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AbstractSystem F-bounded is a second order typed lambda calculus, wherethe basic features of object-oriented languages can be naturally modelled.F-bounded extends the better known system F�, in a way that provides animmediate solution for the treatment of the so-called \binary methods". Al-though more powerful than F� and also quite natural, system F-bounded hasonly been super�cially studied from a foundational perspective and many ofits essential properties have been conjectured but never proved in the lit-erature. The aim of this paper is to give a solid foundation to F-bounded ,by addressing and proving the key properties of the system. In particulartransitivity elimination, completeness of the type checking semi-algorithm,the subject reduction property for �� reduction, conservativity with respectto system F� and antisymmetry of a \full" subsystem are considered, andvarious possible formulations for system F-bounded are compared. Finally asemantic interpretation of system F-bounded is presented, based on partialequivalence relations.

4



1 IntroductionSystem F-bounded is a type system which was de�ned by Canning, Cook, Hill,Oltho�, and Mitchell [CCH+89] to model the basic features of object-oriented lan-guages. F-bounded properly generalizes system F� [CW85, CG92, CMMS94], anextension of the polymorphic lambda calculus (syst�eme F, [Rey74, Gir72]) withsubtyping.The key ingredient of F� is the bounded type abstraction (or bounded polymor-phism). It allows one to de�ne a function which works for every type A0 that is asubtype of a bound A, and whose result type depends on A0. In this way F� in-tegrates the expressive power of parametric polymorphism with that of subtyping,and it allows one to model many features of object-oriented languages, includingsubtyping and inheritance. However, an important class of object types, discussedlater in Section 2, can be modelled naturally if the bound A of a quanti�ed typevariable � is allowed to depend on � itself, a situation forbidden in F�. SystemF-bounded generalizes system F� by permitting this more liberal kind of quanti�-cation.The essential properties of system F� have been extensively studied. One ofthe most important is transitivity elimination, i.e., the existence of an equivalenttype system which is syntax driven and hence which does not contain an explicittransitivity rule [CG92]; a correct and complete type checking semi-algorithm isde�ned in the same paper. Another basic result is the undecidability of the sub-type checking problem [Pie94], which immediately implies the undecidability oftype checking. Termination of �� reduction, namely the fact that every reductionsequence is �nite, has been proved in [Ghe90]. Although �� reduction in itself is notconuent, the conuence of reduction can be regained by adding a Top rule, whichequates all terms with type Top. The ��Top system is normalizing (every term hasa normal form), but it is still unknown whether it is terminating as well [CG94].Finally, it has been proved that the extension of system F� with recursive types isnot conservative, namely that, once recursive types are added, the traditional sub-type checking algorithm is no longer complete, even with respect to non recursivetypes [Ghe93].On the other hand, there have been few formal studies for system F-bounded . Itwas explicitly formalized for the �rst time in [Ghe97], where �� reduction is provedto be terminating. The same property has been shown to hold for a Curry version(i.e., with implicitly typed variables) of the system, in [MKO95]. To the best ofour knowledge, nothing else has been explicitly proved about system F-bounded .The lack of formal studies about system F-bounded is probably due to the factthat its similarity to system F� suggests that the two systems should enjoy thesame properties. However this assumption must be carefully veri�ed, since in manycases common beliefs on systems of the F� family have been discovered to be false.Moreover, system F-bounded di�ers from system F� at least in terms of the formerhaving a subtyping relation which is not antisymmetric, and also in the behaviourof the standard subtype checking algorithm which is quite di�erent in the twosystems.1For these reasons, we decided to try and prove some of the unproved key prop-erties of system F-bounded , namely transitivity elimination, completeness of the1Informally, the class of judgements which make the standard subtype checker diverge is sig-ni�cantly larger in system F-bounded . 5



type checking semi-algorithm, subject reduction for �� reduction, undecidabilityof subtype checking, conservativity with respect to system F�, non conservativityof strong recursive types, de�nition of an antisymmetric subsystem, and the equiv-alence (under suitable conditions) of the two di�erent versions which have beenproposed in the literature for the key subtyping rule for bounded quanti�cation.Although the results are not surprising, we believe that it was time to prove themin order to give a solid foundation for further studies about system F-bounded .Another contribution of this paper is the presentation of an explicit seman-tic interpretation of system F-bounded . Our interpretation is a classical realiz-ability interpretation based on partial equivalence relations, in the tradition of[BL90, CL91, CMMS94, Ghe90] and others. However, most of these papers focuson \semantic frameworks", i.e., on the de�nition of a general notion of a semanticinterpretation for system F�, in the style of [BMM90], rather than on the de�nitionof a speci�c interpretation. As a consequence, most proofs become quite complex,and are not actually reported, but the reader is referred to a chain of classical pa-pers. Here we address just one speci�c interpretation, and although the techniqueswe use are standard, we give explicit proofs of the key properties, though we leaveit to the reader to generalize the interpretation. We think that this is an interestingcomplement to what is obtained in the more general framework-based approach.The rest of the paper is structured as follows. Section 2 discusses how systemF-bounded may be used to model some basic features of object-oriented languages.Section 3 presents a formal de�nition of system F-bounded . Section 4 studies thesubtype relation in system F-bounded and in particular proves the transitivity elim-ination property. Section 5 introduces a type checking semi-algorithm for systemF-bounded , and proves its correctness and completeness. Section 6, relying on tran-sitivity elimination, proves the subject reduction property for F-bounded with �and � reduction rules. Section 7 studies type equivalence for system F-boundedand shows that, although subtyping is not antisymmetric in this system, two dif-ferent types are equivalent if, and only if, one can be transformed into the otherby changing � � � into � � Top bounds. This result naturally suggests how anantisymmetric equivalent subsystem can be de�ned. Section 8 characterizes therelationship between our version of system F-bounded and some other less expres-sive variants. Section 9 proves that system F-bounded is conservative with respectto system F�; as a corollary, this immediately implies that subtyping for systemF-bounded is undecidable, and that the addition of recursive types gives a non-conservative extension of F-bounded . Section 10 de�nes a semantic interpretationfor system F-bounded , along the now classical lines of [BL90]. Finally, Section 11draws some conclusions.2 System F-bounded and object-oriented pro-grammingSystem F-bounded has been proposed as a foundation for the type system of object-oriented programming, since it o�ers all the basic mechanisms which are needed tode�ne a rich object-oriented language. The fundamental features which should beo�ered by this kind of languages may be listed as follows.22Here we consider the class-based view of object-oriented languages. However also the alter-native object-based view, which is slightly di�erent, can be described in the context of system6



� Type abstraction: the ability to de�ne abstract data types (ADTs), consistingof a name, an interface, which lists the possible operations on values of thattype (the messages), and an implementation, which de�nes a representationfor the objects of that type and an implementation for the operations inthe interface (the methods of the messages). Values of an ADT can only bemanipulated through the operations o�ered by the interface. Type abstractionis not unique to object-oriented languages, but it is their most importantfeature; in this context, an ADT is called a class, and any value of the classis represented as a record.� Inheritance: the ability to de�ne the interface and the implementation of aclass by saying how it di�ers from a \superclass". A de�nition by inheritanceof an interface can either add new messages to the superclass interface orchange their type. A de�nition by inheritance of an implementation can ei-ther add new �elds to the record type used to represent the class values, oradd methods to the superclass, or change the method of a message (methodoverriding).� Subtyping: a (pre)order relation among types such that, if a type T is asubtype of U , every function which is de�ned on U can also operate on valuesof type T . Usually inheritance is linked to subtyping, i.e., the type de�nedby a subclass is a subtype of the type de�ned by the superclass.� Overloading with late binding: suppose that both a type U and a subtype T ofU have a message m in their interface, but they de�ne two di�erent methodsMU and MT for that message. Then the application o:m of the message mto an object o may either invoke MU or MT , depending on the type of o; wesay that the message m is overloaded. Due to subtyping, the type inferredfor o by the compiler is only a supertype of the type of the values which canbe denoted by o. For example, if o is the formal parameter of type U of afunction, the compiler gives o the type U , but in di�erent invocations of thefunction it may be bound to values of type U or to values of the subtype T .In this case, a language with an early binding (or static binding) resolutionmechanism translates (at compile time) the application o:m to a call to themethod MU . Instead, a language with a late binding (or dynamic binding)resolution mechanism will translate (at run time) the application o:m withthe method which is the most appropriate for the actual parameter of thefunction.� Late binding of self: every method can send messages to a special variable,often called self. This variable denotes the object which has received themessage whose method is executing; messages sent to self are resolved usinglate binding.The fact that ADTs could be encoded in system F is well known, and was�rst studied in [MP88].3 Subtyping can be added to system F in many di�erentways, the most widely accepted being the one proposed by Cardelli and WegnerF-bounded (see [AC96b]).3Object-oriented ADT's are actually best understood as a form of procedural abstraction,according to the distinction introduced by Reynolds [Rey74, Coo91]; this kind of abstraction canbe still represented in system F . 7



in [CW85] and formalized as system F� in [CG92, CMMS94]. As mentioned inthe introduction, the key feature of system F� is the bounded type abstraction,which allows one to de�ne a function that works for every type A0 which is asubtype of a type bound A, producing a result whose type depends on A0. SystemF�, enriched with recursive values and types, is expressive enough to allow one toencode most key constructs of object-oriented languages, such as the inheritanceof implementations, late binding and self variables. However, this approach doesnot deal smoothly with binary methods. A binary method is a method that takes aparameter of the same type as the receiving object, as in the canonical example ofan object type Point with a binary method which tests for equality. In this examplewe assume that an object type only speci�es the interface of methods, and not theirimplementation; the operator Rec X.T de�nes a recursive type.Point = Rec X.[ x: Int;eq: X -> Bool]Consider now a new object type ColouredPoint, which adds a method colour tothe type Point, as follows.ColouredPoint = Rec X.[ x: Int;eq: X -> Bool;colour: Colour]A type B which is de�ned by adding some �elds to an object type A is saidto match A. The basic observation is that when A has some binary methods, Bmay match A without being a subtype of A. For example, the type ColouredPointis not a subtype of Point since the type ColouredPoint ! Bool of the eq �eld ofColouredPoint is not a subtype of the type Point ! Bool of the eq �eld of Point.The absence of subtyping is also witnessed by the fact that a ColouredPoint cannotappear in any context where a Point can appear. For example, an expression x.eq(y)is type correct when both x and y are of type Point, but it may raise an exception ifx is substituted with an object of type ColouredPoint : its equality function expectsa ColouredPoint parameter, hence it may try and access the colour �eld of y.On the other hand, although ColouredPoint is not a subtype of Point, mostfunctions that operate on points may correctly operate on coloured points and onany other type which matches the Point type, but no type for these functions canbe expressed in system F�. By permitting the presence of a type variable in itsown bound, F-bounded quanti�cation allows the programmer to express the factthat a function works with any type that matches the Point type, by assigning tosuch function a type: 8�� [x : Int ; eq : �!Bool ]: �!BThe condition � � [x : Int ; eq : � ! Bool ] is satis�ed by any type whichis obtained by adding some �elds to the recursive de�nition of type Point or by8



specializing some of the non-recursive �elds, and even by some other types.4 Thisform of quanti�cation allows one to write many useful functions which operate onall the types which match the Point type.F-bounded quanti�cation is not the only way to give this kind of functions atype. It is also possible to de�ne a \matching" relation which is di�erent from thesubtype relation, and to quantify functions on every type that matches an objecttype A [Bru94, BSvG95]; however, this approach is slightly more complex and adhoc than the F-bounded one (see [BCC+96]). Another possibility arises when oneconsiders higher order type systems, such as F!� , where it is possible to de�netype operators, i.e., functions from types to types [Car90, PS97]. In this context aquanti�cation: ���A[�]: b[�]can be expressed as: ���(�2�:A[�]): b[Fix (�)];where � represents abstraction of terms over types, �2 represents abstraction oftypes over types, and Fix is a �xpoint operator (see [AC96a] for details). Thisapproach is very interesting, but the recursive version of system F!� has not beencompletely understood yet. In particular, strong recursive types (the notion ofstrong recursion is discussed in Sections 9 and 11) have not been studied in thiscontext, and it is not yet known how to combine type operators with the fullF� subtype system.5 Hence, we have no hope of deriving properties of systemF-bounded from such an encoding.Another way to deal with binary methods is to switch from seeing objects asrecords which contain their methods, to seeing a method as an overloaded function.This complementary approach has some advantages, above all that methods become�rst class values and that it is possible to deal smoothly both with contravariantand covariant overriding of methods, and in particular with binary methods. Thisapproach was �rst proposed in [Ghe91], in the context of strongly typed languages,and then studied in [CGL95, CGL93, Cas96, Cas97]. Though very promising, thisapproach has not been studied su�ciently, and there are some problems in the def-inition of a clean semantic model and in the design of a suitable type abstractionmechanism to bind the de�nition of methods with the de�nition of the correspond-ing class.For more information and references about the problem of binary methods werefer the reader to the excellent paper [BCC+96].To conclude this section it is worth remarking that for practical purposesF-bounded quanti�cation alone is not very useful, because system F-bounded , asstudied in this paper, should be enriched with a notion of recursive types in order tomodel an object-oriented language with binary methods. We concentrate, however,on the core system, with no recursion at the value or at the type level, in orderto understand the basic properties of F-bounded quanti�cation. Only some sugges-tions are given on how the system properties would be a�ected by the addition ofrecursive types (see Sections 9 and 11). While the core system is rich enough to4For example, a version of the ColouredPoint type whose eq �eld has type Point!Bool wouldsatisfy the type inequality considered.5So far, only the kernel-fun version (Section 11) of system F!� has been studied in detail.9



merit studying, this work is also intended to provide a foundation for future studiesof extensions of F-bounded with recursion.3 System F-boundedThis section de�nes system F-bounded by formalizing the intuitive ideas presentedabove. The starting point is the second order typed lambda calculus, where besidesvalue abstraction (�), a second order feature of type abstraction (�) is present.Subtyping and the possibility to specify a bound for a quanti�ed type variable areadded by system F�. F-bounded is obtained from F� by relaxing the constraintwhich disallows the presence of a type variable in its bound.3.1 Syntax for Types, Terms, Environments and Judge-mentsMany di�erent formulations for system F-bounded are possible. First of all, one canadopt either an explicit approach (�a la Church) where every variable is annotatedwith its type, and where type abstractions and applications are explicit, or animplicit approach (�a la Curry), where types are inferred rather than appearinginside terms. In line with tradition, we will adopt the explicit approach, whichgives programmers a �ner control over the typing of the terms they write. Thereare two minor syntactic variants to be considered:1. in a type good formation judgement � ` A, the environment � may containjust a list of variable names (like in [Ghe97], or in presentations of system F )or it may contain a list of variables with their bounds (like in [CG92]);2. in a typing judgement � ` a : A, typing and subtyping assumptions may bemixed in � (like in [CG92, CMMS94]) or separated (like in [Ghe97]).Both choices are mainly stylistic and have minor advantages; we opted for thesecond possibility in both cases. Finally, we may allow or forbid a type variable tobe a bound for itself (as in 8���:A). We will allow this kind of bound, while thevariant where this is forbidden will be studied in Section 8.Let TypeVar and ValVar be two �xed countable (disjoint) sets of variablesreferred to as type variables and value variables respectively. The set TypeVar willbe ranged over by Greek letters �, �, . . . , while ValVar will be ranged over byLatin letters x, y, . . . . The syntax of our system is then described by the followinggrammar.A ::= � j Top j A!A j 8��A:A (Types)a ::= x j �x:A: a j a(a) j ���A: a j afAg (Terms)� ::= � j �; ��A (TypeEnv)� ::= � j �; x :A (ValueEnv)J ::= � ` } j � `A j �;� ` } j � `A � A j �;� ` a : A (Judgements)The arrow type A! B is the type of functions taking arguments of type Aand giving back results of type B. The bounded universal type 8� � A:B is the10



type of terms which, when applied to a type A0, yield a term of type B[� A0];the application is allowed only when A0 is a subtype of A[� A0]. The Top typeis a supertype of every type. In system F�, the Top type gives the system theexpressive power needed to encode records and objects; system F� without thetype Top would be decidable, but it would be impossible to encode record types(see [CMMS94], [KS92]). The role of this type in system F-bounded will be discussedin Section 8.Among terms, we �nd the three forms of the classical typed lambda calculus,plus type abstraction �� � A: a and type application afAg, whose use has beeninformally exempli�ed in the previous section.Two di�erent kinds of environments are present. A type environment � consistsof a list of type variables, each bounded by a type bound. A value environment �consists of a list of value variables, each one bound to a type.Finally, judgements represent the assertions we can express about our calculus.The judgement � ` } means that � is a well-formed type environment, i.e., that notype variable occurs free in �. More precisely, � is well-formed if every free variablein the bound A of a variable � is either � or it is de�ned in the part of � on theleft of ��A. The judgement � ` A means that the type A is well-formed in theenvironment �, i.e., that � is well-formed and every free variable in A is de�nedin �. The judgement �;� ` } means that � is a well-formed type environment,and that the value environment � is well-formed in �, i.e., that the type of eachvariable in � is well-formed in �. The judgement � ` A � A0 means that A is asubtype of A0, and they are both well-formed types in �. Lastly, �;� ` a : A meansthat the term a has type A when the assumptions in �;� hold. The environment� must be a well-formed type environment, and � and A well-formed in �.3.2 The rulesWe are now ready to introduce the good formation, subtyping and typing rulesfor system F-bounded . Before getting into technical de�nitions we will clarify ourconventions in the treatment of (type and value) variables. We adopt the De Bruijnapproach [dB72], where variables are not considered as names but as pointers to thesurrounding context (free variables are then simply pointers that \go outside thecontext"). However, working explicitly with De Bruijn indexes, notation becomescumbersome and the readability of terms decreases considerably. Therefore we willcontinue working with variable names, but simply as a more convenient way ofdenoting De Bruijn pointers. The advantage of this approach is that no �-conversionis needed, since each �-congruent class of ordinary terms corresponds exactly toone nameless De Bruijn term. To have some more details on the actual De Bruijnde�nition please refer to the appendix.First of all we de�ne the set of free variables for types, value environments andterms, and we give the corresponding formation rules, formalizing the intuitiongiven in the previous subsection.Free type variables for:� Types FV (�) = f�g FV (A!B) = FV (A) [ FV (B)11



FV (Top) = ; FV (8��A:B) =(FV (A) [ FV (B)) n f�g� Value EnvironmentsFV (�) = ; FV (�; x :A) = FV (�) [ FV (A)The same symbol FV will also be used to denote the set of free (type and value)variables in a term, de�ned as follows:FV (x) = fxgFV (�x:A: b) =FV (A) [ (FV (b) n fxg) FV (f(a)) = FV (f) [ FV (a)FV (���A: b) =(FV (A) [ FV (b)) n f�g FV (bfAg) = FV (b) [ FV (A)Given a type environment � � �1 �A1; : : : ; �n �An we denote with vars(�)the set of type variables bounded in �, i.e., f�1; : : : ; �ng. Moreover, we denotewith �(�i) the type Ai for i 2 f1; : : : ; ng; in the De Bruijn notation, every freevariable in Ai has to be adjusted so that it points to the same binder as before(technically, in the judgement � ` � � �(�), the o�set n � i has to be added tothe index of every free variable in Ai). In the same way, given a value environment� � x1 :A1; : : : ; xn :An we denote with vars(�) the set of value variables typed in�, i.e., fx1; : : : ; xng and with �(xi) the type Ai.Type environment formation rules� ` } (�TEnv) � ` } FV (A) � vars(�) [ f�g�; ��A ` } (TEnv)Type formation rules� ` } FV (A) � vars(�)� `A (TypeForm)Value environment formation rules� ` }�; � ` } (�VEnv) �;� ` } � `A�;�; x :A ` } (VEnv)Subtype rules� `A� `A � A (Id �) � `A � B � `B � C� `A � C (Trans �)� ` } � 2 vars(�)� ` � � �(�) (Var �) � `A� `A � Top (Top �)
12



� `A0 � A � `B � B0� `A!B � A0!B0 (!�)�; ��A0 ` � � A �; ��A0 ` B � B0� ` (8��A:B) � (8��A0: B0) (8 �)Term formation rules�;� ` } x 2 vars(�)�;� ` x : �(x) (Var) �;� ` a : A � `A � B�;� ` a : B (Subs)�;�; x :A ` b : B�;� ` �x:A: b : A!B (! I) �;� ` f : A!B �;� ` a : A�;� ` f(a) : B (! E)�; ��A;� ` b : B � 62 FV (�)�;� ` (���A: b) : (8��A:B) (8I)�;� ` f : 8��A:B � `A0 � A[� A0]�;� ` ffA0g : B[� A0] (8E)Notation 3.1 When necessary to avoid ambiguity, a judgement derivable inF-bounded will be denoted as Pre b̀ ConclNotice that the fact that F-bounded is a proper extension of F� is essentiallyexpressed by the type environment formation rule (TEnv), which allows the typevariable � to occur free in its bound A. Indeed, although some other F-bounded rulesare slightly di�erent from the corresponding F� rules, it can be seen that (a systemequivalent to) F� can be simply regained by strengthening the second premise ofrule (TEnv) into FV (A) � vars(�). The relation between F� and F-bounded willbe studied in Section 9.We �nally present the reduction rules of the system. Notice that there aretwo kinds of � and � rules: besides the usual rules of the (typed) lambda calcu-lus (�Term) and (�Term), the corresponding rules regarding type abstraction arepresent. The four rules de�ne a binary relation that, closed by context, gives theone-step reduction relation, and then, closed by reexivity and transitivity, givesthe many-steps reduction relation.Reduction rules(�x:A: b)(a) ��� b[x a] (�Term)(���A: b)fA0g ��� b[� A0] (�Type)�x:A: b(x) ��� b if x 62 FV (b) (�Term)���A: bf�g ��� b if � 62 FV (b) (�Type)66Using the De Bruijn notation, in rule (�Term), the b at the right hand side is obtained bydecrementing every free variable in the b of the left hand side by one, so that every variable stillpoints to the same binder. The same consideration applies to rule (�Type).13



This relation is terminating [Ghe97], but not conuent, due to subtyping. Considerthe two following normalizing reductions.�x:A: (�y:B: y)x ���� �y:B: y�x:A: (�y:B: y)x ���� �x:A: xSince the term �x :A: (�y :B: y)x is well typed for any A � B, the abovecritical pair is not conuent in any calculus with a non-trivial subtype relation.This problem has been addressed in system F� by proving that �� reduction canbe made conuent by adding a Top rule, which equates every term with a Top type,plus some rules which may be obtained by a Knuth-Bendix like process [CG94].The same approach may also apply to system F-bounded , but we leave this as anopen issue.4 Transitivity eliminationTransitivity plays a central role in every subtype system. In fact, requiring thetransitivity of the subtype relation is fundamental both from a conceptual and froma technical point of view. First of all, the informal understanding of subtyping isbased on the notion of set inclusion: \integer" is a subtype of \real" since everyinteger number is also a real number. Moreover, subtyping formalizes the idea of\specialization of properties" in the following sense: T is a subtype of U if everyrelevant property of all values of type U is also enjoyed by all values of type T .Clearly both the set inclusion and the \specialization" relations are transitive. Moretechnically, we will see that transitivity is very important to prove the subjectreduction property.However, the presence of an explicit rule for transitivity makes it di�cult todecide the subtyping relation. The standard subtype checking algorithm takes acouple of types and an environment, and searches for a rule whose conclusionmatches the judgement to be proved. If no matching rule is found, then the judge-ment cannot be proved. If only one matching rule is found, then the problem canbe reduced to the problem of proving all the premises of the rule. If many matchingrules exist, then each one of them must be tried, in a non deterministic fashion.This algorithm cannot be applied in the presence of a transitivity rule. Firstof all, every subtyping judgement matches its conclusion, hence the algorithm willnever give a negative answer. Moreover, both premises contain a metavariable (thetype B, in our formulation in Section 3) which is not instantiated by the conclusion,and whose value must hence be guessed by the algorithm.To solve this problem, it is customary to de�ne two di�erent presentations fora subtype system: an abstract presentation and an algorithmic one. The abstractpresentation contains one subtyping rule for every form of type, and a transitivityrule which ensures the transitivity of the whole system. This presentation is aimedat describing the system in the most understandable way. On the other hand, thealgorithmic presentation is de�ned in order to allow for a direct application ofthe standard algorithm. To this aim, the rules are modi�ed in such a way that nojudgement may match the conclusion of two di�erent rules. Moreover every variablein the premises of a rule also appears in its conclusion, and thus no guessing isneeded; in particular, the full transitivity rule is not inserted in the algorithmic14



presentation (but it may be embedded in some other rules, as happens with rule(TVar �) below). Finally, one proves that the two sets of rules de�ne the samerelation. This proof is called proof of transitivity elimination, since it shows thatthe abstract presentation can be transformed into an equivalent presentation withno transitivity rule.4.1 The algorithmic presentationIn our case, the algorithmic presentation is obtained from the original system byremoving the transitivity rule (Trans �). Moreover the rule for variables (Var �)is replaced by a new rule containing a \restricted form" of transitivity and theidentity rule (Id �) is specialized to work only on type variables.De�nition 4.1 (deterministic F-bounded) The system dF-bounded (deter-ministic F-bounded) is obtained from F-bounded by removing the rule (Trans �)and by substituting the rules (Var �) and (Id �) with the following ones:� ` �(�) � A � 2 vars(�) �(�) 6= �;Top A 6� �;Top� ` � � A (TVar �)� ` } � 2 vars(�)� ` � � � (IdVar �)Hereafter the premise � 2 vars(�) of rule (TVar �) will be often omitted, since weconsider it to be implied by the use of the notation �(�) in the other premises.Notice that the set of subtyping rules of dF-bounded is deterministic (or syntax-directed), in the sense that given any subtyping judgement � ` A � B there isat most one rule that can be applied to obtain that conclusion. Therefore, asanticipated, the standard algorithm which, given a judgement, tries to construct aproof of that judgement in dF-bounded , is deterministic (no backtracking is needed).4.2 The proof of transitivity eliminationThe proof of transitivity elimination is based on the introduction of an intermediatesystem, called F-bounded+, equivalent to F-bounded . F-bounded+ is then proved tobe equivalent also to the algorithmic system dF-bounded , by showing that a suitableset of rewrite rules allows us to reduce each F-bounded+ derivation into a normalform derivation with the same conclusion, which turns out to be a dF-boundedderivation. Then transitivity elimination immediately follows.4.2.1 System F-bounded+The system F-bounded+ is obtained from F-bounded by replacing the (Var �) sub-typing rule with the rule (TVar �) of system dF-bounded .System F-bounded+ is clearly equivalent to F-bounded : given any F-boundedproof we can obtain an F-bounded+ proof with the same premises and conclusionby replacing every instance of the rule (Var �) with a subproof combining the rules(TVar �) and (Id �); in the other direction, every instance of rule (TVar �) canbe substituted by an instance of (Var �) plus transitivity. It is worth noticing thatdF-bounded can be obtained from F-bounded+ by removing rule (Trans �) andrestricting the use of (Id �) to type variables.15



Notation 4.2 When necessary to avoid ambiguity, judgements derivable inF-bounded+ and in dF-bounded will be denoted respectively asPre +̀ Concl and Pre d̀ ConclIn F-bounded+, it is convenient to have a linear notation for subtyping deriva-tions, so that operations performed on derivations to reduce them to normal formcan be expressed as textual rules (see [CG92, Pie97]). By c :: J we mean that c is aderivation whose conclusion is the judgement J . The same notation will be used toindicate that c is the linear abbreviation of a derivation having J as its conclusion,i.e., when the meaning is clear from the context, we identify a derivation with itslinear representation.De�nition 4.3 (linear abbreviations for derivations) The translation func-tion (�)y, which maps derivation trees (in F-bounded+) to their abbreviated forms,is de�ned by induction on the structure of the derivation:� � `A� +̀ A � A (Id�) �y = Id�;A� c :: � +̀ �(�) � A �(�) 6= �;Top A 6� �;Top� +̀ � � A (TVar�) �y = V�;A(cy)� � `A� +̀ A � Top (Top�) �y = Top�;A� c :: � +̀ A0 � A d :: � +̀ B � B0� +̀ A!B � A0!B0 (!�) �y = (cy!dy)� c :: �; ��A0 +̀ � � A d :: �; ��A0 +̀ B � B0� +̀ 8��A:B � 8��A0: B0 (8�) �y = (8��cy: dy)� c :: � +̀ A � B d :: � +̀ B � C� +̀ A � C (Trans�) �y = (cy; dy)Notice that only the abbreviations for the basic derivations using (Id �) and(Top �) are explicitly adorned with the environment since in the other cases theenvironment is already coded in the premises. Furthermore, sometimes we will notindicate explicitly the environment involved in a derivation unless it is strictlynecessary. Therefore we will write TopA for Top�;A, and IdA for Id�;A.4.2.2 Replacement, Top-lemmata and weakeningWe collect here some de�nitions and technical lemmata which will be useful below.Although most of the lemmata are formulated for F-bounded+, it is easy to verifythat their obvious reformulations for the other systems considered so far hold aswell. For this reason, we will sometimes refer and apply them to systems F-boundedor dF-bounded as well.The �rst lemma speci�es that (sub)typing implies good formation for the typesand environment involved. 16



Lemma 4.4 (subproof) If � ` A � B then � ` }, � ` A and � ` B. If� ` a : A then � ` } and � `A.Proof. Routine induction on the structure of the derivations. 2Replacement is an operation on derivations, which allows us to replace a hy-pothesis � � A0 in the environment �; � � A0;�0 of a derivation, with anotherhypothesis ��A, whenever �; ��A;�0 proves � � A0.De�nition 4.5 (derivations replacement) Let c :: �; ��A;�0 +̀ � � A0 andd :: �; ��A0;�0 +̀ B � B0 be F-bounded+ derivations. The replacement of ��A0in d with c, denoted by d[��A0 c], is de�ned by induction on the structure of das follows:1. Id (�;��A0;�0);B0 [��A0 c] = Id (�;��A;�0);B02. V�;B0(d1)[��A0 c] = ( V�;B0(d1[��A0 c]) if � 6� �c; (d1[��A0 c]) if � � �(Observe that when � � � one has B � � and d1 :: �; ��A0;�0 +̀ A0 � B0.)3. Top(�;��A0;�0);B0 [��A0 c] = Top(�;��A;�0);B04. (d1!d2)[��A0 c] = ((d1[��A0 c])!(d2[��A0 c]))5. (8��d1: d2)[��A0 c] = (8��(d1[��A0 c]): (d2[��A0 c]))6. (d1; d2)[��A0 c] = ((d1[��A0 c]); (d2[��A0 c]))Notice that some parentheses in the de�nition are not genuine syntactical objects.They are inserted only for the sake of clarity.The replacement operation has two main e�ects. First, it substitutes everyinstance of ��A0 in the environment � of basic derivations with ��A (rules 1 and3). Second, whenever �; ��A0;�0 ` � � B0 is proved by applying rule (TVar �)to �; ��A0;�0 `A0 � B0 in the original derivation, the same judgement is provedby transitivity from c :: �; ��A;�0 ` � � A0 and �; ��A;�0 ` A0 � B0 in themodi�ed derivation (rule 2, �rst case). Rules 2 (second case) and 3, 4, and 5 onlypropagate the replacement inside the derivation.Lemma 4.6 Let c :: �; ��A;�0 +̀ � � A0 and d :: �; ��A0;�0 +̀ B � B0 beF-bounded+ derivations. Thend[��A0 c] :: �; ��A;�0 +̀ B � B0.Proof. Routine induction on the structure of d. Cases 1 and 3 entail invoking theSubproof Lemma 4.4. 2The next two lemmata give some properties of the derivations in F-bounded+whose �nal judgements involve the type Top. In particular we show that Top isindeed the maximum type with respect to the subtype relation. Furthermore weshow that to derive that a type is less than Top one must eventually use the rules(Id �) or (Top �). 17



Lemma 4.7 Let c :: � +̀ Top � A be an F-bounded+ subtyping derivation. ThenA � Top and c must be in the set generated by the following grammar:e ::= Top�;Top j Id�;Top j e; e.Proof. We proceed by induction on the length jcj of c. Suppose that the thesisholds for jcj < k; then, if jcj = k, we distinguish various cases according to the lastrule in the derivation.� (c � Id�;B, c � Top�;B)In both cases A � B � Top and thus c is of the desired form.� (c � V�;B(c0), c � c0!c00, c � 8��c0: c00)Not possible.� (c � c0; c00)Since c0 :: � +̀ Top � A0 and jc0j < jcj, by inductive hypothesis, we have thatc0 must be in the set generated by the grammar and A0 � Top . Moreover,c00 :: � +̀ A0 � A, i.e., c00 :: � +̀ Top � A. Since jc00j < jcj, again by inductivehypothesis, we conclude that A � Top and c00 is generated by the grammar.Therefore c � c0; c00 is generated by the grammar. 2Lemma 4.8 Let c :: � +̀ A � Top be a F-bounded+ subtyping derivation. Thenc must be in the set generated by the following grammar:e ::= Id�;Top j Top�;A j d; e,where the variable d ranges over arbitrary derivations.Proof. We proceed by induction on the length jcj of c. Suppose that the thesisholds for jcj < k; then, if jcj = k:� (c � Id�;B)In this case, by necessity B � A � Top and thus c is of the desired form.� (c � Top�;B)In this case, B � A and thus c is of the desired form.� (c � V�;B(c0))Not possible, since B should be Top.� (c � c0!c00, c � 8��c0: c00)Not possible.� (c � c0; c00)In this case c00 :: � +̀ A0 � Top and jc00j < jcj, hence by inductive hypothesis,c00 is of the desired form and thus also c � c0; c00 is. 2The weakening operation, as suggested by its name, allows us to weaken aderivation by adding a new hypothesis to the type or value environments.18



De�nition 4.9 (subtyping weakening) Let � be �1; � � A;�2, with � ` }.The weakening of an F-bounded+ derivation c :: �1;�2 +̀ B � C with the binding��A, denoted by c;� (i.e., c;�1; ��A;�2) is de�ned by induction on the structureof c, as follows:71. Id (�1;�2);B ;� = Id�;B2. V�;C(c0);� = V�;C(c0;�)3. Top(�1;�2);B ;� = Top�;B4. (c0!c00);� = (c0;�)!(c00;�)5. (8��c0: c00);� = 8��(c0; (�; ��C 0)): (c00; (�; ��C 0))where c :: �1;�2 +̀ (8��B0: B00) � (8��C 0: C 00)6. (c0; c00);� = (c0;�); (c00;�)Lemma 4.10 If c :: �1;�2 +̀ B � C and � ` }, where � � �1; ��A;�2, thenc;� :: � +̀ B � C.Proof. Routine induction on the structure of c. In the 8��c0: c00 case we also haveto prove that �; ��C 0 ` }, but this immediately follows from the fact that, byhypothesis, � ` } and, by Subproof Lemma 4.4, �1;�2; ��C 0 ` }. 2Lemma 4.11 (typing weakening) Let �;� +̀ a : A be an F-bounded+ typ-ing judgement. Assuming �; ��A0 ` } then �; ��A0;� +̀ a : A. Similarly, if�;�; y : B;�0 ` }, then �;�; y :B;�0 +̀ a : A.Proof. Routine induction. 24.2.3 Normalization of F-bounded+ derivationsIn this section, following the ideas proposed for F� in [CG92, Pie97], we provethat every F-bounded+ subtyping derivation can be transformed into a normalform derivation, where the transitivity rule is not used and the identity rule isused only on variable types. Since every normal form derivation in F-bounded+ isalso a dF-bounded derivation, this result implies that dF-bounded is equivalent toF-bounded+ and hence to F-bounded .The normalization procedure is presented as a collection of rewrite rules on(linear representations of) subtyping derivations. These rules are separated intothree groups. Informally, the rules in the �rst group push instances of (Id �) ruletowards the leaves until they are applied to variables or disappear into instancesof the (Top �) rule. The rules in the second group remove instances of (Trans �)that involve identity derivations, and push instances of (Trans �) rule towards theleaves until they disappear into instances of the (TVar �) rule. The unique rule inthe last group removes instances of (Trans �) rule that involve TopA derivations.7As usual, in the De Bruijn notation, when �1;�2 becomes �1; ��A;�2, all variable indexesin �2 have to be updated so that they point to the same binder as before. Namely, the index ofevery free variable in �2 has to be incremented by one.19



De�nition 4.12 (derivation simpli�cation rules) The one step, outermostsimpli�cation relation on subtyping derivations, denoted by �!o, is de�ned by thefollowing rewrite rules.I. Reexivity simpli�cation(1) Id�;A!B �!o Id�;A!Id�;B(2) Id�;8��A:B �!o 8��(V�;A(Id(�;��A);A)): Id(�;��A);B(3) Id�;Top �!o Top�;TopII. Cut simpli�cation(1) Id�;�; c �!o c(2) c; Id�;� �!o c(3) V�;A(c); d �!o V�;B(c; d) if d :: � `A � B; B 6� Top; �(4) (c1!d1); (c2!d2) �!o c2; c1!d1; d2(5) (8��c1: d1); (8��c2: d2) �!o 8��(c1[��A0 c2]): (d1[��A0 c2]; d2)if 8��c1: d1 :: (8��A:B) � (8��A0: B0) and8��c2: d2 :: (8��A0: B0) � (8��A00: B00)III. Top Cut simpli�cation(1) c;Top�;B �!o Top�;A if c :: � `A � BHereafter �! denotes the \context closure" of the relation �!o, which can bede�ned as the least relation containing �!o and such that, for all derivationsc; c0; d, if c �! c0 then:(c; d) �! (c0; d) and (d; c) �! (d; c0)V�;A(c) �! V�;A(c0)(c!d) �! (c0!d) and (d!c) �! (d!c0)(8��c: d) �! (8��c0: d) and (8��d: c) �! (8��d: c0)The symbol �!� denotes the reexive and transitive closure of �!.Now, to reach the desired result we have to prove three things:1. every reduction step transforms a derivation of a judgement into anotherderivation of the same judgement (subject reduction);2. for every F-bounded+ derivation, there exists a �nite sequence of reductionsteps which transforms it into a normal form derivation (normalization);3. every normal form derivation is a dF-bounded derivation.Subject reduction plus normalization imply that, for every F-bounded+ deriva-tion, there exists a normal form derivation which proves the same judgement.The third fact completes the proof of the equivalence between F-bounded+ anddF-bounded . 20



c1�; ��A0 ` � � A d1�; ��A0 `B � B08��c1: d1 :: � ` (8��A:B) � (8��A0: B0) c2�; ��A00 ` � � A0 d2�; ��A00 `B0 � B008��c2: d2 :: � ` (8��A0: B0) � (8��A00: B00)(8��c1: d1); (8��c2: d2) :: � ` (8��A:B) � (8��A00: B00)c1[��A0 c2]�; ��A00 ` � � A (d1[��A0 c2]; d2)�; ��A00 `B � B008��(c1[��A0 c2]): (d1[��A0 c2]; d2) :: � ` (8��A:B) � (8��A00: B00)Table 1: A pictorial representation of rule II.5: the two subtyping derivations(8��c1: d1); (8��c2: d2) and 8��(c1[��A0 c2]): (d1[��A0 c2]; d2).Subject reduction for simpli�cation rulesLemma 4.13 (subject reduction for simpli�cation rules) If c is a subtypingderivation such that c :: � `A � B and c �!� d then d :: � `A � B.Proof. First observe that all the simpli�cation rules transform each derivationinto a derivation with the same conclusion. The only non trivial case is rule II.5,depicted in Table 1, where Replacement Lemma 4.6 is needed. This gives subjectreduction for �!o.Noticing that none of the subtyping rules places any requirement on the shapeof the derivations of their hypotheses we can extend the result to �! and henceto �!�. 2Termination of the normalization procedureWe now prove that every F-bounded+ subtyping derivation can be reduced to anormal form in a �nite number of steps. As in [CG92, Pie97] the proof relies on thebasic observation that when an instance of transitivity is reduced, all new instancesof transitivity introduced by the reduction step have a smaller intermediate type.A derivation of the form c; d is called a compound derivation. If c :: � `A � Band d :: � `B � C then B is called the cut-type of the derivation, and its (syntac-tic) length the cut-size of the derivation, namelycut-type(c; d) = B cut-size(c; d) = jBjFor X 2 fI; II; IIIg, an X-redex in a derivation c is a subderivation of c thatcan be reduced by using a rule in group X . The result of the reduction is calledthe contractum of the redex. A derivation c is in X-normal form if it contains noX-redexes. A derivation in I, II, III-normal form is said to be in normal form. By\innermost II-redex with cut-size k of a derivation c" we refer to any II-redex d inc such that no proper subderivation of d is a II-redex with cut-size k.De�nition 4.14 (rewriting strategy) The rewriting strategy for the normaliza-tion of subtyping derivations comprises the following steps:1. Perform I-reductions in any order until a I-normal form is reached.21



2. If the derivation is not in II-normal form, let k be the largest cut-size ofII-redexes, select an innermost redex with cut-size k and reduce it. Thenreturn to step 2.3. Perform III-reductions in any order until a III-normal form is reached.First of all, observe that no step in the rewriting strategy generates redexesof the previous steps. Therefore, if we show that each step (separately) terminatesthen we can conclude that the whole normalization process always terminates, thusproducing a derivation in normal form.Step 1: Notice that rules I.1 and I.2 decrease the size of the type associated withany new I-redex they create, and rule I.3 does not create new I-redexes. ThereforeI-rules are strongly normalizing and Step 1 always terminates.Step 3: The only rule in Step 3 strictly decreases the size of the derivation, thereforeStep 3 always terminates as well.Step 2, outline: The proof of termination for Step 2 is based on the observationthat rules II.1, II.2 do not generate new redexes, while the cut-size of the newredexes generated by rules II.4, II.5 is strictly smaller than the cut-size of thereduced redex. Finally, rule II.3 applied to some redex can generate a new redexwith the same cut-size, but it is not di�cult to see that any segment of consecutiveII.3 reductions can only have a �nite length. This is formalized by inserting intothe complexity measure of a derivation c a component, called v-complexity, whichintuitively represents a bound for the number of possible consecutive II.3 reductionsstarting from c.We continue by giving a detailed proof of the termination of Step 2. We �rstde�ne the v-complexity of a derivation c. The v-complexity counts, for every \;"operator, the number of occurrences of the operator V�;�(�) in its left argument, sothat any application of the II.3 rule is guaranteed to decrease this complexity byone. The number of occurrences of V inside c is denoted by #V (c).De�nition 4.15 (v-complexity) The v-complexity of a derivation c, denoted by#v(c), is de�ned as follows:1. #v(Id�;A) = #v(Top�;A) = 0;2. #v(V�;A(c)) = #v(c);3. #v((c1!c2)) = #v(c1) + #v(c2);4. #v((8��c1: c2)) = #v(c1) + #v(c2);5. #v((c1; c2)) = #V (c1) + #v(c1) + #v(c2).De�nition 4.16 (total complexity) The (total) complexity of a derivation c,denoted by comp(c), is de�ned ascomp(c) = hk; n;#v(c)iwhere k is the maximum cut-size of II-redexes in c, and n is the number of II-redexeswith cut-size k in c. Total complexities are ordered lexicographically.22



The next two lemmata are useful in proving that each II-reduction decreasesthe total complexity of a derivation. The �rst one will be applied to give a charac-terization of the cut-size of new II-redexes generated by reductions using rule II.5.The second one proves that an application of rule II.3 decreases the v-complexityof a derivation.Lemma 4.17 Let c :: �; ��A ` � � A0 and d :: �; ��A0 ` B � B0 be twosubtyping derivations. Then the cut-type of any new II-redex in d[��A0 c] is A0.Proof. We proceed by structural induction on d:� (d � Id (�;��A0);B0 or d � Top(�;��A0);B0)In this case d[��A0 c] does not contain new redexes.� (d � V�;B0(d1))We distinguish two subcases. If � � � thend[��A0 c] = c; (d1[��A0 c]).By inductive hypothesis, any new II-redex in d1[��A0 c] has cut-type A0.Moreover the whole derivation c; (d1[��A0 c]) can be a new redex and itscut-type is indeed A0.If � 6� � then d[��A0 c] = V�;B0(d1[��A0 c]).Thus we conclude by inductive hypothesis.� (d � d1!d2)By de�nition of replacement(d1!d2)[��A0 c] = (d1[��A0 c])!(d2[��A0 c]).Thus we conclude by inductive hypothesis.� (d � 8��d1: d2)As above.� (d � d1; d2)By de�nition of replacement:(d1; d2)[��A0 c] = (d1[��A0 c]); (d2[��A0 c]).First of all notice that if (d1[��A0 c]); (d2[��A0 c]) is a II-redex, thenalso d1; d2 has to be a II-redex, as can be veri�ed by analyzing De�nition 4.5.The length of (d1[��A0 c]); (d2[��A0 c]) can be greater than the lengthof the original redex d1; d2, but the cut-type remains the same.Hence true new redexes can only appear in d1[��A0 c] and d2[��A0 c],but in these cases we conclude by inductive hypothesis. 223



Lemma 4.18 Let l be a subtyping derivation, let V�;A(c); d be a II-redex in l andlet l0 be the result of replacing V�;A(c); d in l with its contractum V�;B(c; d). Then#v(l0) = #v(l)� 1.Proof. First observe that, since l0 is obtained from l by substituting a subderivatione with a subderivation e0 such that #V (e) = #V (e0), then #v(l)�#v(l0) is equalto #v(e)�#v(e0). We can now compute this di�erence as follows:#v(V�;A(c); d)�#v(V�;B(c; d))= #V (V�;A(c)) + #v(V�;A(c)) + #v(d)�#v(c; d)= #V (c) + 1 +#v(c) + #v(d)� (#V (c) + #v(c) + #v(d))= 1: 2We are now ready to prove that rules in group II strictly decrease the totalcomplexity of a derivation and thus that Step 2 always terminates as well.Theorem 4.19 Let l be a subtyping derivation whose maximum cut-size is k. Letc; d be an innermost II-redex in l with cut-size k. Thencomp(l0) < comp(l)where l0 is the result of replacing the redex c; d in l with its contractum e.Proof. By cases on the II-rule applied to reduce c; d to e:� (Rule II.1) c � Id� and e � d.This reduction removes a II-redex of maximum cut-size from l.� (Rule II.2) d � Id� and e � c.Same as (Rule II.1).� (Rule II.3) c � V�(c1) and e � V�(c1; d).This reduction removes a II-redex of maximum cut-size V�(c1); d and intro-duces a new II-redex c1; d with the same cut-size. However, by Lemma 4.18,#v(l0) < #v(l), hence the total complexity decreases.� (Rule II.4) c � c1!c2, d � d1!d2 and e � (d1; c1)!(c2; d2).This reduction removes a II-redex of maximum cut-size and may introducetwo new redexes d1; c1 and c2; d2 with a smaller cut-size.� (Rule II.5) c � 8� � c1: c2, d � 8� � d1: d2 and e � 8� � c0: d0, where c0 =(c1[��A0 d1]) and d0 = (c2[��A0 d1]; d2).To �x notation, let us suppose thatc :: � ` (8��A:B) � (8��A0: B0)d :: � ` (8��A0: B0) � (8��A00: B00).The reduction removes a II-redex with maximum cut-size and may add thefollowing new redexes:� (c2[��A0 d1]; d2) with cut-type B0;24



� new redexes in c1[��A0 d1] and c2[��A0 d1], with cut-type A0, byLemma 4.17.Hence, new redexes have a cut-size smaller than cut-size(c; d) = 8��A0: B0.The old redexes in d1 are generally copied many times by the substitutionoperation c1[��A0 d1], but this replication does not modify the total com-plexity, since all the redexes in d1 have a cut-size which is smaller than k(due to the fact that the innermost redex of cut-size k has been chosen); thesame considerations apply for c2[��A0 d1]. 2Normal forms are in dF-boundedBy the previous results each F-bounded+ subtyping derivation can be rewritten, in a�nite number of steps, to a normal form derivation that proves the same judgement.We now show that every normal form F-bounded+ derivation is a dF-boundedderivation, i.e., that it applies reexivity only to type variables and that it doesnot use the transitivity rule.Lemma 4.20 If Id�;A :: � ` A � A is a normal form subtyping derivation thenA � � for some type variable �.Proof. Obvious by the form of I-rules. 2Lemma 4.21 If e is a normal form subtyping derivation then it is not of the shapec; d.Proof. Let e � c; d be a subtyping derivation and let us show that it is not anormal form.If c or d are not in I-normal form then obviously e is not in normal form.Otherwise, if c and d are in I-normal form, we prove the thesis by inductionon the length of e. The following table reports a case analysis for c and d, andindicates in each case the reason why e � c; d is not in normal form.c d reasonId� any rule II.1any Id� rule II.2c1; c2 any inductive hypothesisany d1; d2 inductive hypothesisTopA V�;B(d1) not possibleTopA d1!d2 not possibleTopA 8��d1: d2 not possibleany TopA rule III.1V�;A(c1) V�;B(d) = d1!d2 = 8��d1: d2 rule II.3c1!c2 V�;A(d1) not possible8��c1: c2 V�;B(d1) not possiblec1!c2 d1!d2 rule II.4c1!c2 8��d1: d2 not possible8��c1: c2 d1!d2 not possible8��c1: c2 8��d1: d2 rule II.525



Notice that the only case which is lacking is V�;A(c1); d with d :: � ` A � Top andd 6� TopA (if d � TopA the case appears in the table as any ;TopA). Now, since dis a I-normal form, IdTop cannot occur in d and thus, by Lemma 4.8, we concludethat d � c0; c00, which is not a II-normal form by inductive hypothesis. 2As an immediate corollary we have now the main result of this section.Theorem 4.22 (transitivity elimination for subtyping) For every subtypingjudgement � `A � B � b̀ A � B i� � d̀ A � BProof. We already observed that systems F-bounded+ and F-bounded are equiv-alent. Moreover we proved that the normalization procedure always transformsan F-bounded+ derivation into a normal form derivation of the same judgement,which is, by Lemmata 4.20 and 4.21 a dF-bounded derivation. Since dF-bounded isa subsystem of F-bounded+ this allows us to conclude that also dF-bounded andF-bounded+ are equivalent, thus proving the thesis. 2Since the subtyping relations in F-bounded , F-bounded+ and dF-bounded coin-cide, in the following we do not distinguish derivability of subtyping judgement inthe three systems unless we need it to refer to the concrete derivation.5 Type checkingIn this section we complete the de�nition of dF-bounded , the algorithmic versionof F-bounded , by specifying a deterministic set of term formation rules. Then weshow that the typing algorithm naturally associated with dF-bounded is correctwith respect to F-bounded and allows us to determine a minimal type for everyterm which is typable in a given environment.First of all we introduce the function �!, induced by a type environment �,which applied to a type A gives back the minimum supertype of A which is anarrow type, when such a supertype exists.De�nition 5.1 Let � be a well-formed type environment. Then:�!(A!B) = A!B if � `A!B�!(�) = �!(�(�)) if � 2 vars(�) and �(�) 6= �Notice that �!(A) is unde�ned whenever A is Top , or a 8 type, or a variable �bounded by itself or by a type B such that �!(B) is unde�ned. The de�nition ofthe minimum 8 supertype of a given type in a type environment is analogous.De�nition 5.2 Let � be a well-formed type environment. Then:�8(8��A:B) = 8��A:B if � ` 8��A:B�8(�) = �8(�(�)) if � 2 vars(�) and �(�) 6= �The reader can easily verify that, if �!(A) is de�ned, then � `A � �!(A). Simi-larly, if �8(A) is de�ned, then � `A � �8(A).26



De�nition 5.3 The term formation rules of dF-bounded are the rules (Var), (! I),(8I) of F-bounded , plus the rules:�;� ` f : B �!(B) = A0!B0 �;� ` a : A � `A � A0�;� ` f(a) : B0 (d! E)�;� ` f : B �8(B) = 8��A:B0 � `A0 � A[� A0]�;� ` ffA0g : B0[� A0] (d8E)5.1 CorrectnessThe system dF-bounded is correct with respect to F-bounded , i.e., all derivabledF-bounded judgements are also derivable F-bounded judgements.Theorem 5.4 (correctness) If �;� d̀ a :A then �;� b̀ a :A.Proof. As proved in the previous section, the subtyping relations in F-boundedand dF-bounded coincide. Therefore it su�ces to observe that for each dF-boundedtyping rule there exists a typing derivation in F-bounded with the same premisesand conclusion. Then an inductive reasoning on the structure of the derivationallows us to conclude the proof.The rules (Var), (! I), (8I) are also F-bounded rules, thus no consideration isneeded. An instance of rule (d! E) can be replaced with the F-bounded typingderivation:�;� ` f : B � `B � �!(B) = A0!B0�;� ` f : A0!B0 (Subs) �;� ` a : A � `A � A0�;� ` a : A0 (Subs)�;� ` f(a) : B0 (!E)Finally, the rule (d8E) can be replaced with the F-bounded typing derivation:�;� ` f : B � `B � �8(B) = 8��A:B0�;� ` f : 8��A:B0 (Subs) � `A0 � A[� A0]�;� ` ffA0g : B0[� A0] (8E) 25.2 Completeness and minimal typingWe now prove that the system dF-bounded is complete with respect to F-boundedin the sense that if there exists a derivation for �;� b̀ a : A in F-bounded then wecan �nd a derivation �;� d̀ a : A0 in dF-bounded such that � `A0 � A. Moreover,since dF-bounded is deterministic, the type A0 is uniquely determined and it is aminimum type for the term a in F-bounded .We �rst need a lemma stating some substitution properties of subtyping deriva-tions which, besides being useful here to prove the completeness result, will befundamental in the proof of subject reduction for �� reduction. The lemma infor-mally states that a type variable can be safely replaced with any type satisfyingthe constraint imposed by the environment.Let us �x some notation. If � � �1�A1; : : : ; �n�An is a type environment, wedenote with �[� A] the type environment obtained from � by substituting each27



free occurrence of � in the bounds with A, i.e., �1�A1[� A]; : : : ; �n�An[� A].Similarly, if � is a value environment we denote by �[� A] the value environmentobtained by substituting each free occurrence of � in � with the type A.Lemma 5.5 (type substitution) Let �; ��A;�0 ` } and let �;�0[� A0] `A0 � A[� A0].1. If �; ��A;�0 `B � C then�;�0[� A0] `B[� A0] � C[� A0]2. If �; ��A;�0;� b̀ b : B then�;�0[� A0];�[� A0] b̀ b[� A0] : B[� A0]Proof.1. The proof is carried out by induction on the structure of the derivation of�; ��A;�0 b̀ B � C in F-bounded and by cases on the last rule used inthe derivation. We analyze just the cases of the rules for type variable andbounded quanti�cation.� (Var �) Let the last rule be:�; ��A;�0 ` } � 2 vars(�; ��A;�0)�; ��A;�0 ` � � (�; ��A;�0)(�) (Var �)We distinguish two subcases:� If (� � �) then �[� A0] = A0 and (�; ��A;�0)(�)[� A0] =A[� A0]. Therefore the judgement we want to prove can be writtenas �;�0[� A0] ` A0 � A[� A0], which is already present in thehypotheses.� If (� 6� �) then (�; ��A;�0)(�) = (�;�0)(�) and thus the judge-ment we want to prove becomes�;�0[� A0] ` � � (�;�0)(�)[� A0].Since �; ��A;�0 ` }, the variable � cannot occur free in �, andthus (�;�0)(�)[� A0] = (�;�0[� A0])(�). Therefore we can con-struct the following derivation for the desired judgment.�;�0[� A0] ` } � 2 vars(�;�0[� A0])�;�0[� A0] ` � � (�;�0[� A0])(�) (Var �)Notice that �;�0[� A0] ` } follows by Subproof Lemma 4.4, ap-plied to the hypothesis �;�0[� A0] `A0 � A[� A0].� (8 �) Let the last rule be�; ��A;�0; ��C0 ` � � B0 �; ��A;�0; ��C0 `B00 � C00�; ��A;�0 ` 8��B0: B00 � 8��C0: C00 (8 �)
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By Lemma 4.4, we have �; ��A;�0; ��C ` }, and thus it is easy tosee that also �;�0[� A0]; ��C 0[� A0] ` }. Hence Lemma 4.10 andthe hypothesis �;�0[� A0] ` A0 � A[� A0] allow us to deduce that�;�0[� A0]; ��C 0[� A0] `A0 � A[� A0]. Therefore, by inductive hy-pothesis, we have that �;�0[� A0]; ��C 0[� A0] ` � � B0[� A0] and�;�0[� A0]; ��C 0[� A0] ` B00[� A0] � C 00[� A0]. Therefore, by us-ing the rule (8 �), we obtain that in the environment �;�0[� A0](8��B0[� A0]: B00[� A0]) � (8��C 0[� A0]: C 00[� A0]),that is �;�0[� A0] ` (8��B0: B00)[� A0] � (8��C 0: C 00)[� A0].2. By induction on the structure of the derivation of �; ��A;�0;� b̀ b : B inF-bounded , and using point (1). 2We are now ready to prove the main theorem of this section.Theorem 5.6 (completeness and minimal typing) If �;� b̀ a : A then�;� d̀ a : A0 and � `A0 � A.Proof. By induction on the structure of the derivation of �;� b̀ a : A.We distinguish various cases according to the last rule used in the derivation.� (Var) Let the last rule be: �;�; x :A;�0 b̀ }�;�; x :A;�0 b̀ x : A (Var)Then this is also a derivation in dF-bounded .� (! I) Let the last rule be: �;�; x :A b̀ b : B�;� b̀ �x:A: b : A!B (! I)By inductive hypothesis there exists a derivation d :: �;�; x :A d̀ b : B0,with � `B0 � B. Then, since (! I) is also a dF-bounded rule, we obtain thederivation in dF-bounded :d :: �;�; x :A d̀ b : B0�;� d̀ �x:A: b : A!B0 (! I)and � `A!B0 � A!B holds by rule (!�).� (8I) Let the last rule be:�; ��A;� b̀ b : B � 62 FV (�)�;� b̀ ���A: b : 8��A:B (8I)By inductive hypothesis there exists a derivation d :: �; ��A;� d̀ b : B0,with �; ��A `B0 � B. Then, since (8I) is also a dF-bounded rule, we obtainthe derivation in dF-bounded : 29



d :: �; ��A;� d̀ b : B0 � 62 FV (�)�;� d̀ (���A: b) : (8��A:B0) (8I)Furthermore, by using rule (8 �), from �; ��A ` B0 � B we can derive� ` (8��A:B0) � (8��A:B).� (Subs) Let the last rule be:�;� b̀ a : A � `A � B�;� b̀ a : B (Subs)By inductive hypothesis there exists a derivation d :: �;� d̀ a : A0, with� `A0 � A. Thus, by transitivity, � `A0 � B.� (! E) Let the last rule be:�;� b̀ f : A!B �;� b̀ a : A�;� b̀ f(a) : B (! E)By inductive hypothesis there exist the derivationsd1 :: �;� d̀ f : C , with � ` C � A!B,d2 :: �;� d̀ a : A0, with � `A0 � A.We want to show that � ` C � A!B implies that �!(C) is de�ned and that� ` �!(C) � A!B. We prove it by induction on the size of the dF-boundedderivation of � ` C � A!B and by cases on the last rule used. There aretwo possibilities. If the last rule is (!�), then C is an arrow type, and thethesis follows immediately from �!(C) = C. If the rule is (TVar �), then C isa type variable � with � ` �(�) � A!B and �(�) 6= �. Hence, by induction,�!(�(�)), which is equal to �!(�), is de�ned and less than A!B.Now, let �!(C) be A00!B00. By the shape of dF-bounded subtyping rules,� `A � A00 and � ` B00 � B, and thus, by transitivity, � `A0 � A00. Hence,� ` f(a) : B00 can be proved as follows:d1 :: �;� d̀ f : C �!(C) = A00!B00 d2 :: �;� d̀ a : A0 ....� `A0 � A00�;� d̀ f(a) : B00 (d! E)and, as remarked above, � `B00 � B.� (8E) Let the last rule be:�;� b̀ f : 8��A:B � b̀ A0 � A[� A0]�;� b̀ ffA0g : B[� A0] (8E)By inductive hypothesis there exists a derivationd :: �;� d̀ f : C, with � ` C � (8��A:B).30



By reasoning as above, we can prove that �8(C) is equal to a type 8��A00: B00such that � ` (8��A00: B00) � (8��A:B). By the shape of dF-boundedsubtyping rules, �; ��A ` � � A00 and �; ��A ` B00 � B. By using�; ��A ` � � A00, � ` A0 � A[� A0] (premise of the (8E) rule) andLemma 5.5(1), we have � ` �[� A0] � A00[� A0], i.e.,� `A0 � A00[� A0].Therefore, by using the rule (d8E), we can construct the following dF-boundedderivation:d :: �;� d̀ f : C �8(C) = 8��A00: B00 ....� `A0 � A00[� A0]�;� d̀ ffA0g : B00[� A0] (d8E)and, since �; ��A `B00 � B, recalling that � ` A0 � A[� A0], and by usingLemma 5.5(1) again, we conclude:� `B00[� A0] � B[� A0]. 26 Subject reduction for system F-boundedSubject reduction is one of the primary properties of a typed language. It statesthat the type is preserved (or sometimes specialized) by the reduction rules of thelanguage and therefore it ensures that a program which has been assigned a typestatically, will never go wrong at run-time because of typing errors.We �rst need a strengthening lemma stating that unused bindings can be safelydiscarded from the environment. More precisely, given a judgement �(;�) ` P , if a(type or value) variable appearing in the environment does not occur free in P thenthe corresponding binding in the environment can be removed without a�ecting thederivability of the judgement.Lemma 6.1 (strengthening) 1. If the judgement �; ��A;�0 ` B � C isderivable, � 62 FV (B) [ FV (C) and �;�0 ` } then also �;�0 ` B � Cis derivable.2. Similarly, if the judgement �; ��A;�0;� b̀ b : B is derivable, �;�0;� ` }and � 62 FV (b) [ FV (B) then also �;�0;� b̀ b : B is derivable.3. Finally, if �;�; x :A;�0 ` b : B and x 62 FV (b) then �;�;�0 ` b : B.Proof.1. It is convenient to consider a derivation d for �; ��A;�0 ` B � C in thedeterministic version dF-bounded of the system. Then the proof proceeds bystraightforward induction on the structure of d and by cases on the last ruleused. Only observe that, when treating rule (TVar �), the well-formednesshypothesis �;�0 ` } ensures that variable � does not occur free in anybound of variables in vars(�;�0). 31



2. We �rst prove a slightly stronger property which only holds for the determin-istic variant dF-bounded of the system, namely that�; ��A;�0;� d̀ b : B ^ �;�0;� ` } ^ � 62 FV (b) )� 62 FV (B) ^ �;�0;� d̀ b : B.The proof is done by induction on the structure of the dF-bounded derivationof the judgement �; ��A;�0;� d̀ b : B and by cases on the last rule used.� (Var) Let the last rule be:�; ��A;�0;� d̀ } x 2 vars(�)�; ��A;�0;� d̀ x : �(x) (Var)Since by hypothesis �;�0;� ` }, and x 2 vars(�), the judgement�;�0;� d̀ x : �(x) is derivable by using rule (Var). The fact that � 62FV (�(x)) is also an obvious corollary of the well-formedness hypothesis.� (! I) Let the last rule be:�; ��A;�0;�; x :A d̀ b : B�; ��A;�0;� d̀ �x:A: b : A!B (! I)Since � 62 FV (�x:A: b), clearly(y) � 62 FV (A) (z) � 62 FV (b)By �;�0;� ` } and (y), we have that �;�0;�; x :A ` } and thus, by(z) and inductive hypothesis, we deduce that the variable � 62 FV (B)and �;�0;�; x :A d̀ b : B is derivable. Summing up, � 62 FV (A!B)and, by using rule (! I), the judgement �;�0;� d̀ �x:A: b : A!B isderivable.� (d! E) Let the last rule be:�00;� d̀ f : B �00!(B) = A0!B0 �00;� d̀ a : A00 �00 `A00 � A0�00;� d̀ f(a) : B0 (d! E)where �00 � �; ��A;�0. Since � 62 FV (f(a)), we have � 62 FV (f) and� 62 FV (a), and therefore, by inductive hypothesis:(a) � 62 FV (B) (b) �;�0;� d̀ f : B(c) � 62 FV (A00) (d) �;�0;� d̀ a : A00By the fact that (�; ��A;�0)!(B) = A0!B0 and �;�0;� ` }, it isnot di�cult to see that (a) implies(e) � 62 FV (A0!B0)Hence � 62 FV (A0) and thus, by �; ��A;�0 ` A00 � A0, (c), �;�0 ` }and point (1) of this lemma, we have that�;�0 `A00 � A0.Summing up, the binding ��A can be removed from the environment inall the premises of the rule, and thus by using rule (d! E) we concludethat �;�0;� d̀ f(a) : B0 is derivable. Moreover, by (e), � 62 FV (B0).32



Rules (8I) and (d8E) are treated analogously to (! I) and (d! E), respec-tively. This concludes the proof of the intermediate result.Now, suppose �; ��A;�0;� b̀ b : B derivable in F-bounded , �;�0;� ` }and � 62 FV (b) [ FV (B). By Theorem 5.6 there exists a derivation indF-bounded for �; ��A;�0;� d̀ b : B0, such that �; ��A;�0 ` B0 � B.Hence, by the property of dF-bounded just proved(y) � 62 FV (B0) (z) �;�0;� d̀ b : B0Since by hypothesis � 62 FV (B), by (y) and point (1) of this lemma, we have�;�0 `B0 � B. Therefore, by (z) and using subsumption, we conclude that�;�0;� b̀ b : B.3. Trivial induction on the structure of the derivation. 2It is worth remarking that the absence of a transitivity rule in dF-bounded playsa fundamental role, making the proof of point (1) extremely simple. Similarly, theproof of point (2) relies on the possibility of deriving a minimal type for a termin dF-bounded , without resorting to subsumption. In fact, notice that the propertyproved for dF-bounded in the proof of point (2) does not hold for the full system.For instance, ��Top; ���; x :�!� b̀ x : �!�, and, although the variable �does not occur free in x, it appears in its type �!�.A basic role in the proof of subject reduction is played by the substitutionlemma for types (Lemma 5.5). Furthermore an analogous substitution result forvalues is needed, stating that a value variable can be safely replaced by any termwith the appropriate type.Lemma 6.2 (value substitution) Let �;�; x :A;�0 b̀ b : B and let �;�;�0 b̀a : A. Then �;�;�0 b̀ b[x a] : B.Proof. The proof proceeds by induction on the structure of the derivation of�;�; x :A;�0 b̀ b : B and by cases on the last rule applied.� (Var) Let the last rule be:�;�; x :A;�0 b̀ } y 2 vars(�; x :A;�0)�;�; x :A;�0 b̀ y : B (Var)If y � x then by necessity A � B and therefore, since y[x a] = a, the desiredconclusion �;�;�0 b̀ a : A is already in the hypotheses. If, on the otherhand, y 6� x then (�;�0)(y) = B. Observing that �;�;�0 ` }, we conclude�;�;�0 b̀ y : B which is exactly the desired conclusion since y[x a] = y.� (! I) Let the last rule be:�;�; x :A;�0; y :A0 b̀ b0 : B0�;�; x :A;�0 b̀ �y:A0: b0 : A0!B0 (! I)33



Since we work with De Bruijn terms we can assume without loss of generalitythat x 6� y and thus that(�y:A0: b0)[x a] = �y:A0: b0[x a] (y)By the Subproof Lemma and Lemma 4.11, �;�;�0; y :A0 b̀ a : A. Hence,by inductive hypothesis �;�;�0; y :A0 b̀ b0[x a] : B0 and therefore, by rule(! I), we conclude that �;�;�0 b̀ �y:A0: b0[x a] : A0!B0. But, recalling(y), this is exactly what we wanted to prove.� (! E) Let the last rule be:�;�; x :A;�0 b̀ f : A0!B �;�; x :A;� b̀ a0 : A0�;�; x :A;�0 b̀ f(a0) : B (! E)By inductive hypothesis the judgements �;�;�0 b̀ f [x a] : A0!B and�;�;�0 b̀ a0[x a] : A0 are derivable. Therefore the desired conclusion�;�;�0 b̀ f [x a](a0[x a]) : B follows by rule (! E).� (Subs), (8I) and (8E) are treated as the previous case, by a direct use of theinductive hypothesis. In the case (8I), the �rst statement of Lemma 4.11 mustbe used. 2Subject reduction is an immediate consequence of the following lemmata, which,in turn, exploits the substitution lemmata for types and values (Lemma 5.5 andLemma 6.2) and the completeness of the deterministic version of F-bounded (The-orem 5.6).Lemma 6.3 Let � be a type environment and let � be a value environment. Then1. �;� b̀ (�x:A: b)(a) : B ) �;� b̀ b[x a] : B;2. �;� b̀ (���A: b)fA0g : B ) �;� b̀ b[� A0] : B;3. �;� b̀ �x:A: b(x) : B and x 62 FV (b) ) �;� b̀ b : B;4. �;� b̀ ���A: bf�g : B and � 62 FV (b) ) �;� b̀ b : B;Proof.1. By Theorem 5.6 there exists a derivation d :: �;� d̀ (�x:A: b)(a) : B0 indF-bounded such that � ` B0 � B. This derivation must have the followingshape: �;�; x :A d̀ b : B0�;� d̀ �x:A: b : A!B0 (! I) �;� d̀ a : A0 � `A0 � A�;� d̀ (�x:A: b)(a) : B0 (d! E)By using subsumption, from �;�; x :A d̀ b : B0 and � ` B0 � B we have�;�; x :A b̀ b : B, and, similarly, from �;� d̀ a : A0 and � `A0 � A we de-duce �;� b̀ a : A. Therefore, by Lemma 6.2, we conclude �;� b̀ b[x a] : B.34



2. By Theorem 5.6 there exists a derivation d :: �;� d̀ (���A: b)fA0g : B0 indF-bounded such that � ` B0 � B. This derivation must have the followingshape: �; ��A;� d̀ b : B00 � 62 FV (�)�;� d̀ (���A: b) : (8��A:B00) (8I) � `A0 � A[� A0]�;� d̀ (���A: b)fA0g : B00[� A0] (d8E)with B0 � B00[� A0].By �; ��A;� d̀ b : B00 and � `A0 � A[� A0] which appear in the deriva-tion, and using Lemma 5.5(2), we have that�;� b̀ b[� A0] : B00[� A0] � B0.Hence, by using subsumption we conclude �;� b̀ b[� A0] : B.3. By Theorem 5.6 there exists a derivation d :: �;� d̀ �x:A: b(x) : B0 indF-bounded such that � `B0 � B. The derivation d must have the followingshape:�;�; x :A d̀ b : D �!(D) = A0!C �;�; x :A d̀ x : A � `A � A0�;�; x :A d̀ b(x) : C (d!E)�;� d̀ �x:A: b(x) : A!C (!I)where B0 � A!C.By the Subproof Lemma 4.4 and reexivity rule we have � ` C � C,and using � ` A � A0 we deduce � ` A0!C � A!C . Recalling that� ` D � �!(D) and �!(D) = A0 ! C we conclude, by transitivityand subsumption, �;�; x :A b̀ b : A!C � B0, and, again by subsumption,�;�; x :A b̀ b : B. Now, since x 62 FV (b), by strengthening (Lemma 6.1(3)),we reach the desired conclusion �;� b̀ b : B.4. By Theorem 5.6 there exists a derivation d :: �;� d̀ ���A: bf�g : B0 indF-bounded such that � `B0 � B. The derivation d must have the followingshape:�; ��A;� d̀ b : D (�; ��A)8(D) = 8��A0: C�; ��A ` � � A0�; ��A;� d̀ bf�g : C (d8E) � 62 FV (�)�;� d̀ ���A: bf�g : 8��A:C (8I)where B0 � 8��A:C.By the Subproof Lemma 4.4 and reexivity rule we have � ` C � C , and us-ing �; ��A d̀ � � A0 we deduce � ` (8��A0: C) � (8��A:C). By Lemma4.10, �; ��A ` (8��A0: C) � (8��A:C). Therefore, as above, by subsump-tion we conclude �; ��A;� b̀ b : (8��A:C) and thus, by strengthening(Lemma 6.1(2)), since � 62 FV (b) [ FV (8��A:C) and �;� ` }, we have�;� b̀ b : (8��A:C). Recalling that B0 � 8��A:C and � ` B0 � B, byusing subsumption, we reach the desired conclusion. 235



Now, the theorem of subject reduction for F-bounded is an immediate corollaryof the previous lemma.Theorem 6.4 (subject reduction) Let a be a term in F-bounded. If b̀ a : Aand a ��� �a0 then b̀ a0 : A.7 Type Equivalence in system F-boundedTwo types mutually related by subtyping are equivalent in the sense that eachcan be substituted by the other one in any good formation, typing, or subtypingjudgement. Having just one type in each equivalence class generally makes a typesystem slightly easier to use and to understand, both for the programmer andfor the theoretician. For this reason, antisymmetry of subtyping is regarded as adesirable property.The subtype relation in F-bounded is not antisymmetric, namely, in general,� ` A � B and � ` B � A does not imply that A and B are (syntactically) thesame type. In other words subtype equivalence and (syntactical) equality of typesdo not coincide in F-bounded . For instance we have:��Top ` ���Top ` � � � (IdVar�) ��Top ` Top��Top ` Top � Top (Top�)` (8���:Top) � (8��Top:Top) (8�)and also the converse inequality holds:��� ` ���� ` � � Top (Top�) ��� ` Top��� ` Top � Top (Top�)` (8��Top:Top) � (8���:Top) (8�)The aim of this section is to characterize type equivalence in F-bounded and tosuggest how an antisymmetric subtype relation can be recovered. We will see thatthe above example is paradigmatic, in the sense that, as one would expect, twoequivalent types are syntactically the same type up to the replacement of boundsof the kind �� � with ��Top and vice versa. These considerations will lead tothe notion of standard type.Let us start by giving the formal de�nition of type equivalence. As pointed outabove, two types are equivalent if each one is a subtype of the other.De�nition 7.1 (type equivalence) Two types A and B are equivalent in �, writ-ten � `A � B, if � `A � B and � `B � A.The types A and B are called equivalent, written A � B, if there exists a typeenvironment � such that � `A � B.The existential quanti�cation over � in the above de�nition may sound strange.Indeed we will prove later that equivalence does not actually depend on the envi-ronment considered but only on the structure of the two types. Namely, wheneverA � B then � ` A � B for any environment � such that � ` A and � ` B(Corollary 7.7).A few simple remarks are in order:Proposition 7.2 Let � be a type environment, A;B types and let �; � be typevariables. Then: 36



1. if � `A � � then A is a type variable;2. � � � i� � � �;3. if �; ��A ` � � B and B 6� �;Top then �; ��A `A � B.Proof.1. Just consider the structure of a possible derivation of the judgement indF-bounded .2. Suppose that � � � (in the environment �) and � 6� �. Since � d̀ � � �there exists n > 0 such that �n(�) = � and thus � occurs before � inthe environment �. Therefore it cannot be the case that � d̀ � � �, thuscontradicting the hypothesis.Conversely, if � � � we immediately conclude by using the rule (IdVar �).3. Straightforward, by looking at the shape of the rule (TVar �). 2Let us introduce the notion of the standard form for a type. The basic ideais that a bound � � � is equivalent to a bound � � Top, since both essentiallycorrespond to an unbounded quanti�cation.De�nition 7.3 The standard form for a type A, denoted by std(A), is de�ned byinduction on the structure of A as follows:std(Top) = Top ;std(�) = �;std(A!B) = std(A)!std(B);std(8��A:B) = � 8��std(A): std(B) if A 6� �8��Top: std(B) if A � �We �rst prove that every type is equivalent to its standard form and that twotypes with the same standard form are equivalent.Lemma 7.4 Let � be a type environment and let A be a type. If � ` A then� `A � std(A).Proof. We prove by induction on the structure of A that � ` A � std(A) and� ` std(A) � A.� A � �;TopImmediate, by rule (Id �).� A � A0!A00Trivial induction.� A � 8��A0: A00The hypothesis � ` 8��A0: A00 implies that�; ��A0 `A0 and �; ��A0 `A0037



and thus, since FV (std(A)) = FV (A), we easily conclude that:�; ��std(A0) `A0 and �; ��std(A0) `A00.By inductive hypothesis we have:(1) �; ��A0 `A0 � std(A0) (3) �; ��std(A0) `A0 � std(A0)(2) �; ��A0 `A00 � std(A00) (4) �; ��std(A0) `A00 � std(A00)Now, if A0 6� �;Top then, by de�nition, std(A) = 8�� std(A0): std(A00) andstd(A0) 6� �;Top . Thus we can construct a derivation for � ` std(A) � A asfollows:�; ��A0 `A0 � std(A0)(1)A0 6� �;Top std(A0) 6� �;Top�; ��A0 ` � � std(A0) (TVar�) �; ��A0 ` std(A00) � A00(2)� ` (8��std(A0): std(A00)) � (8��A0: A00) (8�)and similarly for � `A � std(A):�; ��std(A0) ` std(A0) � A0(3)A0; std(A0) 6� �;Top�; ��std(A0) ` � � A0 (TVar�) �; ��std(A0) `A00 � std(A00)(4)� ` (8��A0: A00) � (8��std(A0): std(A00)) (8�)If A0 � Top or A0 � � we cannot use rule (TVar �), and in both casesstd(A) = 8� � Top: std(A00). The case A0 � Top, can be treated by sub-stituting the instances of rule (TVar �) in both derivations by instances ofrule (Top �). The case A0 � � is managed by replacing the instances of rule(TVar �) in the two derivations, by an instance of rule (Top �) in the �rstone and by an instance of (Id �) in the second one. 2Corollary 7.5 If � ` A, � ` B, and std(A) = std(B) then � ` A � B and thusA � B.Proof. By the previous lemma, � `A � std(A) and � ` std(B) � B. By std(A) =std(B) and by transitivity, � `A � B; hence A � B. 2We can now prove the inverse implication, namely the fact that equivalentF-bounded types have the same normal form. Here we make a crucial use of theresult of transitivity elimination. This explains why such a property, which is bynow easy, was claimed but not proved in previous works [Kat92, Ghe97].Proposition 7.6 Let A and B be types. If A � B then std(A) = std(B).Proof. Let � be an environment such that � `A � B, that is:� d̀ A � B and � d̀ B � A, (y)where the subtyping derivations are assumed to be in dF-bounded . We proceed byinduction on the structure of A. 38



� (A � �)In this case, by Proposition 7.2, we conclude B � �.� (A � Top)In this case, by Lemma 4.7, we conclude that B � Top.� (A � A0!A00)In this case B � B0 ! B00, since the last rules used in the derivations for(y) are necessarily instances of (!�). Moreover, from the shape of this, weimmediately get that � `A0 � B0 and � `A00 � B00. Therefore we concludeby inductive hypothesis.� (A � 8��A0: A00)Reasoning as above, the only rule that allows one to prove (y) is (8 �) andthus we have B � 8��B0: B00 and(a) �; ��B0 ` � � A0 (c) �; ��A0 ` � � B0(b) �; ��B0 `A00 � B00 (d) �; ��A0 `B00 � A00By Lemma 4.6, and (c), (b) we conclude that(e) �; ��A0 `A00 � B00.From (d) and (e) we have that A00 � B00 and therefore, by inductive hypoth-esis, std(A00) = std(B 00).Now, if A0 and B0 are both di�erent from � and Top then, by Proposition7.2, point (3) and (a), (c) we have(f) �; ��B0 `B0 � A0 and (g) �; ��A0 `A0 � B0.By (g), Lemma 4.6 and (a) we deduce(h) �; ��B0 `A0 � B0,and thus A0 � B0. Therefore, by inductive hypothesis std(A0) = std(B 0), andwe conclude std(A) = std(B).If, on the other hand, A0 � �;Top then the only rules that allow us to obtainthe conclusion (c) are (IdVar �) or (Top �) and thus B0 � � or B0 � Top.Summing up, and, reasoning by symmetry, we have that A0 � � or A0 � Topif and only if B0 � � or B0 � Top. Therefore, in this case too we concludestd(A) = (8��Top: std(A00)) = (8��Top: std(B 00)) = std(B). 2As an immediate corollary of the previous lemma and of Corollary 7.5, we obtainthe independence of type equivalence from the environment.Corollary 7.7 If A � B, � ` A and � `B, then � `A � B.The result of this section suggests a very simple way to obtain a formulationof F-bounded in which the subtyping relation is antisymmetric, which consists offorbidding types with shape 8� � �:A, where a type variable has the variableitself as bound. Such a system contains exactly one representative for each class ofequivalent F-bounded types. 39



Proposition 7.8 Let F-bounded strict be the system having the same rules asthose of F-bounded, but with the constraint that the bound of a variable must bedi�erent from the variable itself. Then the following facts hold.1. Conservativity: F-bounded is a conservative extension of F-bounded strict.2. Fullness: for any type A in F-bounded there exists A0 in F-bounded strictsuch that A � A0 (in system F-bounded).3. Antisymmetry: for any A, A0 in F-bounded strict, if A � A0 then A � A0.Proof. As for (1), just observe that any algorithmic derivation in F-bounded whichdoes not contain any � � � bound in the conclusion, does not contain any � � �bound anywhere else. To prove (2) let A0 be std(A). Finally (3) follows by observingthat A = std(A), A0 = std(A0) and that, by Proposition 7.6, std(A) = std(A0). 28 Other formulations of system F-boundedThe (sub)typing rules of F-bounded closely correspond to F� rules, with the onlyexception being (8 �). In fact, the most immediate generalization of the rule (8 �)of F� would be as follows:�; ��A0 `A0 � A �; ��A0 `B � B0� ` (8��A:B) � (8��A0: B0) (80 �)In this section we study the variant of F-bounded including rule (80 �) instead of(8 �) and we prove some properties �rst conjectured in [Kat92] and later in [Ghe97].More precisely, we �rst show that rule (80 �) is strictly less powerful than the (8 �)rule adopted in this paper. Then we prove that the two rules are equivalent if weeither forbid ��� bounds, or we add also the following rule to the system:�; ��� `A� ` (8���:A) � (8��Top: A) (8Top �)The next proposition shows that rule (80 �) above is strictly less expressivethan rule (8 �). In fact it does not allow one to prove, for example, the judgement` (8���:Top) � (8��Top:Top), which is derivable in F-bounded .Proposition 8.1 In a system obtained from F-bounded by substituting rule (8 �)with (80 �), one cannot prove the judgement � ` (8��A:B) � (8��Top: B0), forany choice of �, B, B0 and A 6� Top.Proof. We prove it by reduction ad absurdum. Suppose that derivations of suchjudgements exist in the system, and let k be the minimum height of such deriva-tions. A derivation of height k cannot end with an instance of (Trans �) rule,otherwise (at least) one of the two premises would have the desired shape and aderivation with a height smaller than k. In fact, it is easy to verify that the in-termediate type would have to be a 8 type with shape 8��A00: B00, and thus, ifA00 � Top then the left subderivation (or otherwise the right one) would have ajudgement of the desired shape as its conclusion. Hence the judgement must havebeen proved by rule (80 �). This implies that �; ��Top ` Top � A. Now, it is easy40



to see that Lemma 4.7 still holds for this variant of F-bounded (the proof remainsthe same since it does not depend on the formulation of rule (8 �)) and thereforewe conclude that A � Top, thus contradicting the hypothesis. 2We now show that equivalence can be regained by either restricting the typesor by adding the rule (8Top �) above. We �rst give a name to the systems corre-sponding to these di�erent choices.De�nition 8.2 (F-bounded� and F-bounded�) The system F-bounded� is ob-tained from F-bounded by replacing the rule (8 �) with (80 �) and adding the rule(8Top �).The system F-bounded� is obtained from F-bounded by replacing the rule (8 �)with (80 �) and forbidding ��� bounds, where a variable is a bound for itself.Notation 8.3 When necessary to avoid ambiguity, a judgement derivable inF-bounded� and F-bounded� will be respectively denoted asPre b̀� Concl and Pre �̀ ConclProposition 8.4 The systems F-bounded and F-bounded� are equivalent, i.e.,�;� b̀ a : A i� �;� b̀� a : AProof. Since the two systems have the same term formation rules, it is su�cientto show that for all subtyping judgements:� b̀ A � B i� � b̀� A � B()) Let us consider a derivation d :: � d̀ A � B in the deterministic systemdF-bounded .8 We show by induction on d that it can be transformed into a deriva-tion d� :: � b̀� A � B. We distinguish various cases according to the last ruleapplied in the derivation d.� (IdVar �), (!�), (Top �): Just notice that such rules are (instances of)F-bounded� rules, and apply the inductive hypothesis to the premises.� (TVar �) The derivation is of the kindd0� d̀ �(�) � B B 6� �;Top �(�) 6= �;Top� d̀ � � B (TVar�)By inductive hypothesis we can obtain the F-bounded� derivation d0� andthus: � ` }� b̀� � � �(�) (Var�) d0�� b̀� �(�) � B� b̀� � � B (Trans�)� (8 �) The derivation is of the kind8Basically the same proof can be carried out within the non deterministic version.41



d1�; ��A0 d̀ � � A d2�; ��A0 d̀ B � B0� d̀ (8��A:B) � (8��A0: B0) (8�)We distinguish three cases, according to the shape of the type A and in eachcase we give the F-bounded� derivation for � b̀� (8��A:B) � (8��A0: B0){ (A � Top)�; ��A0 b̀� A0�; ��A0 b̀� A0 � Top (Top�) d2��; ��A0 b̀� B � B0 (ind:hyp:)� b̀� (8��Top: B) � (8��A0: B0) (80�){ (A � �) �; ��� b̀� B� b̀� (8���:B) � (8��Top: B) (8Top�) d� b̀� (8���:B) � (8��A0: B0) (Trans�)where d is the derivation of the previous case.{ (A 6� �;Top)In this case the derivation d1 is necessarily of the kind:d01�; ��A0 d̀ A0 � A�; ��A0 d̀ � � A (TVar�)Therefore we can construct the F-bounded� derivation:d01��; ��A0 b̀� A0 � A (hyp:ind) d2��; ��A0 b̀� B � B0 (ind:hyp:)� b̀� (8��A:B) � (8��A0: B0) (80�)(() Just notice that all F-bounded� rules are also F-bounded rules, with theexception of (80 �) and (8Top �) rules which can be transformed into F-boundedderivations with the same premises and conclusion. For the (80 �) rule the corre-sponding derivation is:�; ��A0 ` }�; ��A0 b̀ � � A0 (Var�) �; ��A0 b̀ A0 � A�; ��A0 b̀ � � A (Trans�) �; ��A0 b̀ B � B0� b̀ (8��A:B) � (8��A0: B0) (8�)while for the (8Top �) rule the corresponding derivation is:�; ��Top b̀ ��; ��Top b̀ � � � (Id�) �; ��Top b̀ A�; ��Top b̀ A � A (Id�)� b̀ (8���:A) � (8��Top: A) (8�)It would be easy to show, by exploiting the Subproof Lemma 4.4, that all the goodformation premises in the two derivations hold. 2Since not all F-bounded judgements are acceptable in F-bounded�, we cannotprove the equivalence of the two systems, but only that the �rst one is a conservativeextension of the second one. 42



Proposition 8.5 The system F-bounded is a conservative extension of the systemF-bounded�, i.e., �;� b̀ a : A i� �;� �̀ a : Afor any judgement �;� ` a : A not containing ��� bounds.Proof. Since the two systems have the same term formation rules, it su�ces toshow that: � b̀ A � B i� � �̀ A � Bfor any F-bounded� judgement � `A � B.The proof is very similar to that of Proposition 8.4. In the ()) part the onlydi�erence is that, for the (8 �) rule, the case A � � cannot arise since F-bounded�judgements do not contain �� � bounds. Thus the (8Top �) rule is not needed.As for the (() part, it su�ces to remove the treatment of the rule (8Top �). 2To conclude we remark that the alternative formulations analyzed in this sectiondi�er essentially in the treatment of the ��� bound. If one believes that the ���bound should be considered di�erent from the ��Top bound, then the system ofchoice should contain the (80 �) rule and no (8Top �) rule. This system is strictlyless expressive than F-bounded , but its subtype relation is antisymmetric (the proofof this fact is simple, but it does not appear in this paper). If one believes that the��� bound is just an equivalent way of expressing the ��Top constraint, the mostreasonable choice is to disallow this kind of bound altogether, namely F-bounded�is the right system. In this way, the system obtained is antisymmetric and no typeis lost, i.e., for every F-bounded type there is (exactly) one equivalent type with no��� bounds. Moreover, with this limitation, the two di�erent formulations of the8 subtyping rule turn out to be equivalent. Finally, if one is interested in studyingthe variant where the greatest amount of terms can be written down and typed,the one we called F-bounded is the system of choice.9 Conservativity with respect to F�In this section we show that F-bounded is a conservative extension of F�. As anoutcome, two results proved in the literature for F�, namely undecidability of(sub)typing [Pie94] and non-conservativity of strong recursive types [Ghe93], canbe easily extended to F-bounded .We consider here the algorithmic version AlgF� of F�, as de�ned in [CG92]. Asdiscussed in the introduction, system F� di�ers from F-bounded essentially becausethe �rst one does not allow a type variable to occur in its own bound. Formally,the operation FV� that gives back the free variables of a type is de�ned as inSubsection 3.2, with the exception of the clause for the 8 types, which becomesFV�(8��A:B) = FV�(A) [ (FV�(B) n f�g).Referring to Section 3, the de�nitions of types, terms, environments, and judge-ments are the same. The rule (TEnv) changes as follows.� ` } FV�(A) � vars(�)�; ��A ` } (TEnv sub)43



Finally, the subtyping and typing rules are the same as those of dF-bounded , thealgorithmic version of F-bounded (De�nitions 4.1 and 5.3), with the exception ofthe subtyping rule for 8 types and the rule of 8 elimination which change as follows.� `A0 � A �; ��A0 `B � B0� ` (8��A:B) � (8��A0: B0) (8 � sub)�;� ` f : B �8(B) = 8��A:B0 � ` A0 � A�;� ` ffA0g : B0[� A0] (8E sub)Notation 9.1 When necessary to avoid ambiguity, a judgement derivable in(Alg)F� will be denoted as Pre �̀ Concl .The �rst basic property to observe about system F� is the fact that, if A0 � A00can be derived in an environment �; ��A, and � does not occur free either in A0 orin A00, then the result can be strengthened by removing the hypothesis ��A fromthe environment. A similar result has already been proved for system F-boundedin Lemma 6.1.Lemma 9.2 Let �; ��A �̀ A0 � A00 and suppose � 62 FV (A0) [ FV (A00). Then� �̀ A0 � A00.Proof. Trivial induction. 2The main di�erence between the algorithmic versions of F-bounded and F�resides in the �rst premise of the (8 �) rule; hence the next lemma is the key ofthe conservativity proof. It states essentially that the two premises are equivalentif we restrict ourselves to F� types.Lemma 9.3 If �; ��A �̀ � � A0 and � 62 FV (A0) then � �̀ A � A0Proof. Let us consider the last rule applied in the derivation. It can be neither(IdVar �), otherwise A0 � �, nor (!�), nor (8 � sub). Therefore only two cases canarise:� (TVar �) In this case the derivation has the shape:d0�; ��A �̀ A � A0�; ��A �̀ � � A0 (TVar�)By F� notion of well-formedness for type environments, � 62 FV (A) and byhypothesis � 62 FV (A0). Hence, by Lemma 9.2, d0 :: �; ��A �̀ A � A0 canbe strengthened to d00 :: � �̀ A � A0.� (Top �) In this case A0 � Top and the derivation has the shape:�; ��A �̀ ��; ��A �̀ � � Top (Top�)44



By �; ��A �̀ }, we have � �̀ } and FV (A) � vars(�). Therefore � �̀ Aand the desired derivation can simply be:� �̀ A� �̀ A � Top (Top�) 2Observing that the rules de�ning well-formedness in F� are weaker than theones in F-bounded , one can prove the following simple results.Lemma 9.4 Let � be a type environment and let A be a type;1. if � �̀ } then � b̀ };2. if � �̀ A then � b̀ A.We now have all the necessary ingredients to prove the conservativity result forsubtyping and typing.Lemma 9.5 (conservativity of subtyping) Let � �̀ A and � �̀ B. Then:� �̀ A � B i� � b̀ A � BProof.()) We proceed by induction on the size of the derivation and by cases on thelast rule applied. For cases (IdVar �) and (Top �), recall that these are (instancesof) F-bounded rules and use Lemma 9.4. Similarly, for cases (TVar �) and (!�)use the fact that such rules are in F-bounded and apply the inductive hypothesis.Finally, if the last rule is (8 � sub), the shape of the derivation is:� �̀ A0 � A �; ��A0 �̀ B � B0� �̀ (8��A:B) � (8��A0: B0) (8 � sub)By induction, � �̀ A0 � A implies � b̀ A0 � A, and thus, by Weakening Lemma4.10, �; ��A0 b̀ A0 � A. Moreover, by induction �; ��A0 �̀ B � B0 implies�; ��A0 b̀ B � B0. The thesis follows by rule (80 �), which is provable in systemF-bounded by Proposition 8.4:�; ��A0 b̀ A0 � A �; ��A0 b̀ B � B0� b̀ 8��A:B � 8��A0: B0 (80 �)(() It is convenient to consider the deterministic version dF-bounded of systemF-bounded . Cases (IdVar �) and (Top �) are dealt with by the well-formednesshypothesis of � ` A � B in F�. Cases (TVar �) and (!�) are dealt with byinduction. Finally, let the last rule be (8 �):�; ��A0 b̀ � � A �; ��A0 b̀ B � B0� b̀ 8��A:B � 8��A0: B0 (8 �)By induction, �; ��A0 b̀ � � A implies �; ��A0 �̀ � � A, and thus, by Lemma9.3, � �̀ A0 � A. Notice that Lemma 9.3 can be applied since A is a bound for �,therefore, by de�nition of F� types, � 62 FV (A). By induction, �; ��A0 b̀ B � B0implies �; ��A0 �̀ B � B0. Hence we can prove the thesis as follows:45



� �̀ A0 � A �; ��A0 �̀ B � B0� �̀ (8��A:B) � (8��A0: B0) (8� sub) 2The conservativity of typing is now an easy corollary.Theorem 9.6 (conservativity of typing) Let �;� ` a : A be any well-formedF� typing judgement. Then:�;� �̀ a : A i� �;� b̀ a : AProof. Again it is convenient to consider the deterministic version dF-bounded ofthe system F-bounded . The basic remark is that, if 8��A:B and 8��A0: B0 are(Alg)F� types, i.e., � does not occur (free) in the bounds A and A0 thus the rule(d8E) of dF-bounded coincides with (8E) sub in AlgF�. This shows that a derivationin AlgF� is also a derivation in dF-bounded and thus proves ()).As for ((), it su�ces to notice that in each F-bounded rule, if the conclusion is awell-formed F� judgement (type variables do not appear in their bounds) then thejudgements in the premises are well-formed as well. Then, an inductive reasoningthat uses the above remark allows us to conclude. 2The undecidability of (sub)typing, proved in [Pie94] for system F�, can now beextended to system F-bounded .Corollary 9.7 Subtyping is not decidable for system F-bounded.Proof. Subtyping is undecidable for system F�, and, by Theorem 9.5, any algo-rithm for system F-bounded subtyping would also decide F� subtyping. 2We can also easily prove the non-conservativity of strong recursion forF-bounded subtyping, by extending a similar result given in [Ghe93] for systemF�. For the sake of brevity we only sketch the essential constructions. The inter-ested reader can �nd more details in [Ghe93].A common abstract notation for recursive types is �X:A, where X is a (recur-sion) type variable typically occurring in type A (recursive types are de�ned in mostreal languages via a construct of the form let rec X = A). We can distinguish two(families of) approaches to type level recursion, usually referred to as weak recursionand strong recursion. In the strong approach the type �X:A is seen as the only solu-tion of the equationX = A. Therefore the type equality �X:A = A[X �X:A] holdsin a \strong" sense (see [AC93, CG99]). The weak approach, on the other hand,only provides a couple of functions fold�X:A: A[X �X:A]!�X:A and unfold�X:A:�X:A!A[X �X:A] which allow the programmer to pass explicitly from a recur-sive type to its unfolding and vice versa [GMW79, AC96b]. The weak approachmakes type and subtype checking very simple. The strong approach, instead, iseasier for programmers to use, but makes subtype checking much more challeng-ing; intermediate approaches are investigated in [Ghe93]. The non-conservativityresult applies to strong recursion as well as to some intermediate approaches.Let �F-bounded be any extension of system F-bounded with recursion variablesnamed X;Y; : : : and with a constructor �X:B for type recursion, such that thefollowing rules are admissible (i.e., they express a deduction which can actually beproved in �F-bounded). Observe that such rules are admissible in any transitive46



system with strong recursion, but they are actually weaker than strong recursion(see [AC93, Ghe93]).� `A[X �X:A] � B� ` �X:A � B (unfold� l �) � ` B � A[X �X:A]� `B � �X:A (unfold� r �)Consider now the following types, where �A stands for A!Top , and 8�:A abbre-viates 8��Top: A. B � 8�:�8�0��:��A � 8��B: �A0 � 8��B:8�0��:��R � 8��B: �X:8�0�X:�XThe paper [Ghe93] shows that, in system F�, the type A is not a subtype ofA0; by Theorem 9.5 the same holds in system F-bounded . Now, in [Ghe93] it isalso proved that both ` A � R and ` R � A0 can be derived in any extensionof system F� where the two unfold rules above are admissible, hence they are alsoderivable in any extension of system F-bounded where the same unfold rules areadmissible. Therefore we obtain the following corollary.Corollary 9.8 (non-conservativity of recursion) There exist two types A andA0 such that ` A � A0 does not hold in system F-bounded, while it holds in anyextension of the system with a constructor �X:B for type recursion and where thesubtype relation is transitive and the two rules (unfold� l �) and (unfold� r �) areadmissible.The paper [Ghe93] also contains a limitation of non-conservativity result. Letus say that � ` A � A0 is a non-conservative F� judgement if it does not containrecursive types, it does not hold in pure F�, but it is derivable in the extended sys-tem obtained by adding recursion and the two unfold rules to F�. The \limitation"result shows that every non-conservative F� judgement makes the standard sub-type checking algorithm diverge; this is very interesting since we know from [Ghe95]that only \very special" judgements diverge. We conjecture that the same limita-tion result can be proved for system F-bounded too, but we leave this as an openproblem.10 PER semanticsThe semantic interpretation that we propose for system F-bounded is obtainedby adapting the semantics of system F�, based on partial equivalence relations,�rst de�ned in [BL90] (see also [CL91, CMMS94, Ghe90]). Let h!; :i be Kleene'sapplicative structure, i.e., for i; n 2 !, i:n denotes the application of the ith functionin a G�odel numbering, to the argument n.9 A partial equivalence relation (p.e.r.)p on ! is a transitive and symmetric relation on !. A p.e.r. p can then be seenas an equivalence on the set fn 2 ! : n p ng which is called its domain dom(p).The quotient dom(p)=p is denoted by Q(p), namely Q(p) = f[n]p : n 2 dom(p)g.We will often manipulate p.e.r.'s as sets of pairs, in particular by writing p � q fori p j ) i q j, and p \ q for fhi; jij i p j ^ i q jg.9Any other combinatory algebra would be appropriate.47



In this approach a type A is interpreted as a p.e.r. JAK. The idea is that thepossible values of type A are the elements in dom(JAK) and if iJAKj then i; j repre-sent values in JAK which cannot be discriminated by using the operations allowedon type A. Terms are then interpreted as equivalence classes. The interpretationis required to be sound with respect to the (sub)typing system, namely if a : A isprovable, then Ja : AK must be a value in JAK (an equivalence class in Q(JAK)), andif A � B then JAK � JBK, i.e., iJAKj ) iJBKj. Notice that the inclusion betweenJAK and JBK expresses at the same time two basic intuitions about subtyping: thefact that every element of the subtype also belongs to the supertype (domain inclu-sion) and the fact that every function which can be used to discriminate elementsof the supertype U can also be used to discriminate elements of the subtype T(namely, :(iJBKj)) :(iJAKj)).To deal with free variables, we �rst interpret a judgement �;� ` } as the setof all well-typed assignments to the variables in �;�, and then we interpret a well-typed term �;� ` a : A by a function from J�;� ` }K to J� `AK, i.e., a functionwhich associates a value with any possible assignment of values to free variables. Inthe same way, a type � `A is interpreted by a function J� `AK which associates ap.e.r. J� `AK with each assignment  of p.e.r.'s to the type variables. Speci�cally,J� ` TopK is always the total p.e.r. ! � !, which contains all values, but all ofthem are equivalent. To interpret arrow types, we �rst de�ne the operator ( ! )on p.e.r.'s: if p; q are p.e.r.'s, theni(p! q)j , 8m;n: m p n) i:m q j:ni.e., two integers are related by (p! q) if they are the indexes of two functions whichmap p-related values to q-related values. Then, the interpretation J� ` A!BK issimply de�ned as (J� `AK ! J� ` BK). Finally, a universal type 8��A:B isinterpreted as the intersection of all JB[�]K's, when � ranges over all the p.e.r.'s suchthat � � JA[�]K (the formal de�nition is given later). The use of an intersection,rather than a function type, expresses the fact that the type parameter does nothave any role in the computation, but is only used for type checking purposes.Hence, a term of type 8��A:B is not really interpreted as a function which takesa p.e.r. � and gives back a value in JB[�]K, but is just a constant value which isin every JB[�]K, regardless of what � really is. This essential property, which is atthe base of most compilation techniques of polymorphic languages, is usually called\parametricity".Notation 10.1 In the following, p.e.r's will be denoted by p and equivalenceclasses in Q(p) by v, possibly with subscripts. Finally, given a function f : X ! Y ,x0 2 X and y0 2 Y we denote by f [x0 7! y0] the function from X to Y de�ned asf [x07!y0](x) = f(x) if x 6= x0 and y0 otherwise.The following proposition introduces some properties of the (! ) operator andof p.e.r.'s intersections which will be used hereafter.Proposition 10.2 1. Let p1; p2 be two p.e.r.'s; then the relation (p1 ! p2)de�ned for all i; j 2 !:i(p1 ! p2)j i� 8n;m: n p1 m) i:n p2 j:m,is a p.e.r.; moreover, if p01 � p1 and p2 � p02 then (p1 ! p2) � (p01 ! p02).48



2. Let fpigi2I be a collection of p.e.r.'s; the relation Ti2I pi is a p.e.r., with(a) dom(Ti2I pi) = Ti2I dom(pi);(b) Q(Ti2I pi) = fTi2I vi : fvigi2I 2 �i2IQ(pi) ^ Ti2I vi 6= ;g.10Since in case (2) the notation is a little complex, the reader could get some clearerideas by considering the binary case, namely the intersection of two p.e.r.'s p1 andp2, which is a p.e.r. with domain dom(p1 \ p2) = dom(p1) \ dom(p2) and classesQ(p1 \ p2) = fv1 \ v2 : for all hv1; v2i 2 Q(p1)�Q(p2) such that v1 \ v2 6= ;g.Semantics of types and environmentsWe are now ready to give the actual semantics. As discussed before, to give asemantics to a type or term containing free variables, we must specify a suitablesemantic assignment to its variables. This is formalized by the notions of semantictype environment and value type environment. A semantic type environment is afunction  which associates a p.e.r. on ! with each type variable: : TypeVar! PER,where PER denotes the set of all p.e.r.'s on !. A semantic value environment �associates with each value variable a subset of ! to be interpreted as an equivalenceclass with respect to the p.e.r. denoted by the type of the variable:� : ValVar! P(!)Type judgements are interpreted as functions which, given a semantic environ-ment , return the p.e.r. denoted by the type, where free variables are interpretedaccording to .J� ` TopK = ! � !J�0; ��A;�00 ` �K = (�)J� ` A!BK = (J� `AK ! J� `BK)J� ` 8��A:BK = Tp�J�;��A`AK[�7!p]J�; ��A `BK[�7!p]Since the semantics of � ` A does not depend on �, we will often write JAK forJ� `AK.We say that a semantic environment  satis�es a (syntactic) environment � ifthe assignment to the variables in � are consistent with the constraints imposedby type bounds on type variables and typing on value variables. First, the notionof semantic type environment  satisfying a (syntactic) environment �, written j= �, is de�ned inductively as follows: j= � j= �; ��A if  j= � and (�) � JAKGiven  j= �, the notion of a semantic value environment satisfying �;�, written; � j= �;� is de�ned inductively as follows:; � j= �; � if  j= �; � j= �;�; x :A if ; � j= �;� and �(x) 2 Q(JAK):10The notation fvigi2I 2 �i2IQ(pi) means that 8i 2 I: vi 2 Q(pi).49



Syntactic environments are interpreted by the sets of semantic environmentswhich represent well-typed assignments to all the type and value variables in the en-vironment (to simplify the notation we write J�;�K instead of J�;� ` }K). There-fore J�K = f :  j= �gJ�;�K = fh; �i : ; � j= �;�gNotice that the semantics of �; � � A depends on the semantics of the type Awhere � may occur free, namely, expanding the notation, on the semantics of ajudgement �; ��A `A. However, the fact that the environment �; ��A appearsin this judgement does not create any circularity in the de�nition, since as alreadynoticed, the interpretation of types does not depend on (the interpretation of)environments.Semantics of termsThe interpretation of well-typed terms is given by induction on the typing deriva-tion, and by cases on the last rule applied. For this reason, we should use a notationlike JdKh; �i, where d is a notation for a typing derivation. However, to keep thingssimple, we do not write the full derivation as the argument of the semantic functionbut just the proved judgement, and in the next de�nition we assume that the pre-decessors of the �nal judgement are the same as in the presentation of Section 3.We will later prove a coherence theorem which states that indeed our interpretationonly depends on the proved judgement, hence justifying the notation.Notice that, in cases (Subs), (! E) and (8E), the interpretation is built asS[i]JBK , where B is the type of the term and i ranges over a suitable set ofintegers. The idea is that all the i's should belong to the same equivalence classand thus it would be su�cient to take the equivalence class of only one of them;but this fact will be proved only later, in Theorem 10.11. This result will alsoimply that in cases (Subs), (8I) and (8E) the interpretation can be obtained bychoosing any element i in the equivalence class interpreting the main premise, andchanging only the p.e.r. where its equivalence class is considered. This fact hasan interesting practical interpretation: if every term is compiled to an index inits equivalence class, then no code needs to be generated for subsumption, secondorder abstraction and second order application. This is what usually happens inactual implementations.De�nition 10.3 A typing derivation is interpreted by a subset of ! de�ned asfollows.
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(Var) J�; x1 :A1; : : : ; xn :An ` xi : AiKh; �i= �(xi)(Subs) J�;� ` a : BKh; �i= S[i]JBK, for i 2 J�;� ` a : AKh; �i(! I) J�;� ` �x:A: b : A!BKh; �i= fi 2 ! j 8v 2 Q(JAK); 8j 2 v; i:j 2 J�;�; x :A ` b : BKh; �[x7!v]ig(! E) J�;� ` f(a) : BKh; �i= S[i:j]JBK; for i 2 J�;� ` f : A!BKh; �i; j 2 J�;� ` a : AKh; �i(8I) J�;� ` ���A: b : 8��A:BKh; �i= Tp�JAK[�7!p]J�; ��A;� ` b : BKh[�7!p]; �i(8E) J�;� ` ffA0g : B[� A0]Kh; �i= S[i]JB[� A0]K ; for i 2 J�;� ` f : 8��A:BKh; �iIt is not di�cult to prove that the above semantics is well-de�ned.Theorem 10.4 (de�nition) If � ` A then JAK is a uniquely de�ned p.e.r. If� ` }, then J�K is a uniquely de�ned semantic type environment. If �;� ` }, thenJ�;�K is a uniquely de�ned semantic value environment. If d proves �;� ` a : A,and h; �i 2 J�;�K then JdKh; �i is a uniquely de�ned subset of !.Proof. For types, the fact that JAK is well-de�ned for any semantic type environ-ment  can easily be proved by using Proposition 10.2. In particular notice that theintersection of a set of p.e.r.'s is a p.e.r., and that at least the empty p.e.r. satis�esthe condition p � J�; ��A ` AK[�7!p]. For environments, no doubts should arise.For derivations, the semantics has been de�ned in such a way that it is always awell-de�ned set of integers by construction. The price to pay for this is that, inprinciple, it is not obvious that this set is not empty, and that it is an equivalenceclass of the corresponding type (Theorem 10.11). 2The �rst basic property enjoyed by the proposed semantics is the soundnessof subtyping, namely the fact the subtyping relation on types has set-theoreticalinclusion as a semantical counterpart.Theorem 10.5 (soundness of subtyping) If � ` A � B, then, 8 2 J�K, wehave JAK � JBK.Proof. By induction on the structure of the derivation of � `A � B and by caseson the last rule applied. In the cases (Id �) and (Trans �) we simply use reexivityand transitivity of subset inclusion. For (Top �) just notice that JTopK = ! � !is the greatest p.e.r.. The case (Var �) follows directly from the de�nition of thesemantics of environments and for (!�) we use the property of the function spaceoperator stated in Proposition 10.2(1).The interesting case is rule (8 �). Suppose that the last rule applied in thederivation is �; ��A0 ` � � A �; ��A0 `B � B0� ` (8��A:B) � (8��A0: B0) (8 �)Let  2 J�K; we have to prove that 51



Tp�JAK[�7!p]JBK[�7!p] � Tp�JA0K[�7!p]JB0K[�7!p]:By inductive hypothesis we know that:1. p � JA0K[�7!p] ) p � JAK[�7!p]2. p � JA0K[�7!p] ) JBK[�7!p] � JB0K[�7!p]From 1, 2 we deduce 1, 2 below, and thus we conclude by transitivity of subsetinclusion.1. Tp�JAK[�7!p]JBK[�7!p] � Tp�JA0K[�7!p]JBK[�7!p]2. Tp�JA0K[�7!p]JBK[�7!p] � Tp�JA0K[�7!p]JB0K[�7!p] 2We next introduce untyped lambda terms and we interpret in the obvious wayeach untyped term (in a given variable environment) with a computable function.Then we show that the meaning of a typed term can be nicely characterized byusing the function associated with its erasure. Such a result will allow us to easilyconclude the soundness of typing and coherence results.De�nition 10.6 (untyped �-terms) The set � of untyped lambda terms is de-�ned by the following grammar, where x denotes a generic value variable:U ::= x j U(U) j �x: UUntyped terms will be denoted by u, possibly with subscripts.De�nition 10.7 (erasure) Let a be an F-bounded term. The erasure of a is the(untyped) term erase(a) 2 � de�ned as follows:erase(x) = xerase(�x:A: b) = �x: erase(b)erase(f(a)) = erase(f)(erase(a))erase(���A: b) = erase(b)erase(bfAg) = erase(b)De�nition 10.8 For any untyped term u 2 � and variables x1; : : : ; xn, such thatFV (u) � fx1; : : : ; xng, we de�ne a function F x1;:::;xnu : INn ! IN as follows: for alli1; : : : ; in 2 IN :F x1;:::;xnxk (i1; : : : ; in) = ikF x1;:::;xn�xn+1: u(i1; : : : ; in) = a G�odel index for the functionin+1 7! F x1;:::;xn;xn+1u (i1; : : : ; in; in+1)F x1;:::;xnu1(u2) (i1; : : : ; in) = F x1;:::;xnu1 (i1; : : : ; in):F x1;:::;xnu2 (i1; : : : ; in)One can easily see that each F x1;:::;xnu is well-de�ned11 and computable. This can beproved inductively, by observing that in the �rst clause we just de�ne the projection11Not uniquely, due to the existence of (in�nitely) many indexes for the same computablefunction. 52



on the kth component, by using the s-m-n theorem from computability for thesecond clause and the existence of a universal computable function for the thirdone.12A simple technical lemma, regarding the e�ect of substitution at a semanticlevel for types and terms will be needed in the following.Lemma 10.9 (semantic substitution) 1. Let �; ��A;�0 ` B and�;�0[� A0] `A0. Then, for any semantic type environment  we haveJBK[�7!JA0K] = JB[� A0]K2. Let �;�; x :A;�0 ` b : B and �;�;�0 ` a : A. Then, for any h; �i 2J�;�;�0K we have:J�;�;�0 ` b[x a] : BKh; �i = J�;�; x :A;�0 ` b : BKh; �[x7!v]i,where v = J�;�;�0 ` a : AKh; �iProof. Both points are proved by straightforward induction (on the structure ofthe type B and of the term b, respectively). 2The next result essentially asserts that the interpretation of typed terms can beobtained from the above interpretation of untyped terms, by taking the quotientwith respect to the corresponding type. It immediately implies the soundness oftyping and the coherence result for the semantics.Lemma 10.10 Let d be a derivation of �;� ` a : A in F-bounded, where� � x1 : A1; : : : ; xn : An, and let h; �i 2 J�;�K. Then choosing ik 2 �(xk) fork 2 f1; : : : ; ng, we haveJdKh; �i = [F x1;:::;xnerase(a) (i1; : : : ; in)]JAK :Proof. Let h; �i 2 J�;�K and let ik 2 �(xk) for k 2 f1; : : : ; ng. The proof proceedsby induction on the structure of the derivation d and by cases according to the lastrule used in the derivation d. As usual, we do not indicate the entire derivation asthe argument of the semantic function J�K but only the proved judgement.� (Var) Let the last rule be: �;� ` }�;� ` xk : Ak (Var)where � is �0; xk :Ak;�00. Then, by de�nition of the semantics of environ-ments, �(xk) 2 Q(JAkK) and, since ik 2 �(xk), we have �(xk) = [ik]JAkK .Hence J�;� ` xk : AkKh; �i= �(xk)= [ik]JAkK= [F x1;:::;xnxk (i1; : : : ; in)]JAkK12Kleene application is intended to be unde�ned when one of the two argumentsis unde�ned, and thus, if 	U : IN2 ! IN is the universal function thenFx1;:::;xnu1 (i1; : : : ; in):Fx1;:::;xnu2 (i1; : : : ; in) is 	U (Fx1;:::;xnu1 (i1; : : : ; in); Fx1;:::;xnu2 (i1; : : : ; in)).53



F x1;:::;xnxk being the projection on the kth argument. Recalling thaterase(xk) = xk we can conclude.� (Subs) Let the last rule be:�;� ` a : A � `A � B�;� ` a : B (Subs)By soundness of subtyping (Lemma 10.5), since � `A � B,JAK � JBK: (1)Moreover, by induction hypothesis,J�;� ` a : AKh; �i = [F x1;:::;xnerase(a) (i1; : : : ; in)]JAK : (2)ThereforeJ�;� ` a : BKh; �i= Si2J�;�`a:AKh;�i[i]JBK= [i]JBK for any i 2 J�;� ` a : AKh; �i[by (1) and (2)]= [F x1;:::;xnerase(a) (i1; : : : ; in)]JBKThe last step uses the fact that F x1;:::;xnerase(a) (i1; : : : ; in) 2 J�;� ` a : AKh; �i,by (2).� (! I) Let the last rule be: �;�; x :A ` b : B�;� ` �x:A: b : A!B (! I)For any v 2 Q(JAK), by de�nition of the semantics of environments,h; �[x7!v]i 2 J�;�; x :AK. Therefore, by inductive hypothesis, choosing anyi 2 v, J�;�; x :A ` b : BKh; �[x7!v]i = [F x1;:::;xn;xerase(b) (i1; : : : ; in; i)]JBKNow, by de�nition of F x1;:::;xnu , for any v 2 Q(JAK) and i 2 v, if we de-�ne i� = F x1;:::;xn�x: erase(b)(i1; : : : ; in), we have that i�:i = F x1;:::;xn;xerase(b) (i1; : : : ; in; i).Therefore recalling the de�nition of the semantics of �-abstractioni� 2 J�;� ` �x:A: b : A!BKh; �iBy de�nition of JA!BK, any other index j 2 [i�]JA!BK is in the semanticsof the abstraction, and vice versa. Thus we concludeJ�;� ` �x:A: b : A!BKh; �i = [i�]JA!BK ,which is the desired result, since i� = F x1;:::;xn�x: erase(b)(i1; : : : ; in) anderase(�x:A: b) = �x: erase(b). 54



� (! E) Let the last rule be:�;� ` f : A!B �;� ` a : A�;� ` f(a) : B (! E)By inductive hypothesis, if we de�ne if = F x1;:::;xnerase(f) (i1; : : : ; in) and ia =F x1;:::;xnerase(a) (i1; : : : ; in), we have thatJ�;� ` f : A!BKh; �i = [if ]JA!BK and J�;� ` a : AKh; �i = [ia]JAKNow, since if 2 dom(JA!BK), and ia 2 dom(JAK), by the de�nition ofJA!BK we have that if :ia 2 dom(JBK).Moreover, exploiting the inductive hypothesis and the fact that JA!BK =(JAK ! JBK), we have that, for any other i0f 2 J�;� ` f : A!BKh; �iand i0a 2 J�;� ` a : AKh; �i, i0f :i0a(JBK)if :ia. Therefore:J�;� ` f(a) : BKh; �i= S[i0f :i0a]JBK , for i0f 2 J�;� ` f : A!BKh; �iand i0a 2 J�;� ` a : AKh; �i= [if :ia]JBK= [F x1;:::;xnerase(f) (i1; : : : ; in):F x1;:::;xnerase(a) (i1; : : : ; in)]JBK= [F x1;:::;xnerase(f)(erase(a))(i1; : : : ; in)]JBK ,that is what we want, since erase(f(a)) = erase(f)(erase(a)).� (8I) Let the last rule be:�; ��A;� ` b : B � 62 FV��;� ` ���A: b : 8��A:B (8I)Let p be any p.e.r. such that p � JAK[�7!p] and thus [�7!p] j= �; ��A.Then, by inductive hypothesis, if we denote with ib = F x1;:::;xnerase(b) (i1; : : : ; in)13,we have that J�; ��A;� ` b : BKh[�7!p]; �i = [ib]JBK[�7!p]Therefore, by de�nition of the semantics of terms we haveJ�;� ` ���A: b : 8��A:BKh; �i= Tp�JAK[�7!p]J�; ��A;� ` b : BKh[�7!p]; �i= Tp�JAK[�7!p][ib]JBK[�7!p]13Notice that ib is independent from p. 55



Recalling the de�nition of J8��A:BK and exploiting the fact that equiva-lence classes of a p.e.r. obtained as the intersection of a family of p.e.r.'s arethe (non-empty) intersections of classes of the original p.e.r.'s (see Proposi-tion 10.2(2)), we conclude from the above thatJ�;� ` ���A: b : 8��A:BKh; �i = [ib]J8��A:BKwhich is exactly the desired result since ib = F x1;:::;xnerase(b) (i1; : : : ; in) anderase(b) = erase(���A: b).� (8E) Let the last rule be:�;� ` f : 8��A:B � ` A0 � A[� A0]�;� ` ffA0g : B[� A0] (8E)Then, by inductive hypothesis, if we denote with if = F x1;:::;xnerase(f) (i1; : : : ; in),we have that J�;� ` f : 8��A:BKh; �i = [if ]J8��A:BKMoreover, by soundness of subtyping (Lemma 10.5) and semantic substitution(Lemma 10.9(1)) we have thatJA0K � JA[� A0]K = JAK[�7!JA0K]Since JA0K satis�es the condition p � JAK[�7!p], by de�nition of the se-mantics of 8-types,J8��A:BK == Tp�JAK[�7!p]JBK[�7!p]� JBK[�7!JA0K]= JB[� A0]K [by Lemma 10.9(1)]Therefore, noticing that J8��A:BK is a subset of JB[� A0]K and reason-ing as in the case (Subs), we can concludeJ�;� ` ffA0g : B[� A0]Kh; �i = [if ]JB[� A0]K ,which is what we want, since if = F x1;:::;xnerase(f) (i1; : : : ; in) and erase(ffAg) =erase(f). 2It is worth noticing that we could have de�ned directly the meaning of anF-bounded term by using the interpretation of its erasure and the semantics oftypes. This approach has been widely explored in the literature. The interestedreader can consult the book [Gun92], where it is shown how a p.e.r. model of thesecond order polymorphic lambda calculus can be de�ned starting from a generic(untyped) lambda model. An explicit construction of a semantics for a variant ofsystem F� is also carried out in [HP96].The previous lemma immediately implies that a term a of type A is interpretedas an equivalence class (value) in the semantics of A. Such a result expresses thesoundness of typing with respect to the semantics.56



Corollary 10.11 (soundness of typing) If �;� ` a : A, then, 8h; �i 2 J�;�K,J�;� ` a : AKh; �i 2 Q(JAK).Another immediate corollary states the non-emptiness of the interpretation ofterms, namely the fact that the semantics of each well-typed term is non emptyfor each possible choice of the semantic environment. However it is worth noticingthat the semantics of environments can be empty, as one can verify considering,for instance, the environment �;� with � � � and � � x :8���: �.Corollary 10.12 (non emptiness) If �;� ` a : A and h; �i 2 J�;�K thenJ�;� ` a : AKh; �i 6= ;.A last corollary expresses the fact that the semantics does not depend on thestructure of the derivation of a judgement, but only on the judgement itself, aproperty known as the coherence of the semantics.Theorem 10.13 (coherence) If d and d0 both prove the judgement �;� ` a : A,and h; �i 2 J�;�K, then JdKh; �i = Jd0Kh; �i.Proof. Just notice that F x1;:::;xnerase(a) does not depend on the typing derivation anduse Lemma 10.10. 2Remark 10.14 By Corollary 10.11, the interpretation of terms may be equiva-lently restated in the following simpli�ed way.(Var) J�; x1 :A1; : : : ; xn :An ` xi : AiKh; �i = [j]JAiK ,for any j 2 �(xi)(Subs) J�;� ` a : BKh; �i = [i]JBK,for any i 2 J�;� ` a : AKh; �i(! I) J�;� ` �x:A: b : A!BKh; �i = [i]JA!BK ,for any i 2 ! s.t. 8v 2 Q(JAK); 8j 2 v; i:j 2 J�;�; x :A ` b : BKh; �[x7!v]i(! E) J�;� ` f(a) : BKh; �i = [i:j]JBK ,for any i 2 J�;� ` f : A!BKh; �i; j 2 J�;� ` a : AKh; �i(8I) J�;� ` ���A: b : 8��A:BKh; �i = [i]J8��A:BK ,for any p � JAK[�7!p]; i 2 J�; ��A;� ` b : BKh[�7!p]; �i(8E) J�;� ` ffA0g : B[� A0]Kh; �i = [i]JB[� A0]K ,for any i 2 J�;� ` f : 8��A:BKh; �i
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Equational systemFinally, we introduce an equational system for judgements of the shape �;� `a = b : A, meaning that terms a and b represent indistinguishable elements of typeA, when free type and value variables are instantiated consistently with the con-straints speci�ed by the environments � and �, respectively. The equational systemis then formally proved to be sound with respect to the semantics. The rules of thesystem, listed in Table 2, are essentially the same as those for system F�, namely:� type and term versions of � and � rules;� reexivity, symmetry and transitivity to obtain an equivalence;� structural rules to force the equivalence to be a congruence;� a \top" rule which states that all terms are indistinguishable in the Top type(as in [Ghe90, CG94, CMMS94]).Notice that (8E =) allows one to equate two terms f 0fA0g and f 00fA00g evenwhen A0 and A00 are not the same type, and it expresses a sort of \irrelevance" of theargument type in second order application. This form of the rule was �rst de�nedin [CMMS94], where the interested reader can �nd a discussion on its motivations.By exploiting the alternative de�nition of the semantics (see Remark 10.14) itis easy to see that it validates the proposed equational system. First we need asimple technical lemma which is the semantical counterpart of weakening.Lemma 10.15 Let �;�;�0 ` b : B and let �;�; x :A;�0 ` }. Then for anyh; �i 2 J�;�;�0K and v 2 JAKJ�;�;�0 ` b : BKh; �i = J�;�; x :A;�0 ` b : BKh; �[x7!v]i(Notice that �;�; x :A;�0 ` b : B is derivable by Lemma 4.11.)Proof. Trivial induction on the structure of b. 2Theorem 10.16 (soundness of deduction) If the judgement �;� ` a = b : Ais derivable in the equational system of F-bounded then, for any h; �i 2 J�;�K wehave J�;� ` a : AKh; �i = J�;� ` b : AKh; �i.Proof. The proof can be done by straightforward induction on the structure ofthe derivation d of �;� ` a = b : A and by cases on the last rule applied in d. Thecases of (Re =), (Symm =) and (Trans =) and of structural rules are trivial. Thecase of rule (Top =) is an immediate consequence of Corollary 10.11, since JTopKhas only one equivalence class. The only interesting cases are rule (8E =) and rules� and � for terms and types.� (8E =) We must prove thatJ�;� ` f 0fA0g : CKh; �i = J�;� ` f 00fA00g : CKh; �i:By induction hypothesisJ�;� ` f 0 : 8��A:BKh; �i = v = J�;� ` f 00 : 8��A:BKh; �i.58



�;� ` �x:A: b : A!B �;� ` a : A�;� ` (�x:A: b)(a) = b[x a] : B (�Term =)�;� ` b : A!B�;� ` �x:A: b(x) = b : A!B (�Term =)�;� ` ���A: b : 8��A:B � `A0 � A[� A0]�;� ` (���A: b)A0 = b[� A0] : B[� A0] (�Type =)�;� ` b : 8��A:B�;� ` ���A: bf�g = b : 8��A:B (�Type =)�;� ` a : A�;� ` a = a : A (Re =) �;� ` a = b : A�;� ` b = a : A (Symm =)�;� ` a = b : A �;� ` b = c : A�;� ` a = c : A (Trans =)�;�; x :A ` a = b : B�;� ` �x:A: a = �x:A: b : A!B (! I =)�;� ` f 0 = f 00 : A!B �;� ` a0 = a00 : A�;� ` f 0(a0) = f 00(a00) : B (! E =)�; ��A;� ` a = b : B�;� ` ���A: a = ���A: b : 8��A:B (8I =)�;� ` f 0 = f 00 : 8��A:B � `A0 � A[� A0]� `A00 � A[� A00] � `B[� A0]; B[� A00] � C�;� ` f 0fA0g = f 00fA00g : C (8E =)�;� ` a : Top �;� ` b : Top�;� ` a = b : Top (Top =)Table 2: The equational system.
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By Remark 10.14, we have J�;� ` f 0fA0g : B[� A0]Kh; �i = [i]JB[� A0]K ,where i is any index in v. Since � `B[� A0] � C, again by the same corollarywe conclude J�;� ` f 0fA0g : CKh; �i = [i]JCK .By an analogous reasoning J�;� ` f 00fA00g : CKh; �i = [i]JCK and thus wecan conclude.� (�Term =) For any pair of indexes i 2 J�;� ` �x:A: b : A!BKh; �i andj 2 v = J�;� ` a : AKh; �i we have that:J�;� ` (�x:A: b)(a) : BKh; �i == [i:j]JBK [by term interpretation, case (! E)]= J�;�; x :A ` b : BKh; �[x7!v]i [by i 2 J�;� ` �x:A: b : A!BKh; �iand term interpretation, case (! I)]= J�;� ` b[x a] : BKh; �i [by Lemma 10.9(2)]We conclude by observing that the quanti�cation over i; j is not trivial thanksto Corollary 10.12.� (�Term =) We must prove that:J�;� ` �x:A: b(x) : A!BKh; �i = J�;� ` b : A!BKh; �iFirst of all notice that, by de�nition, J�;� ` �x:A: b(x) : A!BKh; �i =[i]JA!BK for any i 2 ! such that8v 2 Q(JAK); 8j 2 v; i:j 2 J�;�; x :A ` b(x) : BKh; �[x7!v]i. (z)Now, taking any i 2 J�;� ` b : A!BKh; �i, to conclude we just have toprove that it satis�es condition (z). Since x is not free in b, its semanticsdoes not change if we update the value of x in �. Formally, by Lemma 10.15,8v 2 Q(JAK); i 2 J�;�; x : A ` b : A!BKh; �[x7!v]i. For any j 2 v, bythe semantics of variables, we have that j 2 J�;�; x : A ` x : AKh; �[x7!v]iand hence i:j 2 J�;�; x :A ` b(x) : BKh; �[x7!v]i, by (! E).� (�Type =), (�Type =) In this case the correctness immediately follows fromthe observation that, by Lemma 10.10, the semantics of terms just dependson the erasure and on the type of the term. Then simply observe that suchrules equate terms with the same erasure. 2The previous theorem has soundness of reduction as an immediate corollary,namely, if a is a closed F-bounded term, such that ` a : A and a ��� b, then aand b have the same semantics (as elements of type A). In fact, it is su�cient toobserve that in this case ` a = b : A and then apply Theorem 10.16.Finally, we observe that the semantics de�ned is consistent. To this aim weuse the type Bool = 8��Top: �!�!�, which is the usual encoding of Church'sbooleans in system F, and we consider the two closed normal form terms of typeBool :true � ���Top: �x:�: �y:�: x false � ���Top: �x:�: �y:�: y60



It is easy to see that J ` true : Bool K 6= J ` false : Bool K. In fact by de�nition,iJBool Kj , 8p 2 PER: 8k; l;m; n 2 !: k p l ^ m p n ) i:k:m p j:l:n. Recallthat J ` true : Bool K and J ` false : Bool K are the equivalence classes in Bool ofthe indexes of the binary projections on the �rst and on the second componentrespectively. To conclude it su�ces to consider the p.e.r. p = fh0; 0i; h1; 1ig and letk = l = 0, m = n = 1 (in the same way we may also prove that Q(JBool K) onlycontains J ` trueK and J ` falseK).11 ConclusionsIn this paper we have studied some aspects of the theory of system F-bounded ,concerning type and subtype checking, its relationship with system F�, and itssemantics. We have proved the following results:� transitivity elimination, hence correctness and completeness of the standardsubtype checking semi-algorithm;� correctness and completeness of the standard type checking semi-algorithm;� subject reduction for �� reduction;� characterization of type equivalence as the equivalence obtained by identifying� � � with � � Top bounds;� characterization of the relationship between system F-bounded and its vari-ants F-bounded� and F-bounded�;� conservativity of F-bounded subtyping with respect to F�, which implies thatsubtype checking, hence type checking, for system F-bounded is undecidable,and that an extension of system F-bounded with strong recursive types isnon-conservative;� coherence and consistency of a p.e.r. interpretation of system F-bounded ,soundness of the term formation, subtyping, typing, reduction and equiva-lence rules with respect to this interpretation.Termination of �� reduction has not been investigated, since the result is alreadyknown from [Ghe97].Although system F-bounded is more powerful than system F�, essentially thesame techniques can be used to prove analogous properties in the two systems. Someminor di�erences are due to the di�erent shape of the (8 �) rule, but the conser-vativity result of Section 9 shows that an F-bounded -like version of that rule couldhave been adopted for system F� as well. This fact suggests the idea of viewingboth systems as special cases of a wider family based on a conditional quanti�ca-tion 8�=P (�): T with corresponding introduction, elimination and subtyping rules,such as: �;� ` f : 8�=P (�): B � ` P (A0)�;� ` ffA0g : B[� A0] (8pE)�; P 0(�) ` P (�) �; P 0(�) `B � B0� ` (8�=P (�): B) � (8�=P 0(�): B0) (8p �)61



Therefore, it may be interesting to investigate the possibility of de�ning somegeneral language for predicates P (�) ensuring that the crucial properties of systemF� are preserved.In our opinion an interesting open issue is the study of the subtype checking ofa kernel-fun variant of system F-bounded , i.e., a system where universal types arecompared through the following weak rule.�; ��A0 `A � A0 �; ��A0 `B � B0� ` (8��A:B) � (8��A0: B0) (kf 8 �)The kernel-fun variant of system F� is known to be decidable. We conjecture thatthe analogous variant of system F-bounded would be decidable too.The kernel-fun variant of system F-bounded is interesting because its subtypetheory should be simpler to deal with, and its expressive power not far from thepower of the full system. In practice, the two systems di�er above all in the treat-ment of existential bounded quanti�ers. Existential quanti�ers can be encoded interms of universal ones, and the resulting subtyping rule turns out to be invariantin the bounds for the kernel-fun version, and covariant for the full version [GP98].While the kernel-fun version of the universal quanti�cation is powerful enough forpractical aims, the kernel-fun version of existential quanti�cation turns out to beweak in some speci�c situations. A typical example is given by the four di�erentinterpretations of object-oriented languages discussed in [BCP99], where the kernel-fun subtyping rule for existential types is shown to be expressive enough for the�rst three encodings, but too weak for the most expressive \ORBE" interpretation.Another decidable variant of system F� is the one without a Top type [Kat92].Hence a natural question regards the decidability of a variant of system F-boundedwithout the Top type and with no ��� bound. However, this is a much less in-teresting question, since the system without Top is not as natural and expressiveas the kernel-fun variation. The essential problem is that records with width sub-typing cannot be encoded in this variant of the system, and, if they are added asprimitive constructions, then decidability is lost.To conclude we remark that, while here we have studied the pure systemF-bounded , with no notion of value or type level recursion, a practical object-oriented language should contain both of them. Especially interesting is the studyof type level recursion.Strong and weak type level recursion, as de�ned in Section 9, have di�erentpeculiarities and raise di�erent problems. In any case, both of them destroy thenormalization property of � reduction, since they allow untyped lambda calculusterms to be easily encoded as terms of type �X:X!X.Strong recursion interferes with transitivity elimination [Ghe93], and thus withthe completeness of the standard type checking algorithm, even for terms whereno recursive type is used. The de�nition of complete type and subtype checkingalgorithms for second order systems with subtyping and strong recursion is still anopen problem. The only known result is the algorithm for system kernel-fun de�nedin [CG99]. On the other hand, weak recursion does not modify the subtype relation,and has no e�ect on type checking since the type of a fold�X:A or unfold�X:Afunction can be read from its index, thus allowing these functions to be type-checkedlike any user-de�ned function. However, weak recursion is not a good match forF-bounded quanti�cation. For instance, the type Point discussed in Section 2, if62



de�ned via weak recursion, does not satisfy the condition:� � [x : Int ; eq : �!Bool ];since a weak recursive type is a subtype only of other recursive types. This ob-servation suggests that it may be interesting to explore some intermediate kind ofrecursion. For example, a notion of recursive types could be investigated, which isbased on implicit unfolding (�X:A � A[X �X:A]) and explicit folding through afunction fold�X:A: A[X �X:A]!�X:A.From a semantic point of view, adding any kind of recursion would require thede�nition of a di�erent interpretation. The realizability interpretation we presentedwould still be the basis of the semantics, but the domain of p.e.r.'s would have tobe enriched with enough structure in order to deal with partiality and �x pointde�nitions [Ama88, Car89, Ama91, AP90].AcknowledgementsWe are grateful to the anonymous referees for insightful and constructive remarks.This work has been partially supported by Esprit Working Groups 26142 - AppliedSemantics and 22552 - PASTEL, and by Italian MURST, project InterData.
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Appendix: The De Bruijn notationIn the paper we essentially adopt the De Bruijn approach for the treatment ofvariables. The idea consists in representing each variable occurrence as a pointerto the � (or �) which binds the variable, hereafter referred to as the binder of thevariable.Concretely, in a term, an occurrence of a variable is represented as an integerindex expressing the number of lambdas between the occurrence and the binder forthe variable. More precisely, the index counts the number of lambdas whose scopeincludes the variable occurrence and which are in the scope of the binder. This leadsto the so-called nameless term. Here is an untyped term and the correspondingnameless term.�x: �y: x(�z: xz)y �: �: 1(�: 2 0)0.The same technique can be extended to deal with our typed terms, possibly insidean environment. Bindings of the environment are treated exactly like � or � bind-ings. Without going into further details we show some examples. For the reader'sconvenience we consider di�erent indexes for value and type variables (denoted bynv and nt, respectively). The index represents, for value variables, the number of�'s and, for type variables, the number of �'s (or 8's), between the variable oc-currence and the binder of the variable. For instance ���Top: �x:�!�: �y:�: xybecomes �� Top: �:0t!0t: �:0t: 1v0v, and ��Top; ���!�; x :�; y :� ` yx be-comes �Top; �1t!0t; :1t; :0t ` 0v1v.As highlighted in Section 3, working directly on De Bruijn indexes may be no-tationally too inconvenient. Therefore we continue using variable names, implicitlyassuming that they are just a more convenient way of denoting De Bruijn indexes.In this way there is obviously a gap between what is written and what should bewritten by explicitly using the De Bruijn notation. To convince the reader that thisgap can be easily �lled in, let us present some of the basic de�nitions in the DeBruijn notation.First of all a free variable in a nameless term is a pointer to a non-existing binder.More precisely an index n, if greater than the number k of nested binders havingthe index in their scope, represents the n� kth free variable. We can represent freevariables in a term by using such numbers and write:FV (n) = fng FV (A!B) = FV (A) [ FV (B)FV (Top) = ; FV (8��A:B) = fn� 1 j n 2 FV (A) [ FV (B) ^ n > 0gGiven an environment � � �A1; : : : ; �An, instead of collecting the set of thevariables de�ned in �, we simply count the number of such variables, i.e., we de�ne:vars(�) = j�j = n.The rules for well-formedness of type environments become:� ` } (�TEnv) � ` } max(FV (A)) � vars(�) + 1�; �A ` } (TEnv)The other rules have to be changed in a similar way.64
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