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1  INTRODUCTION

Fibonacci is an object-oriented database programming language characterized by static
and strong typing and by new mechanisms for modelling databases in terms of
objects with roles, classes and associations.

Fibonacci was conceived in an effort to integrate features for modelling naturally
object-oriented database applications into a general purpose programming language
which is statically and strongly typed.3 The design of the language has drawn
heavily from experience with the Galileo language, which was also developed at the
University of Pisa. Since 1985 Galileo has been used extensively for teaching
database programming using a strongly typed language. The language has proved to
be useful for modelling complex databases in terms of objects grouped into classes
which are organized in hierarchies, and it has shown the importance of static type
checking in implementing database applications. However, this experience also
highlighted that the techniques used by object-oriented languages for modelling
objects and associations between sets of objects are not satisfactory. Overcoming
these limitations has been one of our major goals in the design of Fibonacci. 

This paper presents Fibonacci, and is organized as follows. Section 2 outlines our
language design choices. Section 3 surveys the main features of Fibonacci. Section 4
presents the constructs of the language to define objects with roles. Section 5 presents
the constructs to model sets of objects and associations between them. Section 6
describes the architecture of the current Fibonacci implementation. Section 7
compares the proposed solution with related works. In the conclusions, we comment
on our future plans.

2  BACKGROUND

In this section we will briefly discuss the requirements on which the design of the
language was based.

2.1 Why a database language?

Database languages integrate the abstraction mechanisms of a data model within a
programming language. The result is an integrated programming language where data
stored in the database are manipulated in the same way as any data structure of the
language.

Database languages have been proposed to overcome the limitations of the
traditional approach, where applications using the database are programmed by
languages which host the data model operators, using ad hoc mechanisms to
exchange information between a program and the DBMS. This traditional
programming environment is not suitable for the growing complexity of applications,

3 Originally the language was called Nuovo Galileo because it borrows heavily from the Galileo
language, but as the new language evolved it was given its own name, Fibonacci, in honour of the
medieval mathematician Leonardo Pisano (Leonardo of Pisa), also known as Leonardo Fibonacci.
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due to the limited integration of the data model into the programming language. 
From the latter half of the 1970s, attention was initially focused on the integration

of the relational data model abstraction mechanisms in the type system of a
programming language, to construct an integrated programming environment to
develop database applications. The term “database programming language” was used
to refer to these approaches. Examples of this approach are languages such as
Pascal/R [Schmidt77], RIGEL [Rowe79], PLAIN  [Wasserman79] and DBPL
[Schmidt90]. A different approach to integrate the relational data model in a complete
programming language is exemplified by the Datalog language, which allows
relational database applications to be written in a Prolog-like logic programming
language. At the end of the 1970s new database programming languages were
proposed to support a more expressive data model, named “semantic data model”, in
order to overcome the modelling limitations of the traditional data models. This
resulted in the development of so-called conceptual languages such as
ADAPLEX [Smith81], Taxis [Mylopoulos80] and Galileo [Albano85]. More
recently, new database programming languages have been proposed which are based
on the object-oriented programming paradigm [Albano91a] [Zdonik90]
[Bancilhon92], which seems the best suited to satisfy the needs of complex database
applications. The same phenomenon is taking place in the world of commercial
database systems, where most of the new systems support some features of the
object-oriented data model, and offer a language which is not just a DDL-DML but is
a complete language supporting application development. This trend suggests that
database programming languages may become one of the basic tools to write database
applications.

2.2 Why a persistent language?

Persistent programming languages are characterized by the following properties: 

• any value, irrespective of its type, has the same rights to persistence (orthogonal
persistence);

• programs are written in a way which does not depend on the persistence of data
on which they operate (persistence independence). 

As a consequence the programmer uses the same operators on data whatever their
lifetime, and does not need read and write operators to control data movement.
Examples of such languages are PS-Algol [Atkinson81], Napier88 [Morrison 94],
Galileo [Albano85], Tycoon [Matthes 94].

Orthogonal persistence is especially important in those applications where
complex data types are manipulated or where the number of different types is similar
to the number of different values manipulated. In these applications, orthogonal
persistence allows the types of persistent data to be defined by using any type
constructor of the language, and the programmer is freed from the task of finding a
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way to represent any persistent data structure by using only the abstraction
mechanism of a specific data model [Atkinson83] [Atkinson87] [Atkinson91].

It is a matter of debate whether database application development would be better
supported by a persistent programming language which offers a set of built-in data
definition and manipulation operations, offering direct support for a fixed data model
(built-in approach), or by a persistent programming language which gives
programmers the possibility of defining their own data model (add-on approach)
[Matthes 92]. Fibonacci follows the built-in approach, while Napier88 and Tycoon
are two examples of the add-on approach.

2.3 Why a statically and strongly typed language?

A language is strongly typed if all computations are checked for type errors. A
language is statically checked if all type errors are discovered through textual analysis.
Static typing is essential for languages used in the final encoding of applications, in
particular for complex applications, which evolve in time, as happens with database
applications. Software systems are always evolving due to the constant evolution of
requirements and to the continuous discovery of bugs, and a statically typed language
provides one way to control change, and thus helps to produce and maintain reliable
software systems, since it ensures that no evolutionary step introduces run-time type
errors.

Static and strong typing, however, can also be a hindrance to software evolution
when it is unduly restrictive. For example, a function gimmeJohns which takes a set
of persons and returns only those whose name is John, need not be modified, in a
dynamically typed system, when the definition of type Person is modified, if the
name field is not affected. However, in most typed languages (e.g. in Pascal),
gimmeJohns should at least be re-checked, if not modified, whenever type Person is
modified. This problem essentially disappears in polymorphic languages, such as
Fibonacci, where it is possible to describe that gimmeJohns just needs a name field
and returns values of the same type as its input type. In this situation, the function
must be modified and re-checked only when the name field of persons would be
affected, as would happen in an untyped language.

Other benefits achieved by a static and strong typing discipline are: 1) programs
and data definitions are more readable, hence they can be better maintained; 2)
debugging is greatly eased by the controls made by the type checker: it is typical of
database applications that once the program is well-typed very few errors (or none at
all) remain in the code; 3) programs are more efficient since they do not perform run-
time type checking [Cardelli85].

2.4 Why an object-oriented language?

The object-oriented data model is the best suited to represent complex data types,
especially when the data base is a graph of interconnected entities with a structure
which is not so homogeneous and regular as in traditional business applications.
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Other important features of this data model are the possibility of describing procedural
information (methods) within the schema, and the encapsulation of object state. This
allows a stricter maintenance of some classes of constraints. These features make
object-oriented database languages well suited to applications which use complex data
of different types, such as those in office information systems, computer-aided design
and manufacturing systems, computer-aided software engineering, multimedia and
hypermedia information systems, and knowledge-based systems. 

In the field of programming languages, the object-oriented paradigm is
characterized by the fact that the combination of encapsulation, inheritance, and late
binding allows the functionalities of data types to be extended without knowing their
implementation. This feature of object-oriented languages explains the high level of
modifiability and reusability which characterizes object-oriented software
[Atkinson89] [Dittrich90] [Kim90] [Zdonik90].

2.5 Why objects and roles?

The standard object-oriented data model is not satisfactory when entities need to be
modelled which change the class they belong to and their behaviour during their life.
When an object is allowed to acquire new object types, the problem arises that
different and inconsistent behaviours may have been defined for these different object
types. This problem can be solved by preventing these inconsistent behaviours from
“mixing up”. In this approach, an object has a context dependent behaviour, and in
each context it exploits only a consistent subset of its possible behaviours, and this
subset depends on the “role” that the object is playing in that context. A role
mechanism faces this problem, and, more generally, allows one to model entities
which can play several roles and behave according to the role being played
[Albano93] [Richardson91].  

2.6 Why an object-association data model?

The object-association data model extends the object-oriented data model with a
specific construct to model associations. Usually, in object-oriented data models,
objects model entities of the domain of discourse, classes4 model sets of
homogeneous entities, and an association between two objects is represented by
having a method in each of them which returns the other one; one-to-many
associations are modelled by methods which return collections of objects. The
advantage of this traditional approach is that cardinality constraints on the associations
can be enforced using types, and associations are dealt with exactly like object
attributes. Nevertheless, this approach has a number of drawbacks, namely:

4 The term class is used with different meanings in the literature. In object-oriented languages, a
class is like a type in conventional programming languages and it is used to define the structure and
behaviour of a set of possible objects. Often in object-oriented database languages a class is also used
to refer the set of all existing instances of a class. In this paper a class is used with the meaning of a
collection of homogeneous values of any type.
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• associations are conceptually a higher level abstract notion, whose implementation
should be decided by the DBMS, while attributes force the programmer to choose
a specific implementation for them; 

• an association is a single conceptual entity whose semantics, in the object model,
is split among several objects;

• the enforcement of the inverse relation constraint, i.e. the fact that the two
methods modelling the associations are the inverse of each other, is left to the
programmer;

• associations relate objects which exist independently, and it should be possible to
define them incrementally without redefining the structure of existing objects;

• associations are not necessarily binary, and can have their own attributes; these
aspects can only be modelled indirectly by means of attributes;

• operations on relationships as a whole are not possible in a straightforward way.

To overcome these problems, an extension of the object-oriented data model with an
association construct was proposed  [Albano91b]. The association is a first class
type constructor. An association is a modifiable set of tuples which is used to
represent the existence of associations between classes of objects, in a way which
resembles how n-m associations are represented in relational schemas: to represent the
fact that two objects are associated, a tuple containing the two objects is inserted into
the association. When an association is defined, some constraints can be defined on
its extensions, such as referential and cardinality constraints, as described in Section
5.

This approach solves the problems listed above. Specifically, in the object-
association data model, an association is defined in a purely declarative way, its
description doesn’t depend on the description of the types of the associated objects,
and the system is free to represent, internally, the association in the most convenient
way.

3  OVERVIEW OF Fibonacci

Here we present an overview of the main features of Fibonacci.

Fibonacci is an expression-based language. Each construct is applied to values
and returns a value.

Fibonacci is a persistent language. All data transitively accessible from the
global environment (top-level), survive automatically between different work-
sessions, irrespective of their type. Data are removed by a garbage collector when
they are no longer reachable from any identifier in the global environment.

Fibonacci is an interactive language. The system repeatedly prompts for input
and reports the result of the computation; this interaction is said to happen at the top-
level of evaluation. At the top-level one can evaluate expressions or perform
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declarations. Stand-alone applications interacting with the top-level environment can
also be written.

Fibonacci is a higher order language. Functions are denotable and expressible
values of the language. Therefore, a function can be embedded in data structures,
passed as a parameter and returned as a value.

Fibonacci is a safe language. Each legal expression has at least one type, which
is statically checked. Each type is related to a set of operators which can be applied to
values of this type (e.g. the field selectors of a tuple type). The basic types are None,

Null, Bool, String, Int, Real, Any . The instances of basic types are all
disjoint, with one notable exception: the value unknown  (of type None), which
belongs to any type whatsoever. Besides these types, type constructors exist to define
new types, from basic or previously defined types. They are divided into two
categories, concrete type constructors (tuple, sequence, discriminated union,
function, class and association types) and generative type constructors (object and
role types). Type constructors take types as parameters, and produce other types.
Type equality is structural with concrete types (i.e. two types are equal if they are
built with the same constructor applied to types recursively equal), while it is by name
(more precisely by definition time) with generative types.5

Fibonacci types are first class. Fibonacci values have an equal possibility to be
stored in persistent or temporary data structures and to be parameters or results of
functions independently of their type. Any type operator can be applied to any other
type.

Fibonacci assignment has sharing semantics. Values of any type are always
used directly, and not by copying them, when they are passed as parameters to
functions, bound to identifiers in declarations, and used in constructing complex
values.

Fibonacci has subtyping. A subtype relation is defined on concrete types. This
relation allows the so called inclusion polymorphism to be exploited: if T1 is a
subtype of T2 (also, T2 is a supertype of T1), then a value of T1 is also a value of
T2, consequently, it can be used in every context where a value of T2 is expected. A
subtype relation with this property exists among role types too, which must be
explicitly declared when a new role type is defined.6

Fibonacci supports inheritance. Inheritance is the ability to define a new object
type and a new object type implementation by extending a previous type or
implementation definition. In Fibonacci, as in most object-oriented languages,
inheritance can be used to define object subtypes and their implementations starting
from the corresponding definitions for object supertypes.

Fibonacci has objects with roles. Objects are entities with an immutable
5 While in some object-oriented languages the term “value” is used to refer to values of concrete
types only, in our terminology it refers to values of every type, including objects.
6 Subtyping between types with modifiable fields creates some well-known problems [Albano 83],
[Albano85], [Connor 92], which are solved in Fibonacci by having a specific type constructor Var

for modifiable data, such that no subtyping relation exists between different Var types.
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identity and a mutable state. The state is encapsulated and can only be queried and
updated by sending messages to the object. An object is internally organized as an
acyclic graph of roles. A role is also an entry to access the object it belongs to: an
object can only be accessed through one of its roles, and its behaviour depends on
this role. An object could be considered as simply being a container for its roles, since
messages are handled and cooperatively answered by these roles. Fibonacci
distinguishes between object and role operations. Object operations allow one to test
for the existence of certain roles in the object and to gain a reference to one of these
roles, and to extend objects by giving them new roles (for example, adding the
Employee role to a Person). The basic role operation is message passing. The
Fibonacci role-based approach is a conservative extension of the classical object-
based approach: if the special object operations are not used, and objects are never
extended, then message passing behaves as in traditional object-oriented languages,
and Fibonacci role types can be used as if they were traditional object types. Finally,
in Fibonacci the implementation of a role type is defined separately from the type
itself, and the same type can have several implementations.

Fibonacci has polymorphic functions. A function is polymorphic when its type
does not prescribe a single input type, but describes the set of all acceptable input
types and how the output type depends on the current input type. Fibonacci supports
both inclusion polymorphism (subtyping), and parametric polymorphism, since
functions can be defined with types as parameters, and these types can then be used to
give the types of the other parameters and of the result.

Fibonacci has an exception-trap mechanism. Exceptions can be raised and
selectively trapped, and exception handlers can be specified.

Fibonacci has a nested transaction mechanism. When a transaction fails, all
its side-effects, both on persistent and transient values, are undone; transactions may
be nested.
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4 OBJECTS AND ROLES

4 . 1 Overview

An object is the computer representation of certain facts about a real-world entity. An
object is a software entity which has an internal state equipped with a set of local
operations (methods) to manipulate that state. The request for an object to execute an
operation is called a message to which the object can reply. The state of an object
can only be accessed and modified through operations associated with that object.
Each object can send messages to itself (self-reference). Message interpretation, i.e.
the choice of the method used to reply to a message, always depends on the object
that receives that message. This means that different objects may use different
methods to reply to the same message. Each object is distinct from all other objects
and has an identity that persists over time, independently of changes to its state. All
these features of object oriented languages are retained in Fibonacci, and are extended
as follows.

Suppose that  a Person-Student hierarchy has been defined in any object-
oriented language. When a Student “ john” receives a message it may either answer
as a Person, if the corresponding method has been inherited (e.g., Age) or as a
Student, if the method has been added or redefined (e.g., StudentNumber), or
finally, it may ask itself “how would I answer if I were just a Person?” before
composing its answer as a Student (the super mechanism). In Fibonacci
terminology we describe this situation by saying that john contains both a Person
and a Student role. From the outer world, every message is addressed to its
Student role, but, internally, the two roles cooperate to build up the answer, in two
different ways:

• by inheritance: when the Student role does not have a method, it looks for a
method in its super-role Person (method lookup);

• by message passing (the super mechanism): a method of the Student role can
send a message to the Person role.

The essential assumption underlying the classical model is that every object has one
most specialized role, and this role is the one which receives any message sent to the
object and starts the method lookup mechanism. Fibonacci extends the classical model
in two directions. First of all, due to object extendibility, a single object may have
different most specialized roles. For example, if Employee is a second subtype of
Person, by extending john with the Employee role, we obtain an object with two
unrelated most specialized roles, Student and Employee. Second, messages are not
sent to objects, but they are always directed to a specific role of the object. The
operations which build and extend an object in fact return, as a result, a reference to a
specific role of the object; the most specific role in the first case, and the new role in
the second case. Hence, in Fibonacci we never manipulate objects directly, but we
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always manipulate roles of objects; and a role is implicitly cast to its object only when
an object operation, such as equality or extension, is applied. When we want to send
a message to john we must either send it to the value, say johnAsStudent, returned
when john as been created as a student; or to the value, say johnAsEmployee,
returned by the object extension operator. In the first case johnAsStudent will
answer as a Student, i.e. it will look for the method starting from its Student role
and then will try to inherit it from its Person role. In the second case, method lookup
will start from the Employee role, and then will go up to its only ancestor Person.

The role mechanism was introduced in Fibonacci to preserve cousin independence.
We say that two object types are cousin types when no one type is a subtype of the
other one, but they are subtypes of a common ancestor. Cousin independence means
that when programmers are defining an object type (a role type in Fibonacci) they
only have to know the definition of its supertypes, and don’t have  to be aware of the
existence of other cousin types. This principle implies that no relationship can be
assumed to exist between two methods defined for two cousin types for the same
message. Hence, any method lookup mechanism must ensure that no message
addressed to an object of type T is answered by a method which has been designed
for a cousin type S. Cousin independence holds for the standard object-oriented
languages since an object is created with a type and cannot acquire new types.

Now, suppose that two different subtypes Employee and Student are defined
for type Person, and that in both types a Code field is defined, with a different
meaning and even a different type, e.g. String and Int respectively. If Employee
and Student have no common subtype, then this situation must be legitimate, due to
the cousin independence principle. This situation is not a problem in traditional
object-oriented languages, where no object can be an Employee and a Student at
the same time. In Fibonacci, however, such an object may exist, and this object must
answer a Code request in a way which is related to the “role” it is playing. This was
the main reason behind the design of Fibonacci role mechanism.

This mechanism, whose primary purpose is to deal with object extendibility, also
enables Fibonacci to model those real world situations where a single entity can play
several roles and behaves differently according to the role it is playing. In traditional
object-oriented languages, where every object is always accessed through its most
specialized role, it is not easy to model such situations.

Note that a Fibonacci object which is built directly in its most specialized role, and
which never acquires new roles, behaves exactly like an object in other object-
oriented languages. Hence Fibonacci programmers can ignore the object-roles
mechanism with all its subtleties until they actually need it.

To emphasize the distinction between object and role operations, Fibonacci
distinguishes between object types and role types. A typical hierarchy of role and
object types is depicted in Figure 1.
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Role Types

Figure 1. An object-role type hierarchy

A role type is characterized by the messages it accepts, hence it is very similar to an
object type in a traditional object-oriented language. An object is simply a set of roles,
hence an object type specifies the set of roles which may be part of an object of that
type: referring to the figure, an object of type PersonObject may contain a Person,
a Student and an Employee role. This set of role types is open-ended, since new
sub-role types can be added to any object type at any moment, and is called the role
type family of the object type. Since the object type is a supertype of its role type
family, object operations, such as equality and tests  for the existence of a specific
role, can be applied to values which denote a role.

4 . 2 Objects and Roles: Type Operators

NewObject is the constructor for a new object type which is needed to begin the
construction of a role type family. Since objects cannot be manipulated independently
of their roles, this operator introduces a new type without giving any information
about the messages managed by its values: this information is specified in the
definition of its role type family. For example, a definition of a new object type
PersonObject is:

Let PersonObject = NewObject;

A role type is defined with the constructor IsA … With … End as a subtype of an
object type or as a subtype of other role types. In both cases a role type always
belongs to the role family of one object type, called its object supertype. A value
belonging to a role type is called a role value (or simply a role). By subtyping, a
role value also belongs to the object supertype of its role type, so that both object
operations (equality, role casting, role inspection, extension) and role operations
(message passing) can be applied to a role value. The messages which can be sent to a
role are those specified by its role type, either by listing them in the role type
definition or by inheriting them from the role supertypes.

A role type is defined by a set of properties, i.e. by giving the signature of the
methods of that role. NewObject and IsA are generative type constructors, i.e.
each object type and role type definition produces a new type, different from any
other type previously defined. Figure 2 shows the definition of the role type Person.
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Let Person = IsA PersonObject With

Name: String;

BirthYear: Int;

Age: Int;

Address: String;

modAddress (newAddress: String): Null;

Introduce: String;

End;

Figure 2. A Person role type definition

The Let keyword precedes a type declaration. Fibonacci adopts the lexical
convention in which lower-case keywords and identifiers relate to values, while
capitalized keywords and identifiers relate to types. IsA <ObjectType> With

<properties list> End is the type constructor for role types. The semicolon
terminates a phrase (declaration or expression).

A role type family can be extended dynamically by defining a new role type T as a
subtype of others, called its supertypes. The subtype inherits all the properties of
its supertypes, unless they are explicitly redefined in the subtype (overriding). In the
case of multiple inheritance, if a property is present in more than one supertype, and
there is not an explicit redefinition in the subtype, then the property of the last
specified supertype is inherited (but its type must specialize all the types of all the
other inherited versions; see below). Multiple inheritance of a property is allowed
only if that property has been defined in a common ancestor. This rule is enforced to
prevent two methods with the same name but different meanings from being
accidentally merged in a subtype. Thus, when two methods have the same name and
the same meaning, this rule forces the programmer to define a common supertype
where such a method is introduced. Figure 3 shows the definition of the subtypes
Student  and Employee  of the type Person .

In a subtype definition S, for any property p of S (inherited, redefined or
added), if p is also defined in the supertype T then the following conditions hold: 

• the signature of p in T is a subsignature of the one in S (contravariance); 7

• the output type of p in S is subtype of the one in T (covariance).

7 A signature is a list of zero or more Identifier: Type  pairs separated by semicolons. We thus
say that S1 is a subsignature of S2 if S1 extends S2 with new pairs or redefines (in the same order)
the S2 pairs with more specialized types.
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Let Student = IsA Person With

Faculty: String;

StudentNumber: Int;

Introduce: String;

End;

Let Employee = IsA Person With

Department: String;

EmployeeNumber: Int;

Introduce: String;

End;

Figure 3. Role subtype definitions

4 . 3 Object construction

A role type T defines the interface of the objects with such a type, but doesn’t give
any information about their internal structure. An object of type T is created with the
construct role T <implementation> end, where the implementation specifies the
private state of the object and the body for all the methods specified in the interface; to
be more precise, the role operator builds an object with one role, and returns a
reference to that role of the object. Figure 4 shows an expression which creates a new
object and returns a value (john ) of type Person , which denotes both the new object
and its only role.

let john = role Person

private

let address = var (“Darwin road, 123 – London”); 8

methods

Name = “John Daniels”;

BirthYear = 1967;

Age = currentYear() – me.BirthYear; 

Address = at (address);

modAddress (newAddress: String) = 

if stringLength(newAddress) <= 0 

then failwith “incorrect address” 

else address := newAddress 

Introduce = “My name is ” & me.Name & 

   “ and I was born in ” & intToString( me.BirthYear);

end;

Figure 4. An example of object construction

The private section of the role construct specifies a private environment which
can only be accessed by the role methods. The method section specifies the methods
of the role which, in a database example, can be as simple as a method which just
returns a constant value, thus making an object very similar to a record. Once an
object is created, its methods can be selected with the dot notation (e.g.
john.Address ). A method call causes the evaluation of an expression in the private
8 In Fibonacci, a modifiable cell is introduced with an expression var expr , and its value is read
with the expression at expr .
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environment with possible side-effects; this is the only way to ask an object to modify
its internal state.

To create many instances of a role type, with the same internal structure and the
same methods, a constructor can be defined, which is a function that returns objects
of a certain type. An example of a constructor for objects of type Person is shown in
Figure 5.

let createPerson = fun (name, address: String; birthyear: Int) : Person is

role Person

private

assert stringLength(address) <= 0 elsefail “incorrect address”;

let address = var (address);

methods

Name = name;

BirthYear = birthyear;

Age = currentYear() – me.BirthYear; 

Address = at (address);

modAddress (newAddress: String) = 

if stringLength(newAddress) <= 0 

then failwith “incorrect address” 

else address := newAddress 

Introduce = “My name is ” & me.Name & 

“ and I was born in ” & intToString( me.BirthYear);

end;

Figure 5. An example of a constructor for objects

The expression fun (<arguments>): <type> is <exp>  defines a function with
type Fun (<arguments>): <type>  and body <exp> .9 When the function is
applied, a new instance of Person is created. While the private data are generally
different for each instance, method bodies are shared by all the instances.

In the body of the Introduce  method the special identifier me denotes the
constructed object. The static type of me is always the type of the expression role
where me is written (in this example Person ), but when the method is executed by a
role which inherits it, then me denotes the role which inherited the method (working
as self in other object-oriented languages). me can only be used in the method
bodies. intToString  is a predefined function to convert an integer into a string. The
infix operator & is the concatenation operator on strings.

By separating object implementation from object types, Fibonacci allows objects
with different implementations but with the same type to coexist safely. This is
especially useful in evolving environments, where the best implementation of an
object type may change over time, and is also useful in accommodating objects with a
different nature but a unique interface.

9 A function definition has a different syntax from that of a method. This is to reflect the fact there
are differences between functions and methods. A function is a first class value, and so can be passed
as a parameter or returned as a value by a function. A method is not a value by itself, but is a part of
a role definition, and it can only be evaluated by sending a message to the object which it belongs to.
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4 . 4 Dynamic object extension and inheritance

To model the possibility of real world entities to acquire new roles, Fibonacci
provides an extension operator, which allows an object to be extended with new
subroles. A new role provides the object with a new piece of private environment and
a new set of methods, which override previously defined ones (more details will be
given when method lookup is defined). Figure 6 shows how the ext- to-

private- methods- end operator can be used to extend john  from Person  to
Student .

let johnAsStudent = ext john to Student

private

let studentNumber = newStudentNumber();

methods

Faculty = “Science”;

StudentNumber = studentNumber;

Introduce = ( me as Person)!Introduce & “. I am a Science student”;

end;

john = johnAsStudent; (* returns true *)

Figure 6. An example of an object extension

The object acquires the new role without changing its identity. After the extension in
Figure 6, john  and johnAsStudent  are two different roles of the same object; the test
john = johnAsStudent  returns true  since equality is an object operation. The
semantics of the expression (me as Person)!Introduce  used in the definition of
the method Introduce  will be explained in the next section. Informally, it  executes
the method Introduce  defined in Person .

let createStudent = fun (name, address, faculty: String;

    birthyear, studentNumber: Int): Student is

ext createPerson(name, address, birthyear) to Student

private

let studentNumber = newStudentNumber();

methods

Faculty = faculty;

StudentNumber =  studentNumber;

Introduce = ( me as Person)!Introduce & 

“. I am a student of ” & faculty;

end;

Figure 7. Defining a constructor by inheritance

Figure 7 shows how the ext operator can be used to define a constructor for students
by inheritance, i.e. by extending the person constructor createPerson . Note
however that, in Fibonacci, a constructor for a role type with a super-role can be
defined either by inheritance, using the ext operator, or directly, using the role
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operator.
Figure 8 shows how the ext operator can be used to definine an extension

constructor, i.e. a function to transform a Person  into an Employee . 

let toEmployee = fun (aPerson: Person; dept: String) : Employee is

ext aPerson to Employee

private

let employeeNumber = newEmployeeNumber();

methods

Department = dept;

EmployeeNumber = employeeNumber;

Introduce = ( me as Person)!Introduce & “. I am an employee”;

end;

Figure 8. An example of an extension constructor

4 . 5 Method lookup

In traditional object-oriented languages every message is directed to only the most
specialized role, which either has a method for the message, or looks for a method in
its ancestors. The same happens in Fibonacci when a message is sent to one of the
most specialized roles of an object. However, when a message is sent to a role which
has several descendants, two different extensions of the standard mechanism are
possible:

• upward lookup: the method is looked up first in the receiving role and then in its
ancestor roles;

• double lookup: the method is first looked for in all the descendants of the
receiving role, then in the receiving role, and finally in its ancestor roles.

Upward lookup emphasizes the difference of behaviour between different roles, while
the double lookup results in a more uniform behaviour. Both rules, however, ensure
that if T and S are two cousin roles, then no message sent to S will be answered by
a method in T. Since both rules can be useful in some situations, Fibonacci gives
both possibilities. Upward lookup is achieved by object!message  and double
lookup by object.message ; upward and double lookup coincide, and also coincide
with the traditional lookup technique, when a message is sent to a most specialized
role of an object.

The following example illustrates the mechanism. Recall that the object John has
two roles johnAsStudent  and john , of type Student  and Person . Upward and
double lookup coincide for johnAsStudent , which has no descendant, while they
may behave differently for john :

johnAsStudent.Introduce => "My name is John Daniels and I was born in 1967.

 I am a Science student"

johnAsStudent!Introduce => "My name is John Daniels … Science student"

john.Introduce => "My name is John Daniels … Science student"

john!Introduce => "My name is John Daniels and I was born in 1967"
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Once john  is extended to an employee, its double lookup behaviour changes, since
the last acquired subrole is the first to be looked for:

toEmployee(john; “Quality Management”);

john.Introduce => "My name is John Daniels and I was born in 1967.

 I am an employee"

However, neither the upward lookup behaviour of john  nor the behaviour of john  as
a Student  are affected:

john!Introduce => "My name is John Daniels and I was born in 1967"

johnAsStudent.Introduce => "My name is John Daniels … Science student"

johnAsStudent!Introduce => "My name is John Daniels … Science student".

Both upward and double lookup are two forms of late binding (or dynamic
binding, or dynamic lookup). In object-oriented terminology, late binding of
methods to messages means that the method executed to answer a message does not
depend on the static type of the receiver (i.e. on its compile-time type), but on its run-
time type, or, in languages where different implementations are allowed for the same
type, on its run-time value. For example, late binding means that if a Student  is
bound to a variable of type Person , or is passed to a function expecting a Person

parameter, it still behaves like a Student :

let aPerson: Person = johnAsStudent;

aPerson!Introduce => "My name is John Daniels … Science student"

4 . 6 Object comparison, role inspection, role casting

Since an object in Fibonacci is a modifiable collection of roles, the language provides
the following operators on objects: 

• the equality operator (=) to test whether two objects are the same, independently
of the role used to access them; for example

johnAsStudent = john; (* returns true *)

• the infix predicate isAlso to test whether an object has a certain role; for
example: 

john isAlso Employee;  (* after extension, returns true *)

• the infix operator as to coerce an object to one of its possible roles (role
casting). The operator fails if the object does not have the specified role:

let johnAsEmployee = john as Employee; 

The expressions x as/ isAlso T  are well typed if T and the type of x  belong to
the same role type family.

The combination of casting with strict lookup (e.g. (X as T)!P  ) allows the
simulation of the traditional send-to-super mechanism of object-oriented languages,
as shown in Figure 6 above. The same combination also allows simulating static
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binding, as shown below, where anotherPerson  behaves like a Person:

let anotherPerson: Person = johnAsStudent as Person;

anotherPerson!Introduce  => "My name is John Daniels and I was born in 1967."

Finally, the isExactly operator is available on role values, to test their run-time
role type. For example: 

johnAsEmployee isExactly Employee;   (* returns true *)

john isExactly Employee;             (* returns false *)

aPerson isExactly Student;           (* returns true *)

anotherPerson isExactly Student;     (* returns false *)

5 BULK TYPES: CLASS, ASSOCIATION, SEQUENCE
TYPES

Bulk types describe collections of values with common properties. Fibonacci
supports three kinds of bulk types: class, association, and sequence type.

Classes are modifiable ordered sets of homogeneous values, used to model sets of
entities in the domain of discourse. Associations are modifiable ordered sets of tuples,
used to model associations between entities. Sequences are constant collections of
homogeneous values of any type.

Fibonacci query algebra is defined on sequences; since a class or an association
type is a subtype of a sequence type, Fibonacci’s algebraic operators can be applied in
the same way to the three kinds of data structure. On the other hand, operators to
insert and remove data, and to declare integrity constraints, are only available on the
updatable bulk types: classes and associations.

Classes, associations and sequences are first class types of the language, hence it
is possible to apply these type constructors to any other type of the language, at any
nesting depth.

5.1 Class and association types

Class ElemType  is a type of homogeneous ordered sets of elements of type
ElemType . Classes differ from sequences since they can be updated (while sequences
are constant), no repeated element is allowed in a class, and it is possible to define
constraints on classes, such as inclusion or mutual disjointness, as described below.

Assoc TupleType  is a type of homogeneous sets of tuples of type TupleType .
Tuples are ordered associations of values with identifiers; the notation [Ide 1:

Type 1; …; Ide n: Type n]  denotes a tuple type while the notation [ let Ide 1 = v 1;

…; let Ide n = v n]  denotes a tuple value. Associations behave like classes of
tuples: they can be updated, no repeated tuple is allowed, and it is possible to define
constraints on them, mainly to connect association fields with classes.
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5.1.1 Operations

A new empty class and a new empty association are created by the emptyClass of

and emptyAssoc of operations, as in the example below, where Student  and
Class  are previously defined types:

let students = emptyClass of Student end;

let classes = emptyClass of Class end;

let enrolled = emptyAssoc of [student: Student; class: Class] end;

Elements and tuples are inserted and removed from classes and associations using the
insert and remove operators:

insert Expr into Expr

remove Identifier from Expr where BoolExpr
 
In the insert operations, the type of the value or tuple inserted must be a subtype of
the element type of the class or association. remove removes all values, or tuples,
which satisfy BoolExpr , from the specified class or association, but the removed
elements are not deleted until an access path exists for them. When a value is inserted
into a class or into an association, a check is made to establish whether the value is
already there. In this case the insertion is a no-operation. Removal and insertion are
executed atomically: if the operation cannot be completed (typically due to some
constraint violation) every side effect is undone.

Besides these operators, all the operations on sequences defined below can be
applied to classes and associations, since, as already discussed, the following type
inclusions hold, where {T} is the type of sequences of elements of type T:

Class ElType ≤ { ElType }

Assoc TupleType ≤ { TupleType }

5.1.2 Integrity constraints on classes and associations

The following integrity constraints can be specified when a class or an association is
defined:

• Inclusion constraints
• Referential constraints 
• Surjectivity constraints
• Uniqueness constraints
• Constancy constraints
• General triggers on insertion and removal

A detailed description of these constraints is reported in [Albano91b]. Hereafter the
discussion will be limited to the inclusion constraint on classes, to the referential and
surjectivity constraints on associations, and to general triggers on insertion and
removal.
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Inclusion constraints

Classes can be organized into an inclusion hierarchy, which means that the elements
of a class are a subset of those of its superclasses (inclusion constraint). Moreover,
subsets of the same class can be defined as disjoint.

To this aim, the are inclusion constraint is used, which means that elements
inserted into a class are also automatically inserted into their superclasses; whereas
elements removed from a superclass are also automatically removed from their
subclasses. Here is an example of three subclass definitions:

let foreingStudents = emptyClass of ForeignStudent are students end;

let femaleStudents = emptyClass of Student are students end;

let femaleForeingStudents = emptyClass of ForeignStudent

                             are foreignStudents, femaleStudents end;

The butNot disjointness constraint means that the insertion of an element in a
subclass fails if the element is already present in another subclass. Here is an
example:

let femaleStudents = emptyClass of Student are students;

let maleStudents = emptyClass of Student 

         are students butNot femaleStudents end;

   
Referential constraints 

The referential constraint specifies the fact that a component of an association must
belong to a given class C. In general, the referential constraint may be violated either
because (a) the associated object is not a “valid” (in some sense) object, or (b) the
associated object does not belong to C. For example, in relational databases, where
the mechanism of external keys is used to model associations, problem (a) is the
main concern: the external key may not be associated with any tuple in the database.
In Fibonacci, every object found inside an association (or everywhere else) is a valid
object, but it may not belong to the intended class; hence problem (b) is our main
concern.

More generally, the kind of referential constraint problem to be dealt with in an
object-oriented database system depends essentially on how objects are removed from
classes and deleted. Deleting an object means that the object ceases to exists, i.e.
any reference to it becomes invalid, or becomes a reference to a “tombstone”.
Removing an object from a class just means that the object does not belong to the
class any more, but is still a valid object. Object-oriented database systems take two
different approaches to deletion and removal:

• A deletion operation is provided, which both removes an object from every class
and deletes it.

• No deletion operation is provided. Removing an object from a class does not
imply its deletion; the object is deleted behind the scenes by the system only when
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no more reference exists to the object (garbage collection).

When deletion is provided, problem (a) (invalid object references) arises: how can it
be verified that no method, used to model an association, returns a reference to a
deleted object? When class removal is provided, problem (b) (objects not belonging
to classes) arises: how can it be verified that no method, used to model an association
with class A, returns a reference to an object which has been removed from class A?
If any procedure can form the body of a method, it is impossible for the system, in
both cases above, to decide which kind of object a general procedure would return.

In Fibonacci, however, the referential constraint can be enforced, because
associations are not represented by methods but by a specialized mechanism,
associations, and the system is fully aware of association semantics. The fact that the
referential constraint can be maintained in the presence of removals is an important
accomplishments of the object-association data model.

Referential constraints in Fibonacci are associated with some fields of the tuples of an
association. We call these fields, submitted to a referential constraint and so
constrained to belong to a specified class, association components; and we call the
other attributes association attributes (or just components and attributes, for
short). The constraint is specified in the emptyAssoc expression which creates the
association, by writing:

emptyAssoc of […

label: Type in/ are/ owned by class;

…]

end

in, are and owned by class specify the same referential constraint (the field value
must belong to class), to be maintained with different styles, i.e. either by raising
failures or by modifying the database to force its satisfaction.

A referential constraint may be violated either when a new tuple is inserted into the
association, if the component does not belong to the class, or when an element is
removed from a class, if it is a component in a tuple in the association. The label:

Type in class  constraint raises a failure in both cases.
label: Type owned by class  forces a “cascade deletion” of the tuple when

the element is removed from the class (the association is “owned” by the class), but
raises a failure when a tuple is inserted in the association. So owned by codifies a
dependency constraint, more precisely a dependency of the association on the class,
where dependency means cascade removal.

label: Type are class  means that the projection of the association on label

behaves like a subclass of class : a removal from the class forces a removal from the
association (as in the owned by case); and an insertion in the association of a
component which does not belong to the class forces an insertion in the class (instead
of raising a failure as happens with in and owned by).

For a summary, see Tables 1 and 2.

21



Surjectivity constraints

While the referential constraint specifies that the existence of a tuple in an association
implies the existence of a value in a class, the surjectivity (or totality) constraint
enforces the converse implication: the existence of elements in a class necessitates the
existence of a tuple involving them in the association. The constraint is specified in
the emptyAssoc  expression by writing:

label: Type onto/ owns class

A surjectivity constraint may be violated either when a new element is inserted into the
class, if it is not a component of any tuple in the association; or when a tuple is
removed from an association, if it was the last which involves an element in the class.

The onto clause corresponds to the in clause: it fails in both cases. Suppose that
both a referential and a surjectivity constraint are being defined for a component of an
association with respect to the same class (which is quite common, see e.g. field
composite  of association assembly  in the example in Appendix A). Then a class
element and the first tuple referring to it should be created “at the same time”, since
each insertion should come before the other one (see Table 1). The same is true for
class and association removals. For this reason, the surjectivity constraint is not
checked immediately after a class insertion or an association removal, but at the end of
the smallest transaction which encloses the operation execution. Since the language
supports nested transactions, this smallest transaction can be made as short as
required; the language also supports a general mechanism to define an expression to
be executed at the end of the current smallest enclosing transaction (the defer

operator). Note that a similar problem occurs when a couple of classes are associated
by an association which is surjective (total) on both of them. In this case, two related
elements have to be inserted in the two classes “at the same time”. This is impossible
in many languages which support the object-oriented data model, while it is possible
in Fibonacci, thanks to the delayed checking of surjectivity.

The owns clause is the surjectivity counterpart of the referential owned by

clause: like onto, when an element is inserted into the class, then the operator fails if
in the same transaction a tuple referring to that element has not been inserted into the
association. However, when the last tuple referring to an element is removed from an
association, then that element is automatically removed from the class, at the end of
the transaction. So owns codifies a dependency constraint, more precisely the
dependency of a class on an association. Dependency of a class B on a class A
through an association AB can be expressed, in this language, by saying that AB
owns B and that AB is owned by A.

The following tables summarized the precise relationships between the above
constraints.
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Constraint Enforced condition Monitored operations 

referential x ∈ assoc.label ⇒ x ∈ class insert in assoc, remove from class

surjectivity x ∈ class ⇒ x ∈ assoc.label insert in class, remove from assoc

Table 1. Conditions Enforced and Operations Monitored by the Constraints

Constraint when [let label=x…] is inserted into assoc when x is removed from class

if x ∉ class if [ let label=x…] ∈ assoc

in fa i l fa i l

owned by fa i l remove assoc where label=x

are insert (x) in class remove assoc where label=x

Table 2. Action requested by a referential constraint, before performing an insertion/removal

operation.

Constraint when x is inserted into class when [let label=x…] is removed from assoc

if ( let label=x…) ∉ assoc if x ∈ class

onto fa i l fa i l

owns fa i l remove y from  class where y=x

Table 3. Action requested at commit time by a surjectivity constraint, when an

insertion/removal operation is performed

General triggers on insertion and removal

Triggers are the most popular mechanism to give a database the capability of reacting
to events.  In Fibonacci it is possible to associate an unlimited number of triggers with
a class or an association, through the constructs beforeInsert Expr  and
beforeRemove Expr . The action Expr  may be any expression of the language,
which is then executed every time an element is inserted (or removed) into the class or
association. Expr  can access the inserted (or removed) element and the class, or
association, through the predefined identifiers thisElement , thisClass  and
thisAssociation , as in the example below, where triggers are used to check a key
constraint and to maintain a count of class elements. 
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let femaleStudentsCount = var 0;

let femaleStudents = 

  emptyClass of Student are students

  beforeInsert assert no x in thisClass have x.Name = thisElement.Name

  beforeInsert femaleStudentsCount := at femaleStudentsCount + 1

  beforeRemove femaleStudentsCount := at femaleStudentsCount - 1

end;

Triggers can also be added to previously defined classes and associations. In
[Albano91b] it is shown that all the constraints (inclusion, referential, etc.) which can
be declared for classes and associations may be defined using the trigger mechanism;
in the current Fibonacci implementation, class and associations constraints are actually
implemented in this way.

The behaviour of triggers can be presented using the dimensions suggested in
[Fraternali94] to characterize active database semantics.

• Granularity: Triggers are activated for each insertion or removal operation. If
several trigger are defined for the same event, they are activated in the definition
order.

• Coupling modes: Usually the action defined in a trigger is executed as soon as an
insertion or removal operation is executed (immediate coupling). However, by
exploiting the language construct defer Expr , it is also possible to specify that
the action must be executed at the end of the smallest transaction containing the
operation that has activated the trigger (deferred coupling).

• Atomicity of rule execution: The action of a trigger may generate new events
which trigger other actions. When a new event is generated, the current action is
suspended, and is resumed when the triggered actions have been completed. 

• Relationship to transactions: The action of a trigger is executed in the same
transaction where the triggering event arises.

• Conflict resolution: If an event activates several triggers, they are executed
serially in the order in which they are defined.

• Event consumption: The triggered event no longer activates the processed rule,
but may still trigger different rules.

• Transaction history inspection: In the action part of a trigger, the state of data
before the execution of the action can be inspected with the construct  old.

5.2 Sequence type

Sequences are ordered collections of homogeneous values with duplicates. Fibonacci
query algebra operators are defined on sequences, and may be applied to classes and
associations too, thanks to subtyping.

Fibonacci query algebra is characterized by the following features:

• Although it may be used in an SQL fashion, it is not based on a select-from-where
operator (as happens with O2, for example [Bancilhon 89]), but on a set of atomic
algebraic operators which may be combined in many different ways, which gives
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more flexibility to the algebra.

• No attention has been paid to minimality. Although it is well known that
essentially all of the algebraic operators may be defined in terms of the fold (also
called pump) operator typical of functional languages with lists [Breazu-Tannen
91], in Fibonacci product, projection, selection and iteration are defined as
different operators. This improves both language usability and optimizability.

The notation {T} denotes the type of a sequence of elements of type T, and
{ E1;…;En} denotes the sequence containing E1,…,En. Several operators are
defined on sequences, and the presentation will be focused on those that constitute the
Fibonacci query algebra.

The typical Fibonacci query has the following form:

for ( ide 1 in SeqExpr 1 times … times ide n in SeqExpr n)

where BoolExpr ( ide 1, …,ide n)  

do SeqExpr ( ide 1,…, ide n)

which essentially evaluates SeqExpr ( i de 1 ,…, i de n )  for all the tuples
ide 1, …,ide n of values from SeqExpr 1 … SeqExpr n which satisfy the condition
BoolExpr ( ide 1, …,ide n) . However, for- in- times- where- do is not a single
construct but just a typical way of combining different atomic operators, and each of
these operators has its own elementary semantics.  We now give the semantics and
examples for each of these operators, using the sequences employees  and
departments  with elements of the following tuple types:

Let Employee =

[empNo: Int;

 deptNo: Int;

 name: [name, surname: String];

 birthYear: Int;

 dependents: {[name: String; birthYear: Int; relationship: String]} ];

Let Department =

[deptNo: Int;

 deptName: String;

 deptBudget: Int;

 mgrNo: Int];

Note that classes of objects and associations would be queried exactly in the same
way; a nested-relational-like schema has been used since it may be more familiar to
the reader.

The query operators are defined as follows.

Label  in Sequence

This returns a sequence of tuples with a unique field named Label , associated
with the value of the corresponding element in Sequence.
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L-TupleSequence  times R-TupleSequence

L-TupleSequence  join R-TupleSequence

Both return a sequence of tuples obtained by concatenating each tuple in L-

TupleSequence  with every tuple in R-TupleSequence . If the tuples in L -

TupleSequence  and R-TupleSequence  have attributes with the same name,
times fails, while join only concatenates in the result those tuples with the same
value in these attributes (natural join). The tuples in R-TupleSequence  to be
concatenated with each tuple t in L-TupleSequence  can be defined in terms of t
(dependent product and dependent natural join). For example:

(emp in Employees) times (dep in emp.dependents)

creates a sequence of two-field tuples, containing one tuple for each employee-
dependent pair. This is possible  since in R-TupleSequence  the labels of the tuples
in TupleSequence  (emp is the only such label, in this example) can be used to
denote the corresponding field.

More generally, the expression which is the second operand of the operators on
sequence of tuples (such as times, join, where, for- do, group by, all,
some), can always directly access the fields of the tuples in the first operand.

TupleSequence  where BoolExpr

e.g.: employees where birthYear = 1960

(e in employees) where e.birthYear = 1960

This returns the sequence of the tuples in TupleSequence  which satisfy the
condition BoolExpr .

for TupleSequence  do SeqExpr

e.g.: for employees do name

for e in employees do e.name

The expression SeqExpr  (which must return a sequence) is evaluated for all the
elements of TupleSequence ; the for expression returns a sequence obtained by
appending the sequences produced at each iteration.

the SeqExpr

e.g.: the (employees where empNo=132)

This returns the only element of the singleton SeqExpr  and fails if
count(Sequence) is different from one.
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setof Sequence

e.g.: setof ( for employees do {name.name})

This eliminates duplicates from Sequence .

all Sequence have BoolExpr

some Sequence have BoolExpr

e.g.: all employees  have birthYear > 1900

some e in employees  have isEmpty(e.dependents)

all and some verify whether a condition holds for all elements, or respectively for
at least one element, of a sequence of tuples.

TupleSequence group by (Expr)

pick Sequence

group by returns a partition of the elements in Tup leSequence  in
subsequences; two tuples are put in the same partition whenever the expression Expr

has the same value for both of them. pick returns one element of Sequence , chosen
non deterministically. It is usually used in conjunction with group by. For
example, the query:

for empGroup in (employees group by birthYear)

do {[ let year := pick(empGroup).birthYear;

     let count := count(empGroup);

     let employees := empGroup]}

partitions the employees according to the birth year and, for every birth year, returns a
tuple containing the birth year, the number of employees with that birth year, and the
sequence of those employees. The where operator allows us to restrict both the
employees and the employee groups to be considered, as in the following example:

for empGroup in (employees where isEmpty(dependents) 

                     group by birthYear)

where count(empGroup)>2

do {…}

6 THE ARCHITECTURE OF THE FIBONACCI SYSTEM

The first implementation of Fibonacci is currently being completed. The current
implementation is a single-user system with a minimal programming environment,
and is used to experiment with the language.

The system is organized into three layers, the Compiler, the Persistent
Hierarchical Abstract Machine and the Persistent Store, described in the next three
sections.

27



6.1 The compiler

The main tasks of the compiler are to typecheck Fibonacci expressions and to generate
the corresponding PHAM code, which is then executed by the PHAM.

The compiler is written in Modula-3  and is structured in an object-oriented way.
For any syntactic construct of the language, a corresponding object type exists.
Hence, any node in an abstract syntax tree is represented by an object, which refers to
the objects representing its childrens in the tree. Each object class has its own Parse,
Type-Check and Code-Generate methods, which typically use the corresponding
methods of the children: for example, an object modelling an “if b then e1 else

e2” node refers to the objects modelling b, e1 and e2, and uses their Code-Generate
methods to generate the code for the whole construct. This structure makes it easier to
add and remove new constructs to and from the language, since all the code which is
related to a construct is collected in the corresponding object class.

In Fibonacci all information is persistent, not only data, but the environment (i.e.
the current associations of identifiers to values and types) and the types are persistent
too. For this reason, the compiler does not use Modula-3 variables to store this
information, but they are encoded as PHAM data structures and stored inside the
persistent store. The availability of this information inside the persistent store means
that browsing tools can be written which access this information by connecting
themselves directly to the store, with no need to interact with the compiler; one such
tool, which allows browsing data, sending messages to objects, and browsing the
environment and the types, is already part of the current system. We plan to
reimplement the system, in a future version, using Fibonacci itself. The compiler
information would thus be stored inside the persistent store without having to rely on
any interface to manipulate them.

6.2 The Persistent Hierarchical Abstract Machine

The PHAM has two main tasks. First of all it builds, on top of the primitive and
general purpose data structure supported by the persistent store, the more complex
and specialized Fibonacci data structures. Moreover, it executes the compiled
Fibonacci code, and stores it as first class data.

The PHAM is a stack machine which manipulates data and closures (i.e. compiled
functions). The PHAM derives from Landin’s SECD (Stack-Environment-Code-
Dump) machine, and more directly from Cardelli’s FAM [Landin64] [Cardelli83]. A
piece of PHAM code is a linear sequence of zero-address operations which take their
arguments from, and put their results to, the stack. The PHAM is characterized, with
respect to other similar persistent SECD-machines used to implement persistent or
volatile functional programming languages, by features which regards its interface
and its implementation.

Most SECD-machines are designed to offer a minimal set of operations and a
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minimal set of very general data types10, so that the machine is general and small.
PHAM, on the other hand, offers higher level data types and much more complex
operations, which  closely correspond to Fibonacci. This difference is due to a change
in perspective about optimization. In temporary functional languages optimization is a
compiler task, hence the compiler emits a low level code. In persistent systems, some
kinds of optimization decisions, such as access plan generation for queries, have to be
dealt with at run time, hence a query must not be transformed into a sequential
program by the compiler, but a query construct must be part of the abstract machine
language. 

PHAM is characterized by its architecture and by the fact that it does not have any
local store, but completely relies on the persistent store for this. The internal
architecture of PHAM is represented in Figure 9.
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Figure 9. PHAM architecture.

The PHAM is divided in two layers. The higher layer is a PHAM interpreter, whose
task is to execute the PHAM code. More precisely, the PHAM interpreter directly
executes control flow operations and stack manipulation, and, when it recognizes an
operation which is specific to a data type, it invokes the corresponding module. This
approach was chosen to make it easier to define new data types and to test various
implementations for them. Furthermore, this means that we still have a small general
purpose abstract machine (the interpreter) with a manageable complexity, plus a set of
data type modules which are  “external” with respect to this kernel.

6.3 The Persistent Store

The persistent store manages a persistent collection of data items, where a data item is
a string of uninterpreted bytes and of references to other data items. The store also
offers a mechanism for atomically saving a frozen version of its state and for restoring
the last frozen state in case of failure. This mechanism is used by the PHAM to realize
the outer level of nested transactions.

Since the PHAM directly stores all its data inside the persistent store, without
trying any kind of caching or special treatment of volatile data, the persistent store
must be able to manage temporary data with an efficiency which is comparable to the
one of the central memory. This is a very strong requirement. However, the

10 Landin’s SECD only has one data type, the closure, and three operations: stack access, λ-
abstraction, and application.
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alternative choice of having the PHAM realizing a buffering schema on top of the
persistent store was discarded to avoid the risk of having two different and
contrasting buffering schema built one atop the other, with the consequent well
known problems.

Another design choice is that the persistent store will not be built as part of the
Fibonacci project, but is based on a component built elsewhere, to avoid duplicating
efforts in a field which is currently being widely investigated. For this reason, the
operation set required from the persistent store is minimal, to allow tests and
comparisons involving different persistent stores. This minimality choice clearly has
drawbacks, since it does not allow us to exploit the more advanced features of the
available stores. Our current realization relies on the Napier store described in
[Brown89]. We are currently experimenting with the O2 engine too.

7  OTHER WORKS

7 . 1 Object-oriented database languages

Like other database languages, Fibonacci has been designed to overcome the
limitations of traditional systems due to the lack of integration of the data model with
the programming language (impedance mismatch) and the unsuitable modelling
capability of the data model. Examples of these languages are Taxis [Mylopoulos80],
Galileo [Albano85], Statice [Symbolics88], O2 [Bancilhon92], Orion [Kim90]
[Banerjee87], Gemstone [Gemstone86], Vbase and Ontos [Ontologic87,
Ontologic89]. Below is a brief comparison  of Fibonacci with two other well known
object-oriented database programming languages, O2 and ORION, to show the
different solutions offered to model the following aspects: objects, object types,
classes, associations between sets of objects, type hierarchies, and class hierarchies.

Objects. The languages all support the notion of objects with identity. The state
encapsulation is provided only in O2 and Fibonacci. In Fibonacci and O2 all the
language values can either be temporary or persistent, as persistence is an orthogonal
property of the type system, while in ORION only objects can become persistent, and
the management of versions is provided. In Fibonacci objects can have roles and an
operator is provided to change the role of an object without affecting its identity. A
similar mechanism has been proposed in other languages [Albano85] [Fishman87]
[Richardson91] [Shilling89] [Stein89]. A detailed analysis of these proposals is made
in [Albano93]. The conclusion is that the proposals which support late-binding
(Galileo and Iris), always assume the existence of a most specialized type in order to
resolve the message dispatching ambiguities that can arise from type multiplicity. On
the other hand, when the previous assumption is abandoned and objects are allowed
to have multiple minimal types (Clovers, Views and Aspects), late-binding is never
provided. A novel aspect of Fibonacci is thus the coexistence of late-binding and
multiple inheritance with role multiplicity and dynamic object extension, in a
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framework with strong type-checking and subtyping.
Object types. The languages all support a construct to define object types, with

associated methods. Only ORION has the restriction that the state of an object can
have components of the following types only: elementary, object, and set of objects.
The other languages have a collection of type constructors (e.g., tuple, set) that can be
used without restrictions to define a component of the object state. In Fibonacci only a
single object type can have many implementations. Only the Fibonacci type system
provides a constructor to distinguish constant values from modifiable ones, and this
has important consequences on the possibility of statically typechecking definitions
and applications. 

ORION allows the definition of composite objects, i.e. objects that have other
objects as components with the possibility of enforcing (a) the constraint that an
object is a part of only one object, and (b) that the existence of an object depends on
the existence of its parent object. Fibonacci can express the same constraints by
exploiting the association mechanism.

Methods are defined differently in the three languages.  In ORION and O2 the
method signature is specified in an object type definition, and the body of a method is
specified separately as a Common LISP or O2C function with the object type to
which the method belongs as the type of the first parameter. In Fibonacci the body of
a method is specified with the object constructor. Only Fibonacci is a statically and
strongly typed, polymorphic language.

Classes. Fibonacci and O2 provide two separate mechanisms to deal with objects
and sets of objects, here called classes; objects are explicitly  inserted and removed
from a class. As in most object-oriented database languages, in ORION an object type
definition entails automatically defining a variable with the same name to denote all the
objects of that type. 

Associations. In O2 and ORION, associations between objects are only
modelled by aggregation, i.e. by the definition of objects which have other objects as
components. In Fibonacci, associations relate objects which exist independently, and
they can be defined incrementally without redefining the structure of existing objects.

Type hierarchies. In all these languages, object types can be organized into
hierarchies and the benefits of the inheritance mechanism can be exploited. However,
only the Fibonacci type system has been designed for a statically and strongly typed
language.

Class hierarchies. Classes can be organized into a subset hierarchy with the
following properties: (a) the type of the subclass elements is a subtype of the type of
the superclass elements, and (b) the extension of a subclass is a subset of the
extension of the superclass.  A subclass can be defined from a single superclass, or
from several superclasses, and can be populated by creating new elements, and also
by moving objects from a superclass into the subclass. Class hierarchies are treated
differently in object-oriented database languages. O2 does not provide this
mechanism. ORION provides disjoint subclasses, except when a class is defined by

31



multiple inheritance, and subclasses cannot be populated by moving objects from a
superclass into the subclass. A construct is provided to access the element of a class
without considering those elements which also belong to a subclass. Fibonacci
provides subclasses in the most general form with the option of moving to move
objects from a superclass into a subclass.

7 . 2 Persistent languages

Persistent languages are languages where persistency is a property which is
orthogonal to types. Fibonacci is a persistent language, but differs from some of them
such as PS-Algol, Napier and Tycoon since it is also a database language, meaning
that Fibonacci directly supports a specific data model. The scope of Fibonacci
research is currently twofold: in the field of data modelling, to design a data model
which is richer than current object-oriented data models, and in the field of type
systems, to extend the expressivity of the type system of current languages.

The design goal of the Napier and Tycoon persistent languages is slightly
different. Both support the add-on approach for data modelling, i.e. they do not
provide direct support for a specific data model but provide programmers with the
tools they need to define their own data model. The main tools provided by the
Tycoon language for this aim are [Matthes94]:

• a rich type system, which is indeed very similar to the Fibonacci type system, in
that both derive directly from the Quest type system [Cardelli90];

• a rich sublanguage for module and library management;

• a mechanism to extend Tycoon syntax;

• a linguistic mechanism and an implementation style which allow Tycoon to be
used as a gateway to operate on different systems; a similar mechanism was
developed for the Galileo system and is present in Fibonacci too, but the Tycoon
project deals with this aspect with much more attention.

The Napier project has a yet another aim. While Tycoon focuses on openness, i.e.
extendibility and interoperability, the Napier project tries to define a complete Napier
based environment where the persistent Napier store becomes the repository of all the
data, and even replacing the file system, and every tool is written in Napier88 itself,
taking the maximum advantage from the persistence of the language and from the
integration of the environment. The main mechanisms which are offered by the
Napier88 language to fulfill this project are [Morrison94]:

• a rich type system. It lacks inclusion and parametric polymorphism, however it
has an environment construct which provides for a form of controlled dynamic
typechecking which is very useful for dealing with database evolution. 

• A reflection mechanism, which gives the system the ability to generate and then
evaluate the Napier88 code.
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8  CONCLUSIONS

This paper is an introduction to the Fibonacci database programming language. We
have presented the most important language features for modelling databases but we
have omitted other language features as well as several details on the concepts
discussed. Further information on the object mechanism may be found in [Albano93],
on the class mechanism in [Ghelli90] [Albano91b], and on the association mechanism
in [Albano91b]. The informal definition of the language may be found in
[Albano94a]. 

The implementation of the language is in progress. The language is implemented
as an interactive compiler written in Modula-3 and running on Sun workstations and
on MS-DOS machines. The present implementation does not support concurrent
access to persistent data. The persistence of data is achieved using the persistent
object store of the Napier 88 language developed at St Andrews University. A
description of the Fibonacci system and the features of the programming environment
may be found in [Albano94b].

The research in progress on the Fibonacci language  addresses the following
aspects: a modularization mechanism, constructs for viewing and schema evolution,
mechanisms to connect Fibonacci with other languages.

A modularization mechanism is needed to be able to partition big software projects
in manageable units (modules) with an interface which only indicates the types of the
values which are exported by each unit. The Fibonacci proposal will be based on the
idea that modules are first class values and module interfaces are first class types. In
this way, it is possible to define a very flexible module mechanism by adding a small
amount of new constructs to the language.

Viewing and schema evolution mechanisms, such as the view and alter
table constructs of SQL, must be present in every database programming language,
to manage the fact that the same piece of information may be best viewed in different
ways in different contexts, and the fact that the structure of a database naturally
evolves with time. The traditional SQL approach cannot be directly transposed in a
persistent language as Fibonacci for many different reasons. The most important is
that in a persistent language there is not an exact equivalent to the notion of a
“database schema” which only describes the structure of classes. The “environment”
of a persistent language merges the definition of types, classes, functions and simple
variables. Hence, a schema evolution mechanism must manage, in a linguistically
consistent way, the coherent evolution of all these pieces of information. Moreover,
in a statically and strongly typed language, it is important that the viewing and
evolution mechanisms do not break the strong typing of the system. First steps in this
research direction have been taken in [Albano95], where a view mechanism for
objects is described.

Finally, mechanisms to connect Fibonacci to other languages are needed in order
to allow Fibonacci programmers to access software packages written in different

33



languages and data managed by different systems. The current Fibonacci system
contains a mechanism which allows any package with a C language interface to be
dynamically linked to the Fibonacci system and its constants, variables, and functions
to be accessed as if they were predefined Fibonacci functions. The mechanism will be
generalized, mainly to allow more languages to be accessed, more parameter passing
techniques to be exploited, and to allow Fibonacci functions to be passed as call-back
parameters.
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Appendix A

A database example

Let us consider the classical example of parts and suppliers, with parts defined
recursively by other parts, either composite or base. The scheme is shown in Figure
10.

parts

composite
Parts

base
Parts

assembly

suppliers

supply

Figure 10. The Parts example

Here is the Fibonacci scheme:

(* object and role type definitions *)

Let PartObject = NewObject;

Let SupplierObject = NewObject;

(* role types *)

Let Part =

IsA PartObject  With

Name: String;

Cost: Int;

Mass: Int

End;

Let BasePart =

IsA Part With End;

Let CompositePart =

IsA Part With

AssemblyCost: Int

End;

Let Supplier =

IsA SupplierObject  With

Name: String;

Address: String

End;

(* classes *)

let parts = 

      emptyClass of Part

      key   Name
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         elsefail "parts key: duplicated Name"

      end;

let baseParts = 

      emptyClass of BasePart 

         are parts 

      end;

let compositeParts = 

      emptyClass of CompositePart 

         are parts butNot baseParts

      end;

let suppliers = 

      emptyClass of Supplier 

      key   Name

         elsefail "suppliers key: duplicated Name"

      end;

(* associations *)

(* a base part cannot exist without a supplier for it  *)

let supply =

    emptyAssoc of

        [ basePart :BasePart are baseParts 

                    onto baseParts

                       elsefail "supply: basePart onto baseParts";

          supplier :Supplier in suppliers ]

    end;

let assembly =

    emptyAssoc of 

        [ composite :CompositePart are compositeParts

                     onto compositeParts

                       elsefail "assembly: composite onto compositeParts";

          component :Part in parts

                       elsefail "assembly: component in parts";

          quantity :Int ]

    key composite, component

      elsefail "assembly key: duplicate pair composite component"

    end;

(* auxiliary constructors used to create values *) 

let createBasePart = 

    fun(aName :String; aCost, aMass :Int) :BasePart is

      begin 

         assert not (isUnknown aName)

            elsefail "createBasePart: Name cannot be unknown";

          role BasePart

          methods

             Name = aName;

             Cost = aCost;

             Mass = aMass

          end;
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      end;

let createCompositePart = 

    fun(aName :String; anAssemblyCost :Int) :CompositePart is

      begin 

         assert not (isUnknown aName)

            elsefail "createCompositePart: Name cannot be unknown";

         role CompositePart

         methods

             Name = aName;

             AssemblyCost = anAssemblyCost;

             Cost = anAssemblyCost +

                        sum( for assembly  where composite = me 

                                 do component.Cost*quantity);

             Mass = sum( for assembly where composite = me 

                                 do component.Mass*quantity)

          end;

       end;

let createSupplier = 

    fun(aName, anAddress :String) :Supplier is

      begin 

         assert not (isUnknown aName)

            elsefail "createSupplier: Name cannot be unknown";

         role Supplier

         methods

             Name = aName;

             Address = anAddress

          end

   end;

(* functions to insert elements in classes which are not domain of 

surjective associations *)

let insertIntoSuppliers =

    fun(aName, anAddress :String) :Supplier is

       begin

          let newSupplier = createSupplier(aName; anAddress);

          insert newSupplier into suppliers;

          newSupplier

       end;

(* functions to insert elements in classes which are  domain of 

surjective associations *)

let insertIntoBasePartsAddSuppliers =

    fun(suppliers: {Supplier}; aName :String; aCost, aMass: Int) :BasePart is

      atomic

         let bp = createBasePart(aName; aCost; aMass);

         loop s in suppliers do

               insert [bp; s] into supply

         end;

         bp;

      end;
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let insertIntoCompositePartsAddComponents =

    fun(someComponents :{[component: Part; quantity: Int]};

        aName :String; anAssemblyCost :Int): CompositePart is

       atomic

         let newCompositePart = 

               createCompositePart(aName; anAssemblyCost);

         loop someComponents do

            insert [newCompositePart; component; quantity] into assembly

         end;

         newCompositePart

       end;

(* function to add a new supplier for a base part *)

let addSupply =

    fun(aBasePart :BasePart; aSupplier :Supplier): Null is

       insert [aBasePart; aSupplier] into supply;

(* query examples *)

(* find the base parts which cost more than 100.000 *)

baseParts where Cost > 100000; 

(* result type :{BasePart} *)

(* find Name, Cost and Mass of the base parts which cost more than 100000 *)

for baseParts 

where Cost > 100000 

do [let Name = Name; let Cost = Cost; let Mass = Mass];

(* result type :{[Name :String; Cost :Int; Mass :Int]} *);

(* Find the cost of part "FunBike" *)

( the (parts where Name = "CityBike")).Cost;

(* result type :Int *);

(* find the names of base parts supplied by Alfred *)

for supply 

where supplier.Name = "Alfred" 

do basePart.Name;

(* result type :{String} *)

(* a recursive function to find all the base parts composing a part *)

rec let findBaseComponents = fun(aPart: Part): { basePart } is

if aPart isAlso BasePart

then { aPart }

else setof ( for assembly where composite = aPart

do findBaseComponents(component) )

end

end;

(* find the base parts of the part named “FunBike” *)

findBaseComponents( the (parts where name = "FunBike"));
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