type rules of Section 7 guarantee this condition.

The matching reductions are nondeterministic and, in a big step semantics, avoid diver-
gent paths if convergent paths are possible.

(NRed x) (NRed n) (NRed ↔)
x�dom(ρ) ρ(x)�Λ � 	ρ n � 	ρ m �	 	ρ m’

x 	ρ ρ(x) n 	ρ n ���↔�	� 	ρ n��m↔m’�

(Red 0) (Red �[]) (Red | ) (Red ν)
� 	ρ n t �ρ P t �ρ P u �ρ Q n�na(t, ρ) t �ρ[x←n] P

0 �ρ 0 �[t] �ρ n[P] t | u �ρ P | Q (νx)t �ρ (νn)P

(Red ↔) (Red ÷�[])
t �ρ P � 	ρ m �	 	ρ m’ � 	ρ n t �ρ��n[P] P � ρ(�) u �ρ[y←P] F

t��↔�	� �ρ P��m↔m’� t÷(�[y:�]).u �ρ F

(Red ÷| ) (Red ÷ν)
t �ρ��P’ | P” P’ � ρ(�) P” � ρ(�)

x≠y u �ρ[x←P’][y←P”] F
n�na(t,�,u,ρ) t �ρ��(νn)P P � ρ[x←n](�)

x≠y u �ρ[x←n][y←P] Q

t÷(x:� | y:�).u �ρ F t÷((νx)y:�).u �ρ (νn)Q

(Red ?�) (Red ?
)
t �ρ�P P � ρ(�) u �ρ[x←P] F t �ρ�P P � ¬ρ(�) v �ρ[x←P] F

t?(x:�).u,v �ρ F t?(x:�).u,v �ρ F

(Red x) (Red �) (Red λ) (Red App)
x�dom(ρ) � 	ρ n t �ρ �ρ’, x, t’� u �ρ�G t’ �ρ’ [x←G]�H

x �ρ ρ(x) � �ρ n λx:�.t �ρ �ρ, x, t� t(u) �ρ H
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Reduction is not closed up to � (0 does not reduce to 0|0), nor up to �α (see (Red ν) and
(Red ÷ν), which exclude some of the bound names that can be returned). But this is a matter
of choice that has no effect on our results.

The following lemma is crucial in the subject reduction cases for (Red ν) (Theorem 7-4).
Only this transposition lemma is needed there, not a harder substitution lemma. 

5-2  Lemma: Reduction Under Transposition.
If � 	ρ m then ���n↔n’� 	ρ��n↔n’� m��n↔n’�.
If t �ρ F then t��n↔n’� �ρ��n↔n’� F��n↔n’�.

6  Transposition Equivalence and Apartness
We define a type equivalence relation on name expressions and tree types, which in particular
allows any type transposition to be eliminated or pushed down to the name expressions that
appear in the type. The main aim of this section is to establish the soundness of such an equiv-
alence relation, which is inspired by [22,11]. A crucial equivalence rule, (EqN ↔ Apart), re-
quires the notion of apartness of name expressions, meaning that the names that those
expressions denote are distinct. (C.f. examples (5) and (6) in Introduction.) Apartness of name
expressions depends on apartness of variables and names; we keep track of such relationships
via a freshness signature.

6-1  Definition: Freshness Signature
A freshness signature φ is an ordered list of distinct variables annotated with either � or H,
and of names. (For example: p,�x,Hy,n,m,p,Hz,�w.) Notation: dom(φ) is the set of variables
in φ; na(φ) is the set of names in φ; φ(x) is the symbol ��or H associated to x in φ. We write
x<φy if x≠y and x precedes y in φ. We write φ⊇� (φ covers �) when fv(�)⊆dom(φ) and
fn(�)⊆na(φ); similarly for φ⊇��and φ⊇�.

Next we define three equivalence relations between name expressions, �N, tree types, �T,
and high types, �H (often omitting the subscripts), and an apartness relation on name expres-
sions, #. These relations are all indexed by a freshness signature that is understood to cover
the free variables and names occurring in the expressions involved.

6-2  Definition: Equivalence and Apartness

���Nφ���(a congruence, abbrev. ���φ��), and ��#φ�� (a symmetric relation) 
are the least such relations on name expressions such that φ⊇��, and:

n≠m � n�#φ�m (Apart Names)
φ(x)=H � n�#φ�x (Apart Name Var)
x<φy ∧ φ(y)=H � x�#φ�y (Apart Vars)
�#φ� ∧ ��φ�	 ∧ ��φ�	 � ���↔���#φ����	↔�	� (Apart Congr)
��φ�	 ∧ �	#φ�	 ∧ �	�φ� � �#φ� (Apart Equiv)

S

���↔�� �φ � (EqN ↔ App)
���↔�� �φ � (EqN ↔ Id)
���↔�	� �φ ���	↔�� (EqN ↔ Symm)
���↔�	���↔�	� �φ � (EqN ↔ Inv)
���↔�	���↔�	� �φ ���↔�	�����↔�	�↔�	��↔�	�� (EqN ↔ ↔)
�#φ� ∧ �#φ�	 � ���↔�	� �φ � (EqN ↔ Apart)

S
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A notion of apartness of names from types is not necessary, since transpositions on types can
be distributed down to transpositions on name expressions. 

6-3  Definition: Valuation.
If ε:Var→Λ is a finite map, then we say that ε is a valuation. 
We indicate by ε(�), ε(�) the homomorphic extensions of ε to name expressions and tree
types, with the understanding that in such extension ε(x) = x for x�dom(ε). 
If fv(�) ⊆ dom(ε) then we say that ε is a ground valuation for � and we write 
ε grounds �; similarly for � and �.

We say that a valuation ε satisfies a freshness signature φ if it respects the freshness con-
straints of φ, in the following sense:

6-4  Definition: Freshness Signature Satisfaction
ε ��φ iff dom(ε) ⊆ dom(φ)
and �x�dom(ε). φ(x)=H � ε(x)�na(φ)
and �y�dom(ε). (x<φy ∧ φ(y)=H) � (x�dom(ε) ∧ ε(x)≠ε(y))

In ε ��φ we do not require dom(φ) ⊆ dom(ε), to allow for partial valuations. But we require
any partial valuation that instantiates an H variable to instantiate all the variables to the left of
it (with distinct names). 

The following soundness result requires some careful build-up: lemmas for instantiations
of equivalence and apartness under partial valuations, for closure of satisfaction under closed
equivalence, and substitution lemmas. We omit the details.

6-5  Proposition: Soundness of Equivalence and Apartness.
If � #φ � then �ε�φ. (ε grounds �,�) � ε(�) ≠ ε(�).
If � �φ � then �ε�φ. (ε grounds �,�) � ε(�) = ε(�).�
If � �φ � then �ε�φ. (ε grounds �,�) � �P. P � ε(�) � P � ε(�).
If � �φ 
 then �ε�φ. (ε grounds �,
) � �F. F � ε(��) � F � ε(
).

7  Type System
We now present a type system that is sound for the operational semantics of Section 5. Sub-
typing includes the transposition equivalence of Section 6 (see rule (Sub Equiv)), and an un-
specified collection of ValidEntailments that may capture aspects of logical implication.
Apart from the flexibility given by subtyping through rule (Subsumption), the type rules for

���Tφ�� (abbrev. ���φ��), are the least relations on tree types such that φ⊇�� and:

they are congruences including α-conversion; we highlight:
��Nφ�	 and ��φ�	 � �	[�	] �φ �	[�	] (EqT �[] Congr)
� �(φ,Hx) �	 � Hx. � �φ Hx. �	 (EqT H Congr)
Hx. � �φ Hy. �{x←y} with y�fv(�) (EqT H-α)

they distribute transpositions over all type constructors; we highlight:
0��↔�	� �φ 0 (EqT 0 ↔)
(�[�])��↔�	� �φ ���↔�	�[���↔�	�] (EqT �[] ↔)
(Hx.�)��↔�	� �φ (EqT H ↔)

Hx.(�{x←x��↔�	�}��↔�	�) with x�fv(�,�	)

���Hφ�
, (abbrev. ���φ�
), are the least relations on high types such that φ⊇�
, and:

they are congruences including α-conversion; we highlight the cases for Π:
� �(φ,�x) 
 � Πx. � �φ Πx. 
 (EqH Π Congr)
Πx. 
 �Hφ Πy. 
{x←y} with y�fv(
) (EqH Π-α)
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terms are remarkably straightforward and syntax-driven.
The type system uses environments E that have a slightly unusual structure. They are or-

dered lists of either names (covering all the names occurring in expressions; see rule (NExpr
n)), or variables (covering all the free variables of expressions; see rule (Term x)). Variables
have associated type and freshness information of the form x:� if �≠N, and Qx:� (either �x:�
or Hx:��) if �=N. We write dom(E) and na(E) for the set of variables and the set of names
defined by E. We write E,x:� and E,Qx:N�for the extension of E with a new association (pro-
vided that x� dom(E)), where ��may depend on dom(E). We write E(x) for the (open) type as-
sociated to x� dom(E) in E. Moreover, in Definition 7-1 below we extract the freshness
signature associated with an environment:

7-1  Definition: Freshness Signature of an Environment
fs(�) � � fs(E, Qx:N) �  fs(E), Qx
fs(E, n) �  fs(E), n fs(E, x:��) �  fs(E)

Through fs(E), in typing rule (Sub Equiv), typing environments are connected to the freshness
signatures used in transposition equivalence.

7-2  Definition: Type Rules

Environments. Rules for E � � (that is, E is well-formed).

Names. Rules for E �N � (that is, � is a name expression in E).

Types. Rules for E �T � and E � � (that is, � is a tree type and ��is a type in E). 
The rules are naturally syntax-driven, we highlight:

Subtyping. Rules for E � ��<: 
 (that is, ��is a subtype of 
 in E).

Terms. Rules for E � t : � (t has type �� in E, with E �T t : � � E �T � ∧ E � t : �).

(Env �) (Env n) (Env x�N) (Env x�N)
E � � E � � Q�{�,H} x�dom(E) E � � E � � �≠N x�dom(E)

� � � E, n � � E, Qx:N � � E, x:� � �

(NExpr n) (NExpr x) (NExpr ↔)
E � � n�na(E) E � � E(x)=N E �N � E �N � E �N �	

E �N n E �N x E �N ���↔�	�

(Type H) (Type →) (Type Π)
E, Hx:N �T � E � � E � 
 �≠N E, �x:N � 


E �T Hx.� E � �→
 E � Πx. 


(Sub Tree) (Sub Equiv)
E �T � E �T � ��, fs(E), ���ValidEntailments E � � E � 
 ���fs(E) 


E � ��<: � E � ��<: 


(Sub N) (Sub →) (Sub Π)
E � � E � ��	<: � E � 
�<: 
	 �,��	≠N E, �x:N � 
�<: 
	

E � N�<: N E � �→
�<: ��	→
	 E � Πx. 
�<: Πx. 
	

(Term 0) (Term �[]) (Term | )
E � � E �N � E �T t : � E �T t : � E �T u : �

E � 0 : 0 E � �[t] : �[�] E � t | u : � | �
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Notes: • As we already mentioned, the type system includes dependent types, with binding
operators Hx.� (the type of hiding in trees) and Πx.� (the type of those functions λx:N.t such
that the type ��of t may depend on the input variable x).
• The subtyping relation is parameterized by a set ValidEntailments, assumed to consist of tri-
ples ��,φ,�� that are sound (�ε �φ. (ε grounds �,�)�� �P. P � ε(�)�� P � ε(�)). 
• The use of x:¬� in (Term ?) means x:��F, but this assumption is not very useful without
a rich theory of subtyping: see discussion in Section 1.3. On the other hand, there are no sig-
nificant problems in executing run-time type tests such as P � ¬��(see Definition 4-1), e.g.,
resulting from t?(x:¬�).u,v. A more informative typing of x for the third assumption of this
rule is x:�∧¬�, but we lack a compelling use for it.
• In (Term ÷�[]) (and (Term ÷| ), (Term ?)) we do not need extra assumptions E � ��to avoid
the escape of y (and x,y, and x) into �, because these are not variables of type N, and ��cannot
depend on them. We do not need the extra assumption in (Term ÷ν) for x because there we
rebind the result type.
• In (TermDepApp) we require the argument ��to be a name expression, not an expression of
type N, so we can do a substitution 
{x←�} into the type. Note that E � t : N means that t
can be any computation of type N, unlike E �N �.

A stack satisfies an environment, ρ � E, if ρ(x) � ρ(E(x)) for all x’s in dom(E); note the
extra ρ(-) used to bind the dependent variables in E(x). Here ρ(��) or ρ(�) means that ρ is used
as a valuation�(Definition 6-3). Moreover, we require ρ to satisfy the freshness signature ex-
tracted from E. We write ρ\x for the restriction of ρ to dom(ρ)-{x}.

7-3  Definition: Environment Satisfaction
ρ � E  iff dom(E)⊆dom(ρ) 

and ρ � fs(E) (where ρ is seen as a valuation ε; see Definition 6-4)
and �x�dom(E). ρ(x) � ρ(E(x))

(Term ν) (Term ↔)
E, Hx:N �T t : � E �T t : � E �N � E �N �	

E � (νx)t : Hx.� E � t��↔�	� : ���↔�	�

(Term ÷�[]) (Term ÷| )
E �T t : �[�] E, y:� � u : � E �T t : � | � E, x:�, y:� � u : � 

E � t÷(�[y:�]).u : � E � t÷(x:� | y:�).u : �

(Term ÷ν) (Term ?)
E �T t : Hx.� E, Hx:N, y:� �T u : � E �T t : � E, x:� � u : � E, x:¬� � v : �

E � t÷((νx)y:�).u : Hx.� E � t?(x:�).u,v : �

(Term x) (Term �) (Term λ) (Term App)
E � � x�dom(E) E �N � E, x:� � t : 
 �≠N E � t : �→
 E � u : �

E � x : E(x) E � � : N E � λx:�.t : �→
 E � t(u) : 


(Term Depλ) (Term DepApp) (Subsumption)
E, �x:N � t : 
 E � t : Πx. 
 E �N � E � t : � E � ��<: 


E � λx:N.t : Πx. 
 E � t(�) : 
{x←�} E � t : 
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7-4  Theorem: Subject Reduction. 
 (1) If E � � <: 
 and ρ � E and F �H ρ(��) then F �H ρ(
).
 (2) If E �N � and ρ � E and � 	ρ n then n �N ρ(�).
 (3) If E � t : � and ρ � E and t �ρ F, then F �H ρ(��).
Proof

We show the (Term ν) case of (3), which is by induction on the derivation of E � t : �. We
have E � (νx)t : Hx.� and ρ � E and (νx)t �ρ F. We have from (Term ν) E, Hx:N �T t : �, and
from (Red ν) F = (νn)P and t �ρ[x←n] P for n�na(t,ρ). Since n could appear in �, blocking the
last step of this proof, take n’�na(t,�,ρ,P), so that F� �α� (νn’)P��n↔n’�. By Lemma 5-2
t��n↔n’� �ρ[x←n]��n↔n’� P��n↔n’�, that is t �ρ[x←n’] P��n↔n’�. We have ρ[x←n’] � E,Hx:N. By
Ind Hyp, P��n↔n’� � ρ[x←n’](�), that is, P��n↔n’� � ρ\x(�){x←n’}. Since F� �
(νn’)P��n↔n’� and n’�na(ρ\x(�)), by Definition 4-1, F � Hx.ρ\x(�). That is, F � ρ(Hx.�). �

8  Examples
We discuss some programming examples, using plausible (but not formally checked) exten-
sions of the formal development of the previous sections. In particular, we use recursive types,
rec X. �, existential types �x.� where x ranges over names (these are simpler to handle than
Hx.�), and a variant of location matching, t÷(x[y:�]).u, that binds labels x from the data in
addition to contents y (its typing requires existential types). Examples of transposition types
have been discussed in the Introduction; here we concentrate on pattern matching, using some
abbreviations:

test t as w:� then u else v for t?(w:�). u, v
match t as (pattern) then u else v for t?(w:�). (w÷(pattern).u), v

where � is the type naturally extracted from pattern.

We also use nested patterns, in the examples, which can be defined in a similar way. We use
standard notations for recursive function definitions. We sometimes underline binding occur-
rences of variables, for clarity. We explicitly list the subtypings, if any, that must be included
in ValidEntailments for these examples to typecheck (none are needed for the examples in
Section 1.2).

Basic. Duplicating a given label, and duplicating a hidden label:

λx:N. λy:x[T]. x[y] : Πx. (x[T] → x[x[T]])
λz:(Hx.x[T]). z÷((νx)y:x[T]). x[y] : (Hx.x[T]) → (Hx.x[x[T]])

Collect. Collect all the subtrees that satisfy �, even under restrictions:

let type Result = rec X. 0�∨���∨�(X | X)�∨�Hx.X

let rec collect(x: T): Result =
(test x as w:� then w else 0) |
(test x as w:0 then 0 else
 match x as (y:¬0 | w:¬0) then collect(y) | collect(w) else
 match x as (y[w:T]) then collect(w) else
 match x as ((νy)w:©y) then collect(w) else 0)

Recall that, in the last match, a (νy) is automatically wrapped around the result; hence the
Hx.X in the definition of Result. The typing w:©y (instead of w:T) is used to reduce nondeter-
minism by forcing the analysis of non-redundant restrictions. Similarly, the pattern ¬0 | ¬0 is
used to avoid vacuous splits where one component is 0. In general, the splitting of composi-
tion is nondeterministic; in this case the result may or may not be uniquely determined de-



14 FOSSACS’03

pending on the shape of �. The subtypings needed here are ��<: T, ��<: �∨� and rec fold/
unfold.

Removing Dangling Pointers. We can encode addresses and pointers in the same style as in
XML. An address definition is encoded as addr[n[0]], where addr is a conventional name, and
n is the name of a particular address. A pointer to an address is encoded as ptr[n[0]], where
ptr is another conventional name. Addresses may be global, like URLs, or local, like XML’s
IDs; local addresses are represented by restriction: (νn) ... addr[n[0]] ... ptr[n[0]] ... . A tree
should not contain two address definitions for the same name, but this assumption is not im-
portant in our example.

We write a function that copies a tree, including both public and private addresses, but
deletes all the pointers that do not have a corresponding address in the tree. Every time a
ptr[n[0]] is found, we need to see if there is an addr[n[0]] somewhere in the tree. But we can-
not search for addr[n[0]] in the original tree, because n may be a restricted address we have
come across. So, we first open all the (non-trivial) restrictions, and then we proceed as above,
passing the root of the restriction-free tree as an additional parameter. The search for ad-
dr[n[0]] can be done by a single type test for Somewhere(addr[n[0]]), where Somewhere(�)
� rec X. (� | T)�∨��y.(y[X] | T). 

let rec deDangle(x: T): T =
match x as ((νy)w:©y) then deDangle(w) else f (x, x)

and f (x: T, root: T): T =
test x as w:0 then 0 else
match x as (y:¬0 | w:¬0) then f (y, root) | f (w, root) else
match x as (ptr[y[0]]) then 

test root as w:Somewhere(addr[y[0]]) then ptr[y[0]] else 0 else 
match x as (z[w:T]) then z[f (w, root)] else 0

Note that deDangle automatically recloses, in the result, all the restrictions that it opens. The
subtypings needed here are just ��<: T.

9  Conclusions and Acknowledgments
We have introduced a language and a rich type system for manipulating semistructured data
with hidden labels and scope extrusion, via pattern matching and transpositions. 

As advocated in [23,30], our formal development could be carried out within a metathe-
ory with transpositions; then, Lemmas 4-3 and 5-2 would fall out of the metatheory, and one
could be less exposed to mistakes in α-conversion issues. We have not gone that far, but we
should seriously consider this option in the future. 

We are not aware of previous uses of transpositions in structural operational semantics,
although this falls within the general framework of [30]. We believe ours is the first calculus
or language with explicit transpositions in the syntax of terms and types. 

Thanks to Murdoch J. Gabbay for illuminating discussions on transpositions, and to Luís
Caires who indirectly influenced this paper through earlier work with the first author. More-
over, Gabbay and Caires helped simplify the technical presentation.
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