A Relationship Mechanism
for a Strongly Typed
Object-Oriented Database
Programming Language

Antonio Albano*,
Giorgio Ghelli*,
Renzo Orsini

*Dip. di Informatica
Universita di Pisa
Corso lItalia 40
Pisa, Italy
albano,ghelli@dipisa.di.unipi.it

§Dip. di Informatica ed Applicazioni
Universita di Salerno
Baronissi (SA), Italy
orsini@udsab.unisa.it

Abstract

Object-oriented data models are receiving wide
attention since they provide expressive
abstraction mechanisnte model naturally and
directly both structural and behavioral aspects of
complex databases applications. In an object-
oriented data model, a databaserisdeled in
terms of objects grouped in classes, organized
into subclasses hierarchies. Moreover,
associations between entities are modeled by
defining properties obbjects whose value is the
related object. However thigray of modeling
associations has several limitations which make
the description of some aspects of associations
unnatural. To overcome thedamitations an
object-relationship data model is proposetich
supports both the mechanisms of an object-
oriented data model and a separate mechatosm
model explicitly associations and to express
declaratively common constrainten them.
Constructs to support this model for a statically
and strongly typed object-oriented database
programming language are defined.

1 Introduction

Object-oriented databases are becoming increasir
popular as a means to overcortlee limitations of
commercial DBMS. These limitations concern bdtte

This work was carried on with the partial support

Ministero dell’Universita e della Ricerca Scientifica
Tecnologica, E.E.C. Esprit Basic Research Act}Y0 FIDE,
and of ltalian C.N.R., P.F. Sistemi Informatici e Calcol
Parallelo.

data models, which favour the efficient use of secondary
memory at the expense of expressiveness, and the
programming languages, which are unsuitable for the
growing complexityof the applications due to the scarce
integration of the data model abstraction mechanisms with
those of the programming language.

The object-oriented programming paradigm is a very
promising means to develop a new generation of DBMSs
since both the problem of thexpressivity of the data
model, and the problem of integrating procedural dath
modeling aspects can be tackled. The main features of
object-oriented databases are discussefhtkinson 89]
[Dittrich®90] [Zdonik 90]. Let us brieflyecall some basic
features of an object-oriented data model, and in
particular how associations between entities are modeled.
An object-oriented data model is based on the notions of
objectsandclasses Objects are used to modetal
world entities, and they have an immutable identity: the
state of an object can be modified only by an objentis
methods. Classes are sets of objects, used to reetebf
homogeneous entities, and they are organized into a
subclass hierarchy.Associations between entities are
modeled as properties of objects, i.e. as attributes whose
values are the associated objects. A class is associatec
with an object type, in such a way that all thelues of
that object type, and only that particular objagpe,
belong to the clasdaVVhen objects in two classesandb,
whose elements have typeandB, are mutually related

by an association, an attribute of types defined in the
object typeA, and vice versa, to model two one-
directional relations. The constraint that the relation from
a to b is the inverse of that frorb to a, cannot be
expressed declaratively in tlodject definitions, but must

be coded in the methods which implement the association.
The main advantage of thimification of attributes and
associations is simplicity, since the same mechanism is
used to deal with both of them, unifyirtge mechanism
used toretrieve an attribute with the one used to retrieve
associated objects, and the mechanisms to declare
cardinality, surjectivity or non-modifiability constraints
for both attributes and associations. However this
approach has some limitations [Rumbaugh 87]:

— associations are conceptuallyhéggher level abstract
notion, their implementation should be decided by the
DBMS; attributes, on the other hand, force the
programmer to choose a specific implementation for
them;

— the association semantics is split betwebfierent
objects;

— associations are symmetand the enforcement of the
inverse relation constraims not efficient when a method

is used;

— associations are not necessarily binary, and they can
have their own attributesthese aspects can only be
modeled indirectly by means of attributes;

— associations relate objectghich exist independently,
and it ought to be possible to define them incrementally
without having to redefine the structure of existing
objects;

— operations on relationships as a whole are generally not
straightforward.

1This use of the term class is different from the standard
one in the context of object oriented languages, where it refers to
the type of objects

Another fundamental problem with an object-orient:
data model is the enforcement of the constraint that
extension of a class (the set of its elements) coincides
the set of all the elements dhe related type. This
“extension coincidence constraint” is usedtle object-
oriented data model to enforce the referential constrain
follows: when an attributp of anobject is used to mode
an association with objects which must be elements ¢
classh, this constraint is enforced by defining the type
the object attribut@ to be thatof the elements of clas:
b. While enforcing the extension coincidence constra
when objects are created or inserted into a class is €
enforcing it when objects are removéim classes is
difficult. Removing an object from a class, by extensi
coincidence, is only allowed if the object can no longer
reached by the associated type. In any object orier
language this condition is undecidable, and t
implementation of any reasonable approximation of
requires either a system-controlled implementation
associations or an extrematpstly operation. A common
alternative approach is to mark any object removed frol
class as “killed”, which allows raising a failure when th
object is successively accessed; this is slightly better t
leaving dangling references, but cannot be regarded a
enforcement of the referential constraint.

To overcome the above limitations in modellin
association with an object-oriented datadel, an object-
relationship data model is presented. The mz
contribution of the proposal is the inclusion of tF
following features in a strongly typed, object-oriente
database programming language:

— a construct to represent associaticasn-ary
symmetric relations among classes;

— associations can be organizéauo a specialization
hierarchy;

— the referential integrity constraint is actually enforcec
— several constraints on associatiosig;h as cardinality,
surjectivity, dependencyand non-mutability can be
defined declaratively;

— the system is requested to implement associations,
the referential constraint can be enforced at a reason
cost.

The focus will be on the mechanisms to model classes
associations. The othefeatures of the databas
programming language, in particular the mechanism
model objects, is beyond the scope of this paper, an
given in [Albano 90].

The organization of theemainder of the paper is a
follows. Section 2 briefly overviews the objeci
relationship data mode$ection 3 discusses constructs 1
model classes of objects andsociations between classe
in an object-oriented programming language. Sectiol
presents a minimal set of basic operations, where all
high level constructs can be interpreted. Sectior
compares related works. Conclusion comments on
work in progress.

2 The Object-Relationship Data Model

In the object-relationship data model, as in the obj
model, real world entities are modeldny objects
collected in classes. Classes are sets of homogen
objects, and inclusioand mutual disjointness constraint

can be defined on classesssociations between objects
are not represented by the aggregatiwcthanism, but by
n-ary relations relating objecis classes and also other
values, which represent tlatributes of the association.
An inclusion relation can bedefined on pairs of
associations. The following constraints can be defined on
associations:

— Surjectivity constraints carbe defined for single
components of associations. An associatkBbetween
classesA, andB is surjective (or totdlon theclassA if

all the elements oA appear irAB.

— Dependency constraints can be defined between
classes and associations. An associathk® between
classesA andB dependon the clasA (AB owned by

A), when, any time an object iemoved from the class

A, all the associations involving that object are removed.
Class A depends omAB (AB owns A if an object is
automatically removed from when the last tuple iAB
involving that object is removedAn association can
simultaneously own and be owned by a class. Classes anc
associations can own or be owned by any numbettadr
associations and classé®3 owned byA andAB owns B
together mean that, when the last elemenf iwhich
refers to an elemenb in B is removed, therb is
removed too. These constraints can be combined with
keys and surjectivity to express the matifferent flavors

of composite objectdescribed in literature [Kim 89].

— Constancy constraints can be defined. Inrtkeery
case, the definition of constancy is: L&f...A, be
some components of an associatidgasog¢ Associs
constant with respect té\;...A, if, for any tuple
a;...a, of values forA;...A,, the set oftuples in
Assocwith components; ...a, is always the same in
any state wher@...a, exist (i.e. in any state where
a, ...a, belong to their classes).

— Subsets of the components of an associationbmn
declared as keys for the association. This means
cardinality constraints can be expressed, e.g.
distinguishing between single and multi valued relations.

The class and association constructs are exemplified
through a slight modification of the simplified university
administration application used in [Casanova 89],
illustrated in Figure 1.

schedule
rooms

cours -
course Instanc = classe | [seminar
basic | &= @
course

student

P class inclusion

g}o key constraint

3> surjectivity constraint

Figure 1: Examples of classes and associations

Scheduless a class of time intervalspomsare the
available roomsgventsare the events, such as classs
seminars etc. that are scheduledyrsesare the courses
that can be offeredhasicCoursesare the fundamental
courses which are always offeradassesare the classes
running; seminarsare the scheduled seminastudents
are the registered students. The relationgitlipcations
indicates which rooms are allocated for which events
which timeintervals;courselnstanceéndicates the course
of each classgnrolled indicates which students an
enrolled in which classed.he following constraints are
specified:

1) inclusion constraints:

— classesandseminarsare disjoint subsets @vents
andbasicCoursess a subset afourses

2) referential constraints:

— insertions intoallocations courselnstance and
enrolledfail if the objects used as components are |
elements of the corresponding classes;

— the removal of an elemertfrom the classesooms,
eventsor scheduledails if x appears imallocations
(i.e. x is the value of a field of an element ¢
allocations;

— the removal of an elememtfrom the clasgourses
fails if x appears igourselnstance

— the removal of an elememntfrom the classclasses
fails if x appears ienrolled

— the removal of an elememntfrom the classclasses
does not fdi if x appears incourselnstance but
forces the removal of the elementadfurselnstance
wherex appears;

— the removal of an elememtfrom the classtudents
forces the removal of all the elements efrolled
wherex appears;

3) surjectivity constraints:

— each element ofclasses is associated by
courselnstancewith at least one element cburses

— each element ofbasicCousesis associated by
courselnstancewith at least one element cfasses

4) key(cardinality) constraints:

— each element ofclasses is associated by
courselnstancesvith a maximum of one element o
courses

— each pair of elements afboms and schedulesis
associated byallocations with a maximum of one
element okevents

5) constancy constraints:

— each element otlassesis always associated by
courselnstancewith the same element oburses

For the sake of simplicity, in Figure 1 subclas
disjointness, dependency and constancy constraints v
not represented. This database is described by
following schema, using the constructeat will be
defined later; the definition ofhe object types (like
ASchedule, ARoom) is out of the scope of his paper.

let schedules new(classOfASchedule)

let rooms =new(classOfARoom)

let courses mew(classOfACourse)

let basicCourses rew(classOfABasicCourse

are courses)
let students mnew(classOfAStudent)
let events =new(classOfAnEvent)
let classes mew(classOfAClass are events
but not seminars)
let seminars =:new(classOfASeminar are events
but not classes)
let allocations =new(assocOf
TheRoom: ARoonin rooms
TheSchedule: AScheduile schedules
TheEvent: AnEvenin events
ContactPerson: string
key (TheRoom TheSchedule))
let courselnstance rew(assocOf
TheCourse: ACourde courses
onto basicCourses
TheClass: AClasewned_byclasses
onto classes
constant_on (TheClass)
key (TheClass))
let enrolled =new(assocOf
TheStudent: AStudemwned_bystudents
TheClass: AClasm classes)

In this model, the typical object-oriented mechanism of
aggregation can still be used to build relations between
objects, by defining object attributes with an object type.

This can be used, for instance, moodel complex
objects, i.e. objects with parts which can be viewed as
independent objects, when these parts are not collected
into another class. However, in this model if aggregation
is used to define associations between classes, the
referential constraint is not enforced.

3 Classes and Associations for the Object-
Relationship Data Model

This section presents the constructs to describe classes
associations, anthe constraints supported by the object-
relationship data model in an object-oriented database
programming language. The next section shows how the
semantics of these constructs can be given in terms of a
minimal nucleus of primitive operators.

In the language, classes are sets of data, and
associations are relations, i.e. sets, of bindings, organized
into a specialization hierarchy. The basic operations on
classes and associations are creation, insertion and
removal of elements. Constraints on classes and
associations can be defined declaratively and are enforced
by a general trigger mechanism which is described in the
next section.

Classes are first class values and class types are first
class types, like sequences and sequence types are
Consequentlyd) classescan be used in any combination
with the other data types constructors of the language
build complex structures, by no special naming
mechanism is used for classes, atdtlfe interaction of
classes with other features of the language, such as
modules functions or object types, is governed by the
general rules of the language. The same is true for
associations: classes are just the utage of the general
mechanism oh-ary associations. All the operators over
classes and associations are statically and strongly typed.
For any class the type of its elements is declared (the
element type of the clasd)ut the elements of a class are

generally only a subset of all the values belonginggo
element type.

Let us give first some definitions about subtypin
equality, bindings and signatures, since these notions
used to define associations, which are sets of bindings.

3.1 Subtyping, bindings, equality and signatures

In the complete language an inclusion hierarchy is defit
on types, such that A is a subtypeof B, written A<B,
any value belonging to typ®also belongs to typ.

A binding is a set of pairs <labeljalue>, and a
signature isa set of pairs <label, type>; in both cases
the labels are different. A bindirgatisfiesa signature
Signif it contains all the labels ddignand for any label
in the signature, the value associated with that label in
binding belongs to the type associated in the sign&ture.

A binding is denotedas (et [{=vq ... let |,=v,). A
signature (:T ... I,:Ty) is a supersignaturef another
one (m:Uq ... m:Uy,) if the set of the labels of the firs
one is a subset of the set of the labels of the seeomljf
the type associated with any label in the super-signagur
a supertype of the one associated with the skafel in
the subsignature.

In the complete language equality is defined on all 1
types. It is defined by identity (i.e. byreation time) on
functions and updatable valug®bjects, updatable
variables, classes and associations), and is definec
value on values belonging to the otmem-updatable type
constructors (bindings, variants and sequences).

Equality is type dependent on types where it is val
defined: for exampleif two bindings with labela andb
have the same integer value in fieddand different
integer values in field, they are equal if compared witl
type (a:Int) and different if compared with type (a:Int ai
b:Int). On the other hand, equality is type independen
the other types: two objects are equal if and only if th
have the same identity, whatever the type used to com,
them.

Two types arecompatibleif there is a type&/ which
is a supertype of both of them.

3.2 Classes and associations

A class is an ordered set of distinct elements wité
same type, and an associatiorais ordered set of distinc
bindings satisfying a fixed signature. Classasd
associations are first class values of the language,
their structure is describetdy the first class types
ClasqElementTyppandAssodSignaturg key keylisg
... key keylist,. This means that associations can be u:
to form arbitrarily complex structures, although a schei
is usually defined by using associations with a fl
structure, as shown in the next section.

Classes and associationse created empty, and the
elements and bindings are inserted and removed. Cla
and associations are inspected by ugielgtional-like
bulk data operators.

3.2.1 Creation

A new empty class is defined by the following operatior

2 Bindings are similar to records, although in the f
language there is a distinction between these two ty
constructors.

new(classOfEITypeare Cq,..., Cj
butnot Aq,..., A,
beforelnsert expr
beforeRemoveexpn): Class ElType

new classOf creates a new class which collects
elements of typeElType (usually an object type), and
such that its extension slways included in that of the
superclassesCq,..., C,, (extensional inclusion
constrain), and itis always disjoint from that of the
classesAq,..., A, (extensional disjointness constrgint
These constraints are maintained automatically, as shown
in Section 4.

beforelnsert expr (beforeRemove expr) specifies
thatexprmust beexecuted before the insertion (removal)
of an element in (from) the class. The identitigis can
be used insidexprto denote the element toe inserted
(removed), andself to denote thewhole class. This
mechanism cate combined with thassertanddefer
constructs described in Section 4define pre and post
conditions.

The declaration above is well typed only if the element
types of the classe€q,..., C, are all supertypes of
ElType (intensional inclusion constrain). If B is the
created class,Cq,..., C, are theimmediate
superclassesf B.

Aq,..., Ay are classes which must never intersgct
If TA is the type of the elements of titassA;, the
clausebutnot is well typedonly if any TA is compatible
with EIType Both clausesare Cq,..., C,, andbutnot
A1,..., A, can be omitted. Examples are given in Fig.1.

A new empty association can be defined as follows:

new (assocOf ExtSignatureare Aq,..., A]
{key keylist}
{constant_on label n class] ... labelip class]}
{beforelnsert expr}
{ beforeRemoveexpr}):
AssocSignaturekey keylist; ... key keylist,

ExtSignatureis a signature extended with a set
constraint specifications, described below, Sighature
is ExtSignaturawithout those specifications.

A keylist is a list of attributes of theignature,
specifying the constraint that two distinct bindings in the
association must differ in at least the value of one attribute
for each keylist.

constant_onis a constancy constraint, explained later.

beforelnsert expr (beforeRemove expr) specifies
thatexprmust beexecuted before the insertion (removal)
of an element in{from) the association. The labels of the
association signaturean be used insidexpr to denote
the fields of the bindingo be inserted, anselfto denote
thewholeassociation.

The new assocOfoperation builds a new empty
association to collectbindings with the specified
signature. The extension of the new associatiorsisbset
of that of Aq,..., A;; Signaturemust be a subsignature
of thoseof A4,..., A, and the keylists of the new
association must imply those oAq,..., A. An
implication relation is defined on sets of keylists by the
transitive and reflexive closure of the following rules
(where the single keylists and the list of tkeylists are

regarded as sets):

key listy ...key list, — key list; ...key list,_q
key (listy) ...keylist, — key (listy, a).. key list,

A description ofthe constraints which can be declared
ExtSignaturefollows:

ExtSignature:= {label : Type{constrain}}
constraint ::= in class| are class| owned by class
| onto class| owns class

3.2.2 Referential constraints
label: Typein/are/owned_by class

The attributes of a binding of an associateme divided
into componentswhich are attributes whose values mu
belong to a specified class, aadsociation attributes
(attributesin short), which have no such constraini

There are three different declarative wayslefining a
referential constraintn, are andowned_by.

These three clauses specify tlsame referential
constraint to be maintained with different styles, i.e. eitl
by raising failures or by forcing its satisfaction.

In more detail, then clause means tha&) when a
new binding is inserted in the association, a failure
raised if the value of the componestnot contained in
the specified clasd)) when an element is removed fror
the referred class, the operation fails if the element i
component of a binding in the association.

The are clause means that) when a binding is
inserted in theassociation, the value of the component
inserted in the class; af) when an element is remove
from the class, all the bindings with that elemerst a
component are removed from the association.

The owned_by clause means tha&) when a new
binding is inserted in thassociation, a failure is raised i
that component is not contained in the specified class
happens with than clause;b) when an element is
removed from the referred class, the bindimggerring
that element are removed, as happens withathe
clause. Smwned_by codifies a dependency constrain
and a dependency of the association from the class.
For the referential constrainits andowned_by, as for the
surjectivity andconstancy constraint, the element type
the referred class must be compatible with that of
attribute in the signature, even though they are usu
exactly the same type. For the referential constaiat
the type of the component must be a subtype of
element type of the referred class.

3.2.3 Surjectivity constraints
label: Typeonto/owns class

While the referential constraint specifies that the existel
of a binding in an association implies the existentea
value ina class, thesurjectivity (or totality) constraints
enforce theconverse implication: the existence ¢
elements in some classes necessitates the existence
binding involving them in some association.

The onto clause corresponds to threclause; it means
that when an element is inserted in the class, then in
same transaction lainding referring to that element mus
be inserted in the association, and conversely, when

last binding in an association referring to an element is
removed, then in the same transaction that element must
be removed too. The complete language supports nestec
transactions, as specifiedd the next section, and this
constraint is checked at the end of the transaction where
the class insertion or the association removal take place.
Elements are supposed to be inserted first gldsses and
then into associations, and conversely for removal.
Referential constraints can thus be checked immediately,
whereas surjectivity constraints can only be checked at the
end of the smallest enclosing transaction.

Theowns clause is the surjectivity counterpart the
referentialowned_byclause: likeonto, when an element
is inserted in the class, then in teame transaction a
binding referring to that element must be insertedhe
association, but when the last binding referring to an
element is removed from an association, that element is
removed from the class too, at the end of the transaction.

In object-relationship schemes, any component has one
referential constraint, but it can have zero, one or more
surjectivity constraints, defineon different subclasses of
the class of the referential constraint (see the
courselnstancassociation in Figure 1).

In the following tables the precise relationships
between the above constraints are summariZatiles 2
and 3 highlight that in fact a fourth kind of referential
constraint could have been defined, characterizgdhe
behaviour “clasgnsert(x) - fail” (Table 2). But in the
surjectivity family there are just two possible constraint,
since there is no alternative to failure if there is class
insertion (Table 3).

Table 1: Conditions Enforced and Operations Monitored
by the Constraints

Constraint Enforced Monitored
condition operations

referential ¥zassoc.label assaasert,
= xEclass classemove

surjectivity x=class clasfmsert,
=> x&assoc.label asseemove

Table 2: Action requested by a referential constraint,
before performing an insertion/removal operation

Constraint assoc.ins(label=x...) class.rem(x)

if xéclass if (label=x...)Eassoc
in fail fail
owned_by fail assoaem(label=x)
are classinsert(x) assoaem(label=x)

Table 3: Action requested at commit time by a
surjectivity constraint, if an insertion/removal
operation is performed

Constraint class.ins(x) assoc.rem(label=x)
if (label=x...)¢&assoc if (x)Eclass

fail
classtem(x)

fail
fail

onto
owns

3.2.4 Constancy constraints
constant_on label[in clasg ... label[in clasg

When an association is constant on one component-c
pair label-class all the bindings involving a valuel of
label can only beinserted in the association whehis
inserted inclass(or rather in the same transaction). Ar
other attempt to insert or remove associations involvi
el would fail, apart from the final binding removal whic
can take place only wheai is removed from its class.

Constancy ora list of pairslabek-class means that
the bindings involving a binding

{<labeh, ely>,...,dabel,,el >}

must be inserted in the association at the staime as the
lastel; is inserted in itslass and canonly be removed
at the same time as at least one of ¢heis removed
from its class. Constancy on many lists is just t
conjunction on all the associated conditions.

This constraint isorthogonal to the cardinalitykéy),
referential and surjectivity constraints. Its type ru
specifies that the type of atgbel in the signature must
be compatible with the element type of the correspond
class If exactly one referential constraint is specified f
a componentthe clausein classcan be omitted in the
constancy constraint, and the class specified in
referential constraint is assumed. The constraint is v
typed if the type of the components is compatible it
associated classes.

The constancy constraint completes the list of t
declarative constraints which can be specified on clas
and associations. In the next subsection the operatol
update classes and associations are presented.

3.2.5 Updating operators

classinsert(elem), classemove(elem)
assodnsert(binding), assocemove(binding)

Theinsert operation takes a value of the element type
the specified class, executes all the declared constr
checking and automatic insertions (@fiass has some
superclasses) and finally inserts the element in the clas
the argument oinsert is already contained in the clas:
the operation has no effedtinsert is atomic, which
implies that if a failure is raised during its execution,
its effects are undondf insert causes an automati
insertion in a superclass, the constraiatsel automatic
insertion of thesuperclass are executed tdasert
behaves exactly in the same way on associations.
Theremove operation on associatiotskes a binding
whose signature isompatible with the association, an
removes all the binding in the association which mat
the argument binding. It verifies all the associat
constraints for all these elements, executes thk
automatic removals, and finally removes them from t
association; likensert, removeis atomic. On classe$,
takes a value whogsgpe is compatible with the element

3 This is enough to maintain theet constrainti.e. the
constraint that all the elements of a class are differerfiadt
since all the updatable entities of the language are compare
identity, the set constraimiannot be violated as a side effect «
an update operation.

of the class, and removes all the elements in the class
which match the argument. In both casesmove just
removes the argumeffiom the class/association, without
destroying it, so that if thatbject/binding is accessible in
some other way, it remains accessible after removal.
This is not a problem since the enforcement of the
referential constraint does not depend on the coincidence
of the extension of a class withe set of all the elements

of the associated type.

Two valuesa andb belonging to the compatible
typesA andB “match” if they areequal with respect to
any of theminimal common supertypes &f andB. In
practice, ifa andb are objects, they match if they have
the same identity, whereas if they are bindings tiheych
if the valuesassociated to the common labels match. For
example, referringto the example in Section 2, the
binding (let TheEvent = x)matches all the bindings in
the associatiomallocations whose fieldTheEventis
equal tox.

3.2.6 Associative access operators

assodhagbinding), assoget(binding)
classhagvalue), clasget(value)

has, like remove receives a binding whose signature is
compatible with that of the association, and rettmnne if

the association contains lainding which matches its
argument. On classes, i¢éceives a value whose type is
compatible with the element type of the class, and returns
true if the class contains an element which matches its
argument.

The type constraint for thget operator is slightly
different. On classes, it receives a value of a type which is
not only compatible with the element type of the class, but
also has the same equalityhich means that for any pair
of elements belonging to both types, they are equal when
compared in one type if they are equal when compared in
the other one. Any two compatible object types have the
same equality, since objects are comparedibtity. get
returns the unique value in the class which is equal to its
argument, and fails if no such value exigiet can be
used to perform a sort of run-time type coercion: let
Studentbe a subtype oPersonand étudents:Class
Student be a subclass opérsons:Class Person, and
suppose thatjohn has type Person |If
studentgyet(john) does not fail, then iteturns the same
object agohn, but with typeStudent

On associationsget receives a binding whose
signatureGetSignsatisfies thefollowing constraints: &)
GetSignis compatible with the signaturssocSignof
the association;b) the set of labels o&etSignincludes
a key of the associatior;)(for all the labels belonging to
both GetSignandAssocSignthe associatetypes have
the same equalityget returns the unique binding in
assocwhich matches the specified binding, and fails if
no such binding exists. The conditioty énd €) imply
that a maximum of one elememf the association
matches thget argument.

3.2.7 Relational-like algebra

In the full language, a sequence tyjex exists, with a set
of relational-like operators, transforming sequences into
sequences.

A type AssodSignature keylistss a subtype of the
type Seq Signature and a typeClass ElTypeis a
subtype of the typ&eq ElType so that the relational-
like operatorsof the language can be applied also
associations and classesThe abstract syntax of the
relational-like operators iksted below. They are dividec
into the group of the operators defined onsatuences,
which can be applied to both classes and associatioias,
those defined only on sequences of bindings, which
only be applied to associations.

General operators on sequences:

R union S, RintersectS, Rdiff S
R selectcondition

R map function

R sort sortList

The meaning of the operators is specified by their nat
their type constraint@are specified below, supposing
where needed, thaB and R have type Assoc
(Signature keylist.) or ClassEIType

union, intersectanddiff can be applied to any pair o
lists with a common supertype, returning a result in tl
type.
ypIn select condition is a function of type
Signature-=Bool (EIType-=Boo)

In map, function is a function of typeSignature=T
(EIType—=T), applied to all the elements of the

association (oclass)R to obtain a sequence of tySeq
T.

In sort, sortlistis a sort conditiorfor the element type
of the sequencd; see [Ghelli 90a] for the precise¢
language used to express sort conditions.

Operators on sequences of bindings:

R project labelList
Rtimes S

R renamerenameList
R groupby groupList

In project, labelListis a subsebf the list of the labels
of R.

times takes two sequenceax bindings with disjoint
sets of labels, and returns a sequence of bindir
containing the union of the labels of the arguments.

In rename, renamelistis a binding such aghe
expressioriet ny=01 ... N=0y, Whereoy,..., oy, are
labels of the original relation andy,..., n, are all
mutually different labels not included in the labels whi
remain in the relation after tiog labels are removed.

In groupby, if Signature is equal to

4Ty ey T MU ompUpy
and grouplListis equal tal4...ly, thenR is partitioned
in sequencesvhere all the fieldd,...|l, have the same
value, each of these subsequencégraissformed into just
one binding of signature

(14T Ay Ty :SeqUy ... My, SeqUpy)
and the resulting sequence of type

4 Associations and classes are ordered by insertion ti
this ordering means thay can be viewed as sequences.

Seqly:T1...lw T :SeqUy ...my,:SeqUy)
is returned.

Two operatorsmakeClassandmakeAssogkeylists) are
defined to transform sequences and sequeotcbindings

into classes and associations, though these operators ar:
usually not needed.

4 The Kernel Language

In the previous section language was presented which
supports thestructure and the constraints of the object-
relationship data model. This section shows that the
language can be fully interpreted & minimal kernel,
built around &) the general failure handling mechanisms
of the language b} a simplified association mechanism
with no predefined constraint declaration, aifc) a
general purpose constraint maintenance mechanism for
associations. In this way a formal semantics is gif@n

the constraints presented, and for any possible
combination of them. Besides this, the general purpose
mechanism defined here igresent in the language
together with the specialization presented in Section 3, to
allow the programmer to specify different constraints, or
different flavors of the same constraints. The most
appealing feature of the basic mechanism presemeed

is its simplicity, built around jusbne type operator and
seven value operators.

In Section 4.1 the general failure handling and nested
transaction mechanism of the language are outlifned;
Section 4.2 the basic association mechanism is defined.
Appendix A the semantics of the declarative constraints is
presented bygiving their translation into the basic
mechanism.

4.1 The transaction and failure mechanism

The full language supporteested transactions and a
nested failure management mechanism, based on the
following operators.

Failure management operators:

let excexcname: type;

failwith excname=value
assertboolexprelsefailexcname=value
try expr excexcnameg=var; do handlef

é)kcexcnamﬁ:varn do handlep,
[elsedo handler]

let exc introduces anew exception namexcname
which is associated with values of tytype °

failwith raises an exception with name&cnameand
valuevalue excnameéhas been previously introduced by
let exc. The exception propagates along the dynamic
activation chain until an exception handler, defined using
thetry construct below, is found.

assert is equivalent toif boolexprthen nil else
failwith excname=valugif the clauseelsefail is omitted
it fails with failure=nil.

try executesexpy, if it fails with a nameexcname
thentry executes the handldrandle; binding var; to
the value of the exception. If thexception name is

5 Type is a ground type built without using object types.

different from all the namesxcnamg then there are two
possibilities: if theelse do branchis defined then the
corresponding general handler is executed, otherthise
exception is propagated.

Nested transactions operators:
atomic expr, deferexpr, old assoc

atomic executeexpr, and if it fails, before propagating
the failure, rebuilds the states it was before executing
expr. In more detail, it undoes all the variable updatt
the class/association insertions and removals and
effect of the operationextend, defined in the full
language, which changes the type of an object with
affecting its identity.atomic is a nested transactiol
mechanism; the outermastomic is the transaction usec
for concurrency control.

A list of expressions to be executed before committi
is associated with any transactiatefer is used to build
this list, adding the specified expression to the end of 1
list of the current transactiodefer is used typically to
defer the control of amtegrity constraint to the end of ¢
transaction.

old applied to a variabler to an association (or class
returnsa copyof the value of that variable or associatic
at the beginning of theurrent transaction. It is used t
check dynamic integrity constraints.

4.2 The basic association mechanism

In the kernel of the language, classes are not defined,
only associations are. An association is artiaracterized
by a signature and a list of keylists, without inclusic
hierarchies or constraints.

The primitive creation operation for associations is:

new (assocOfSignaturekey keylist; ... key keylist,):
AssocSignaturekey keylist; ... key keylist,

On thebasic associations a general purpose constr.
verification/enforcement mechanisis defined. Any
association contains two lists of function, called tl
insertionandremoval pre-operationswhich are applied
to each binding which is inserted in an association, ol
removed from it. If the argument of thesert operation is
already contained in the association, fire-operation is
not executed. Thespre-operations are defined with th
following operators:

assodeforelnsert(fun(Signature) ex/)
assodeforeRemovéfun(Signature) expr)

beforelnsert/beforeRemove add the function
fun(Signature) expat the headf the insertion/removal
pre-operations listsSignatureis the signature of the
association.

insert, remove, get andhas aredefined on the basic
associations as they are on thiegared version. Thesi
operators complete the definition of the basic associal
mechanism.

4.3 Translating classes and predefined constraints into
the basic calculus

The completetranslation of constraints is given i

6 Actually any function of type SignatureType is
accepted as an argumenthmforelnserandbeforeRemove

Appendix A — here, only the translation of classes is
specified.

A class of typeClass Type is translated as an
association of typAssoc(label: Type)where the label is
arbitrary, and never used@he operations on classes are a
syntactic abbreviation of the operations on associations,
where a type EIType substitutes asignature
label:EIType and values of typeEIType substitute
bindings satisfyindabel:EIType

new (classOfType):Class Type—
new (assocOflabel: Type):Assoc Type

classinsert/remove(value)—
assodnsert/remove(let label = value)

classbeforelnsert/Removedfunc) —
assodeforelnsert/Remove
fun(bind:{label:Type}) func(bind.label))

classget’hagvalue)—
assoget’haqlet label = value)

5 Related Work

The relation mechanism imata models has been
extensively studied since the proposal of the relational and
entity-relationship data models. A recent propdgathe

field of entity-relationship model, similar to the one
presented here, isn [Casanova 89], where a data
definition language is presented for axtended E-R
model. The language allows entity sets to be defamsed
well as relationship sets. Relationship sets can have keys
and surjectivityconstraints. Besides general assertions,
mutual exclusion and referential integrity constraints can
be specified both on entity and relationship sets. These
assertions are complemented by theility to specify the
existence of triggers, immediate or deferred, on
operations. Only the conditions for firing triggers are
described, not the triggethemselves, since the paper
does not propose a particular data manipulation language.
Entity and relationship sets can be organized into a
specialization graph, to provide both inheritance and
inclusion hierarchy.

While this work is similar to ours from a data modeling
point of view, our proposal is expressiedthe framework
of a full language, which is both object-oriented and
strongly and statically typed. Moreover, okernel
language is conceptually simpler and more regular.

From the field of object-oriented languages, both
[Rumbaugh 87] and [Diaz 90] present a proposal to
enhance object-oriented languages with a consttact
represent user-defined relations. Rumbaugh thasfirst
to stress the relevance of a relation constrinctthis
context. His proposal allowsary relations to be defined
over objects, but onlyith simple cardinality constraints.
The language presented is untyped, and no specialization
is defined over associations. Implementatissues are
discussed together with the description of an actual
implementation in a production-quality programming
system developed by the author at General ElecTitie
proposal in [Diaz 90], expressed in the framework of
knowledge representation language based frames,
presents a construct to define binary relationships between
objects, with assertions and attributes whighong to the
relationship as well as assertions and attributes added to

the objects for as long as they participate time
relationship. Inaddition, surjectivity, cardinality anc
dependency constraintan be specified on relationship:
Relationships are objectshich can be specialized, an
whose methods for creation, retrieval and updating car
modified. General constraints are intended as invariant
be preservedh the database: a complex system execu
this task. In this language there is no concept of type
type checking, and, like in the Rumbaugh proposal, th
are no retrieval or other bulk operators on relations. 1
constructs proposed are embedded in a high level ok
oriented extension of Prolog.

In [Atkinson 91] anew type constructor calledapis
presented. Whereas associations are inspired by
mathematical notion of finite relation, maps are inspir
by the notionof finite function. The expressive power c
the twonotions is similar, since associations can be si
as maps without aange, while maps can be seen
associations with just a key. An interesting characteris
of this proposal is that both an ordering and an equa
specification for the key can be declared togetiign the
map type, and then become part of the type. The ¢
constraint which can be defined on a map type is a fc
of constancyconstraint. Many operations are provided
access and modify elements of maps, either singularl
by iterating over a specific subset ofreap. An algebra
over maps is defined, through classical operations on
as well as through an operator similar to comprehensi
Associations are proposeadainly as a data modelling
abstraction mechanism, and for this reason they ha\
rich set of constraint specifications and can be organi.
into a specialization hierarchy. Maps, on the other ha
are also proposed both as an efficient bulk structure
database programming languages and as the data fo
of a canonical store manager complex structured data
Maps could thus be used as a low-legdlucture to
implement classes and associations efficiently, as wel
associative data structures on them.

6 Conclusions

A mechanism has been definea represent classes an
associations in a database object oriented languHys.
proposal stems from the experience gained in design
implementing, and using the Galiledatabase
programming language [Albano 85]. It is characterized
the following features:

— Associations are not described by aggregation, as in
standard object oriented data models, but by a sepe
mechanism. With this approach the implementati
choices about associations are left to the DBMS.

— Classes an@ssociations are first class values of tl
language, and their structure is described by a f
class type. This means that these constructors cal
combined inany way with the other data typs
constructors of the language.

— The following constraints can be defined declarative
class and association inclusiokgy, referential,
surjectivity, dependency and constancy constraints.

— All the above constraints are formally defined in terr
of a minimal kernelbased on just one data typ
constructor Assog.

— All the constructs presented permit a strong ty
checking (no type erras raised at run time by a wel
typed expressiomyhich can be performed completel
at compile time.

The mechanisms presented aneluded in a complete
database programming language, whichusrently under
implementation, with the following features [Albano 90]:

— itis statically and strongly typed;

— it supports a module mechanism for structuring
complex schemes and applications;

— it supports all the features of an object oriented
language: object identity, state and methods
encapsulation, type inclusion, multiple inheritance;

— it supportsan object mechanism with separation
between interface and implementation of an object type
definition, and with an operator to change the type of
an object dynamically without affecting its identity.

6.2 References

Albano A., L. Cardelli and ROrsini, “Galileo: a
Strongly Types Interactive Conceptuadnguage” ACM
Trans on DataBase Systeri® (2), pp. 230-260, 1985.

Albano A., Ghelli G. and Orsini R., “Objectand
Classes for a Database Programming Language”, Tech.
Rep. 5/24 Progetto Finalizzato Sistemi Informatici e
Calcolo Parallelo, CNR, Roma, November 1990.

Atkinson M.P., Bancilhon F., DeWitt D., Dittrich K.,
Maier D., andZdonik S., “The Object-Oriented Database
Manifesto”,Proc. DOOD 89 Kyoto, Japan, 1989.

Atkinson M.P., Lécluse C., and Richafel., “Bulk
Types for Data Base Programming Languages: A
Proposal”, submitted for publication, 1991.

Casanova M.A., Tucherman L.Gualandi P.M.,
Pacheco A., ancCavalcanti M.R., “A Data Definition
Language for Extended Entity-Relationsifpdel”, Rio
Scientific Center, Technical Report CCR-072, 1989.

Diaz O., and Gray P.M.D., “Semantic-rich User-
defined Relationships as a Main Constructor in Object
Oriented Database”,Conf. on Object-Oriented
DatabasesWindermere, UK, 2-6 July 1990.

Dittrich K., “Object-Oriented Database Systems: The
Next Miles of the Marathon”Information SystemsVol.
15, N. 1, pp. 161-167, 1990a.

Ghelli G., “Proof TheoreticStudies about a Minimal
Type System Integrating Inclusioand Parametric
Polymorphismy, PhD Thesis, TD-6/90Dipartimento di
Informatica, Universita di Pisa, Italy, 1990b.

Ghelli G., and R. Orsini, “Typesand subtypes as
partial equivalence relations”, Inheritance hierarchies
in Knowledge Representatiphenzerini M., NardiD,
Simi M. (eds.), J. Wiley & Sons, Chichestétngland,
pp.191-209, 1991.

Kim W., Bertino E.,and Garza J., “Composite objects
revised”,Proc. ACM SIGMOD Conf. Management Data
Portland, OR, June 1989.

Rumbaugh J., “Relations &mantic Constructs in an
Object-Oriented LanguageQOPSLA’87466-481, 1987.

Zdonik S.B., and MaieD., “Fundamentals of Object-
Oriented Databases”, iReadings in Object-Oriented
Database SystemZdonik S.B., and Maier D. (eds),
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

Appendix A: The translation of the constraints

In this appendix the constraints presented in Section 3
translated intdhe basic language presented in Section
The constraints are translated separately. Each of ti
produces a set tfeforelnsert/Removeoperations, which
are all collected together. For simplicity, the sugar
notation forhasinsert andremove on classes is used.

beforelnsert/Removeconstraints

new (assocOfSignature{ beforelnsert exp
{beforeRemoveexpi): AssocSignature

The expression above is translated as:

let self: AssocSignature= NeW (assocOf Signaturg
in (selfbeforelnsert(fun(Signaturg expn);

self beforeRemovéfun(Signaturg expn;
self

)

fun(Signature) expreturns a function whose forma
parameters are defined Bygnaturelet introduces and
binds a new identifier; the fornfet ... in scope
introduces it into the local scopeope (expr;...;expr)
evaluates the expressions and returns the value of the
one.

All the expressionsproduced by the successiv
translations are added in the scopdhaflet above, so
that the identifieselfcan be used in all of them.

On classedeforelnsertRemoveare translated in the
same way.

key constraints
new (assocOf Signaturekey keylist; ... key keylist)

key constraintsbelong to the kernel language,
nevertheless their precise meaning can be defined t
pre-operation, as happens for the derived constraints.
[1:T1...,l;:T; be a subset of the association signatur
then the constrainkey Iy ,... | forces the automatic
production of the following pre-operation:

selfbeforelnsert
(fun(Signaturepssertnot selfhaglet I1=1;...,let IJ-:IJ-));

Inclusion constraints

new (assocOf Signatureare Al,...,Aj)
new (classOf ElType are Al,...,Aj)

The above declarationask the system to maintail
automatically an inclusion relation between the ne¢
association and each of the immediate superassociati
They are enforced by defining an insertion pre-operat
which inserts the element in the immedial
superassociations, and a removal pre-operation in
superclass which removes the element from immedi
subassociations (the signatur&gnA,...,Signj of
Aq,...,A; are super-signatures of the signatusegn of
the association defined):

selfbeforelnsert(fun(bind:Sign) G.insert(bind))
C,.beforeRemovéfun(bind:SignAy)
selfremove(bind:SignAy))

selfbeforelnsert(fun(bind:Sign) G.insert(bind))
Ch.beforeRemovéfun (bind:SignAy)
selfremove(bind:SignAy))

The insertion message@j.insert(binq) are type
correct sinceSign is a subsignature @ignA: the type
of the argument ofhsert must be a subtype of the type of
the association. On the other hand, the messages
selfremove(Sign@) are type correct even thou@ign
sSignq, sinceremove acceptsarguments belonging to
any supertype of the signature of the association. The
translation is identical for classes.

An inclusion constrainR < S only forces a set-
inclusion relation between two associatidRandS if
the corresponding signaturé&signRand Sign$S are
equality compatiblgi.e. they are associated with the
same equality operation. Otherwise, if mdymdings,
which are all mutually different iSignR but equal in
Sign$S are inserted iR, only the first of them is inserted
in S, and when thisinding is removed fronR, all the
corresponding bindings are removed fr&in this case
this “inclusion” constraint does not model set inclusion
exactly but only set inclusion modulo equality, i.e. P.E.R.
inclusion as discussed in [Ghelli 90l6)n the other hand,
inclusion modulo equality coincidesith set inclusion on
associations when a key constraint is defined on a
component of the superassociation, and on classes wher
the element type is an object type.

mutual disjointness
new (classOfEITypebutnot By, ...,B,): Class Type

This constraint specifies that the clasggs...,B, must
never intersecself If TB; is the type of the elements of
the classB;, it is only well typed ifEITypeis compatible
WithTBi.

This constraint is enforced defining the following
insertion preconditions bgforelns stands for
beforelnsert):

selfbeforelns(fun(elem:Typepssert not(B4.hagelem))
B4.beforelnsg(fun(elem:TB;) assert not(selfhagelem))

.s.élf.beforelns(fun(elem:Type)assert not(B,.hagelem))
B,-beforeins(fun(elem:TR,) assert not(selfhagelem))

Note thathas is well typed sincd B is compatible with
ElType

referential constraint
label: Type in/are/owned_byclass

In the cases ofn andowned_by, Typeis compatible
with the elementype EITypeof class in the case oére
Type must be a subtype ofEIType This is the
translation:

label: Typein class:.classEIType—
self beforelns(fun(bind:Signassertclasshagbind.label))
classbeforeRemove

(fun(el:ElType)assert not(selfhaglet label =el)))

label: Typeowned_byclasscclassElType—
selfbeforelns(fun(bind:Signassertclasshagbind.label))
classbeforeRemove

(fun(el:ElType) selftemovelet label=el))

label: Typeare classclassElType—

selfbeforelnsert(fun(bind:Sign) classsert(bind.label))
classbeforeRemove
(fun(el:EIType) selftemovélet label=el))

Notice that the translatiomf the are referential
constraint isidentical to theare inclusion constraints,
justifying the notation.

surjectivity constraints
label: Type onto/owns class

Type is compatible with the element tygelType of
class This is the translation:

label: Typeonto class:clasgEIType) —

classbeforelnsert(fun(el:EIType)defer assert
classhaglel) implies selfhagqlet label=el))
selfbeforeRemovéfun(bind:Sign)defer assert
classhagqbind.label)implies
selfhag(let label=bind.label))

label: Typeowns class:clasgEIType) —
classbeforelnsert(fun(el:EIType)defer assert
classhag(el) implies selfhaglet label=el))
self beforeRemovéfun(bind:Sign)defer
if selfhaqlet label=bind.label) then skip
elseclasstemovegbind.label);

A implies B is a boolean expression equivalent
((not A) or B).

constancy constraints

new (assocOfSignature
constant_onlabel in clasg label, in clasg)

Constancy on a set of components (each associdthda
class) means that, once a bindimépr those components
has beenfixed, all the bindings extendin must be
inserted when thelements appearing mare inserted in
their classes, and can only be removed when the elem
in b are removed from their class (at least one of the
This is not the only possible interpretation of tt
constancy constraintdifferent interpretations can b
enforced procedurally.

The type constraint is that the type of the compone
must be compatible with the associated clasdés;
translation is as follows:

selfbeforelnsert(fun(bind:Sign)assert
not ((old clasg).hag(bind.labey)
and ...
and (old clasg).has(bind.labe},)

selfbeforeRemovéfun (bind:Sign)defer assert
not ((clasg).hagbind.labe}) and ...
and (clasg).hagbind.labe}))

