
A Self-organizing XML P2P Database System

(Extended Abstract)�

Giovanni Conforti, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani

Dipartimento di Informatica - Università di Pisa - Italy

Abstract. This paper describes XPeer, a zero-administration system for
sharing and querying XML data. The system allows users to share XML
data without significant human intervention, and to pose XQuery FLWR
queries against them. XPeer can be used in any application field, being
a general purpose XML p2p DBMS, even though its main application is
the management of resource descriptions in GRID environments.

1 Introduction

The last few years have seen the emerging of the peer-to-peer (p2p) computa-
tional paradigm, that extends existing ideas about distributed and client-server
computing, blurring the distinction between clients and servers. Systems con-
forming to this paradigm appear as open-ended and dynamic networks of peers
willing to share computational resources, ranging from CPU cycles to local data,
and even to algorithms.

The p2p paradigm was recently adopted in the database community to over-
come the limitations of distributed database systems (DDBMS), namely the
static topology and the heavy administration work, and to exploit the dissemi-
nation of data sources over the Internet.

One key factor in the success of p2p systems, mostly in the field of content
sharing, is their easy administration. On the contrary, existing DDBMS require
heavy administration efforts, both in the design phase and at run-time: indeed,
these systems are based on the presence of global and local schemas, together
with their mappings, whose definition and maintenance are a duty of the DBA.
Nevertheless, existing p2p systems for XML databases still require significant
administration tasks: in Piazza [1], for instance, human intervention is still nec-
essary for defining schema mappings between peers, which implies significant
efforts for the DBA, and decreases the dynamicity of the system.

The problem of managing p2p XML databases is quite complex. The source
of most issues is the dynamic nature of these systems, where both data and
topology may suddenly change. Hence, a closer look at these aspects is necessary.

Changing topology Peer-to-peer systems are usually described as open-ended
networks of peers willing to share resources. Peers are autonomous, in the sense

� This work was partly funded by the FIRB GRID.IT project.

that they are free to choose the data to contribute to the system, to manage local
data without external constraints, and to connect and disconnect at any time.
As a consequence, the system is formed by a collection of nodes S = {p1, . . . , pn}
that can evolve over time. Topology changes mostly affect the indexing structures
used for routing queries. For instance, if a node pi containing data (let’s say a set
of XML nodes s) relevant for a query q suddenly becomes unreachable, then any
index entry associating pi to s should be updated to avoid unnecessary messages,
or, in the worst case, run-time problems.

Local Updates Peer autonomy implies that peers have the right to update their
data, even if shared, at any time. In particular, peers can perform both value
and schema changing updates (unlike in relational databases, the loose structure
of XML data blurs the distinction between value and schema updates). Value
and schema updates influence query mediation and query routing since sudden
data changes may invalidate existing query plans or routing structures, hence
imposing potentially expensive updates of distributed index structures. More-
over, most schema-driven data management approaches (see [1]) are severely
affected by local updates, hence requiring human intervention for adapting the
system to the new data.

Our Contribution This paper describes a zero-administration p2p system for
sharing and querying XML data (XPeer). The system allows users to share XML
data and to pose XQuery FLWR queries against them without any significant
human intervention (the user still has to write her own queries). The system,
based on a hybrid p2p architecture, self-organizes its superpeer network, and
allows for arbitrary changes in the network topology.

2 XPeer Overview

Basics XPeer is an XML p2p database system, which manages data dispersed
over an open-ended network of autonomous peers. In XPeer no constraints are
imposed over exported data, that can be freely updated by their owner; moreover,
nodes can join and leave the system at any time, so the system has a dynamic
topology. Exported data are integrated in a blind way, i.e., no global schema is
defined: this solution allows for a significant decrease in the administration load
of the system. Of course, this fundamental choice restricts the applicability of
the approach to situations where schema mapping can be avoided, or can be
performed out of the p2p system (i.e., by a local schema adapter). We believe
the choice is perfectly reasonable in the application field we are targeting first
(resource description).

XPeer adopts a hybrid p2p architecture [2], where peer nodes may also per-
form administrative tasks (acting both as peers and as superpeers). Databases
hosted by XPeer can be queried with a proper subset of XQuery. Due to the
complexity of the system, and, in particular, to the changing topology of the
system, no guarantee about the completeness of query results can be provided.

Data Model Data in the system are represented as unordered forests of node-
labeled trees. Each tree is augmented with the indication of the hosting peer
(location in the following) as well as with a freshness parameter fr, which in-
dicates when the last update on the tree was performed (⊥ indicates that the
freshness is undefined, and it is necessary to ensure that the model is closed). To
support freshness parameters, the data model has a universal constant τ , which
denotes the current global time in the system: since query results are assumed
to be incomplete, the assumption of the existence of a global time is feasible.

Query Language The query language of choice is the FLWR subset of XQuery [3]
without universally quantified predicates and sorting operations. The choice of
the FLWR core of XQuery distinguishes XPeer from most existing p2p systems,
which are limited to simple key-lookup queries, or to linear path queries, and
which require significant modifications to support full database queries [4].

3 XPeer Architecture

XPeer is a hybrid p2p system composed by a dynamic set S = {p1, . . . , pn} of
autonomous peers, which share data and execute global queries on the data-
base. Some nodes in S (in most cases, those with adequate computational power
and/or network bandwidth) perform administration tasks too: these nodes, called
superpeers, form a set SP ⊆ S. Peers become superpeers on a voluntary basis,
and retain their peer role. We favor a hybrid p2p architecture wrt a hierarchi-
cal one (e.g., the GRID GRIS/GIIS system) since it offers more robustness to
failures and it can adapt more easily to network changes.

Peer Network Peers share XML data and execute queries on top of these data.
Peers export a description of the data being shared in the form of a tree-shaped
DataGuide [5], called tree-guide, which is automatically inferred from the data
by means of a tree search algorithm. Leaf nodes in the schema are endowed with
statistical information about value ranges, to allow the system to better identify
relevant data sources during query compilation. The following Example shows a
sample XML document and its tree-guide.

Example 1. Consider the following document, hosted by a peer p1, describing
buildings in a real-estate market database.

<market>
<buildings>

<building> <desc> Very nice flat in the Upper East Side </desc>
<location> Upper East Side, Manhattan </location>
<price> 1350000 </price>
<type> comdo </type> </building>

...
<building> <desc> Elegant luxury house in the countryside </desc>

<location> Greensboro </location>
<price> 1700000 </price> </building>

</buildings>
</market>

market

buildings

building

desc location note price
[1350k,1700k]

Fig. 1. A sample tree-guide.

peers & clusters

groups

Fig. 2. Overall logical system architecture.

The corresponding tree-guide contains each distinct path in the document,
endowed with statistical information about value ranges (e.g., the range 1350000−
1700000 for price elements), as shown in Figure 1.

Clusters Peers are logically organized into clusters of nodes, where each cluster
contains one superpeer, which is in charge with the management of the cluster,
e.g., the compilation of user queries and the management of peer information.
Peer clustering allows the system to decrease the efforts required for compiling
queries. To this aim, clusters are formed, whenever it is possible, on a schema-
similarity basis, i.e., peers exporting data with similar schemas are clustered
together (the system still works even if nodes in the same cluster have very dif-
ferent schemas). Inside any cluster, some peer may (partially or totally) replicate
the content of other peers in the cluster. Replicas are built to balance the work-
load in the cluster and to exploit peers with huge computational resources, and
are valid up to a given time. The replication process, as many other processes
in XPeer, happens on a voluntary basis.

SuperPeer Network Superpeers have the duties of tracking topology changes,
managing schema information, and compiling user queries. Superpeers are or-
ganized to form a tree, where each node hosts schema information about its

market

sellers

seller

address name

(a) Another sample
tree-guide.

market

buildings

building

desc location note price

sellers

seller

address name

(b) A superpeer schema.

Fig. 3. Another tree-guide and a super-peer schema.

children; superpeers having the same father form a group (which is very close to
a peer cluster). The resulting logical topology is shown in Figure 2. Superpeers
host two kinds of schema information about their children: the list of the schemas
of their children (the schema list); and the union of these schemas (the superpeer
schema). The schema list is used during query compilation for identifying rele-
vant data sources, or superpeers whose descendants can contain relevant data;
the superpeer schema, instead, is passed to the father as schema of the super-
peer, and it is built without any schema integration activity, so that no human
assistance is required.

The following Example shows a sample superpeer schema.

Example 2. Consider the following XML document, hosted by a peer p2, de-
scribing seller information in the real-estate market.

<market>
<sellers>

<seller> <name> Patrick Bateman </name>
<address> 25, Park Avenue </address>
<phone> ... </phone> </seller>

<seller> <name> Tim Price </name> </seller>
</sellers>

</market>

This document can be represented by the tree-guide shown in Figure 3(a).
Assuming that both peers p1 (see Example 1) and p2 have the same superpeer
sp, then the superpeer schema of sp is depicted in Figure 3(b).

Network Evolution The topology of the network can evolve over time. To adapt
the organization of the superpeer hierarchy to changes in the network, superpeers
may split clusters and groups, and may ask for new superpeers. In particular,
when the workload for a given superpeer sp becomes too hard, sp first tries to
relocate some of its children in other clusters/groups (network balancing); if the
problem persists, sp then asks the system for new superpeers, and delegates them

part of its workload (network extension); if the workload is still too heavy, sp can
finally disconnect some of its children (peer de-gnoming). On the other hand,
when the workload for a given superpeer sp becomes too light, sp may decide
to import some children from busy superpeers, or it may decide to relocate its
children to another superpeer, and then to exit the superpeer network (network
contraction).

4 XPeer Query Processing

XPeer supports the FLWR core of XQuery, the standard query language for
XML data being developed by W3C [3]. Since data are usually dispersed among
many peers, XPeer does not preserve the document order in query results.

FLWR queries are translated into algebraic expressions, and are executed
on the system by relying on data-integration-like techniques. To speed up query
execution and to decrease peer and superpeer workload, the system exploits
mechanisms for replicating peer content, and for caching query plans and query
results; these mechanisms can be ignored on an explicit request by the user.

Query Algebra The query algebra of XPeer, further described in [6], is an evolu-
tion of the query algebra for centralized XML data described in [7]. The query
algebra consists of three classes of operators. The first class contains operators
that navigate unordered forests of node-labeled trees, binding nodes to vari-
ables, and that build new XML trees from existing variables bindings (path and
return); the second class, instead, contains operators for manipulating tuples of
variable bindings, as in standard OO query algebras [8] (σ, π, �, DJoin, etc); the
third class, finally, is formed by operators for managing locations (the algebraic
counterpart of peers), and, in particular, for uniting their content (LocUnion)
and for inserting replication constraints into query plans (Choice). Since loca-
tion choices are guarded by temporal parameters, the query algebra data model
has been enriched with the universal constant τ , describing the system global
time, and with time labels for locations.

Query Compilation Query compilation is performed in two phases. In the first
step, a query is submitted by the user to a peer pi. pi translates the query into a
triple Q = (q, τ ′, δτ ′), where q is a location-free algebraic expression, i.e., an alge-
braic expression with “holes” (called spots) in place of locations, τ ′ is the query
submission time, and δτ ′ is a user-defined freshness parameter; in particular, δτ ′

indicates that the system may use replicas and caches synced after time τ ′− δτ ′,
and allows the user to specify freshness and quality requirements for the result
of the query (e.g., δτ ′ = 0 means that only up-to-date caches and replicas can be
used, while δτ ′ = ∞ means that any existing cache or replica can be used). In the
second phase, pi sends the query Q to the superpeer network, via the superpeer
of its own cluster, for the compilation of a location assignment ρ, i.e., a function
assigning unions (•) and choices (|) of locations to location spots. This compila-
tion is performed in a hierarchical way by matching the twigs of q with schema

p1 p2

sp1

c1

sp3

sp2

p4
c2

p3 p5

Fig. 4. Another system topology.

information, and by traversing the superpeer hierarchy till any interesting loca-
tion has been detected. In particular, the superpeer responsible for the cluster of
pi matches the twigs of the query with the schemas of its children peers, hence
finding all relevant locations in the cluster; then, the superpeer sends the query
to the super-peer responsible for its group, which in turn matches the query
twigs against the schemas of its children, and resends the query to clusters that
may contain relevant data. The query is also propagated up in the hierarchy to
find all relevant locations. The query compilation process, hence, requires the
system to propagate the query till the root of the super-peer network, but still
limits the exploration of the network to a fraction of the hierarchy. Once the
location assignment ρ is computed, ρ is passed to the issuing peer pi for query
execution; by making pi responsible for the execution of its query, the system
minimizes the load of the superpeer network.

Query Execution Once the issuing peer pi has received the location assignment
ρ for a query Q, it applies common algebraic rewriting to the fully specified
algebraic expression, such as selection push-down and distribution of unions, and
then starts executing the query, which is split into single-location sub-queries
that are sent to the corresponding peers; pi waits for query results, and then
executes operations, such as joins, involving data coming from multiple sources.
Query subexpressions are locally optimized and executed by system peers, hence
allowing each peer to choose the best execution strategy for any given algebraic
expression. Query decomposition is performed by exploiting an algorithm close
to that of YAT [9]: the algorithm just browses the algebraic tree in the search of
maximal single-location subexpressions, which correspond to peer sub-queries.
Example 3. Consider the following XQuery query:
for $b in input()//building,

$d in $b/desc,
$p in $b/price

return <entry> {$d, $p} </entry>

This query returns the description and the price of each building in the real-
estate market database. Assume that the system has the structure shown in
Figure 4, where p1 and p2 contain the documents described in Examples 1 and
2 respectively, while p3, p4, and p5 contain data about loans and mortgages.
Suppose the user submits the query to p2, p2 builds the following location-free
algebraic expression and then sends it to sp1.

returnentry[ν$d,ν$p](path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](spot1))
sp1 matches the query twig against the list of tree-guides of its peers, hence find-
ing p1 relevant for the query, and then propagates the query to sp2; sp2, in turn,
matches the query twig over its schema list, hence excluding the descendants of
sp3 from the query plan. As a consequence, spot1 is replaced by loc1.

5 Conclusions

This paper describes the architecture of XPeer, a p2p XML data management
system. The architecture of the system is self-organizing, in that the superpeer
network can adapt its structure to changes in the system network topology and
in the query workload. Furthermore, the system requires no human intervention
for its administration, hence being a zero-administration DBMS.

XPeer is a general purpose XML p2p database system, so it can be used in
any application field. Still, its main application is the management of resource
descriptions in a GRID-like environment: in particular, XPeer should form the
basic infrastructure for extending (and, eventually, replacing) the LDAP-based
resource discovery layer of existing GRID systems.

References

1. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management in-
frastructure for semantic web applications. In WWW2003, Budapest, Hungary,
2003

2. Yang, B., Garcia-Molina, H.: Designing a Super-peer Network. In ICDE 2003,
Bangalore, India, 5-8 March 2003, IEEE Computer Society (2003)

3. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language. Technical report, World Wide Web Con-
sortium (2003) W3C Working Draft.

4. Harren, M., Hellerstein, J. M., Huebsch, R., Thau Loo, B., Shenker, S., Stoica, I.:
Complex Queries in DHT-based Peer-to-Peer Networks. In: IPTPS 2002, pages
242-259

5. Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimiza-
tion in semistructured databases. In: VLDB’97, pages 436–445

6. Sartiani, C.: A Query Algebra for XML P2P Databases (2003) Manuscript draft.
Available at http://www.di.unipi.it/∼sartiani/papers/eve.pdf.

7. Sartiani, C., Albano, A.: Yet Another Query Algebra For XML Data. In IDEAS
2002, Edmonton, Canada, July 17-19, 2002. (2002)

8. Sophie Cluet and Guido Moerkotte. Classification and optimization of nested
queries in object bases. Technical report, University of Karlsruhe, 1994.

9. Siméon, J.: Intégration de sources de données hétérogènes. PhD thesis, Université
Paris XI (1999)

10. Papadimos, V., Maier, D., Tufte, K.: Distributed Query Processing and Catalogs
for Peer-to-Peer Systems. In: CIDR 2003, Asilomar, CA, USA, January 5-8, 2003.
(2003)

11. Sartiani, C., Ghelli, G., Manghi, P., Conforti, G.: Xpeer: A self-organizing XML
P2P Database System. In Proceedings of P2P&DB 2004.

