
A Relationship Mechanism data models, which favour the efficient use of secondary
memory at the expense of expressiveness, and the

for a Strongly Typed programming languages, which are unsuitable for the
growing complexity of the applications due to the scarce

Object-Oriented Database integration of the data model abstraction mechanisms with
those of the programming language.

Programming Language The object-oriented programming paradigm is a very
promising means to develop a new generation of DBMSs
since both the problem of the expressivity of the data

Antonio Albano* , model, and the problem of integrating procedural and data
modeling aspects can be tackled. The main features of

Giorgio Ghelli* , object-oriented databases are discussed in [Atkinson 89]
[Dittrich˚90] [Zdonik 90]. Let us briefly recall some basic

Renzo Orsini§ features of an object-oriented data model, and in
particular how associations between entities are modeled.
An object-oriented data model is based on the notions of
objects and classes. Objects are used to model real

*Dip. di Informatica world entities, and they have an immutable identity: the
Università di Pisa state of an object can be modified only by an object’s own
Corso Italia 40 methods. Classes are sets of objects, used to model sets of
Pisa, Italy homogeneous entities, and they are organized into a
albano,ghelli@dipisa.di.unipi.it subclass hierarchy.1 Associations between entities are

modeled as properties of objects, i.e. as attributes whose
§Dip. di Informatica ed Applicazioni values are the associated objects. A class is associated

Università di Salerno with an object type, in such a way that all the values of
Baronissi (SA), Italy that object type, and only that particular object type,
orsini@udsab.unisa.it belong to the class. When objects in two classes a and b,

whose elements have type A and B, are mutually related
Abstract 0 by an association, an attribute of type B is defined in the

object type A, and vice versa, to model two one-
directional relations. The constraint that the relation from

Object-oriented data models are receiving wide a to b is the inverse of that from b to a, cannot be
attention since they provide expressive expressed declaratively in the object definitions, but must
abstraction mechanisms to model naturally and be coded in the methods which implement the association.
directly both structural and behavioral aspects of The main advantage of this unification of attributes and
complex databases applications. In an object- associations is simplicity, since the same mechanism is
oriented data model, a database is modeled in used to deal with both of them, unifying the mechanism
terms of objects grouped in classes, organized used to retrieve an attribute with the one used to retrieve
into subclasses hierarchies. Moreover, associated objects, and the mechanisms to declare
associations between entities are modeled by cardinality, surjectivity or non-modifiability constraints
defining properties of objects whose value is the for both attributes and associations. However this
related object. However this way of modeling approach has some limitations [Rumbaugh 87]:
associations has several limitations which make – associations are conceptually a higher level abstract
the description of some aspects of associations notion, their implementation should be decided by the
unnatural. To overcome these limitations an DBMS; attributes, on the other hand, force the
object-relationship data model is proposed which programmer to choose a specific implementation for
supports both the mechanisms of an object- them;
oriented data model and a separate mechanism to – the association semantics is split between different
model explicitly associations and to express objects;
declaratively common constraints on them. – associations are symmetric and the enforcement of the
Constructs to support this model for a statically inverse relation constraint is not efficient when a method
and strongly typed object-oriented database is used;
programming language are defined. – associations are not necessarily binary, and they can

have their own attributes; these aspects can only be
modeled indirectly by means of attributes;
– associations relate objects which exist independently,

1 Introduction and it ought to be possible to define them incrementally
without having to redefine the structure of existing

Object-oriented databases are becoming increasinglyobjects;
popular as a means to overcome the limitations of – operations on relationships as a whole are generally not
commercial DBMS. These limitations concern both the straightforward.

This work was carried on with the partial support of
Ministero dell’Università e della Ricerca Scientifica e
Tecnologica, E.E.C. Esprit Basic Research Action 3070 FIDE, 1This use of the term class is different from the standard
and of Italian C.N.R., P.F. Sistemi Informatici e Calcolo one in the context of object oriented languages, where it refers to
Parallelo. the type of objects

Another fundamental problem with an object-orientedcan be defined on classes. Associations between objects
are not represented by the aggregation mechanism, but bydata model is the enforcement of the constraint that the
n-ary relations relating objects in classes and also otherextension of a class (the set of its elements) coincides with
values, which represent the attributes of the association.the set of all the elements of the related type. This
An inclusion relation can be defined on pairs of“extension coincidence constraint” is used in the object-
associations. The following constraints can be defined onoriented data model to enforce the referential constraint as
associations:follows: when an attribute p of an object is used to model
– Surjectivity constraints can be defined for singlean association with objects which must be elements of a
components of associations. An association AB betweenclass b, this constraint is enforced by defining the type of
classes A, and B is surjective (or total) on the class A ifthe object attribute p to be that of the elements of class
all the elements of A appear in AB.

b. While enforcing the extension coincidence constraint– Dependency constraints can be defined between
when objects are created or inserted into a class is easy,classes and associations. An association AB between
enforcing it when objects are removed from classes is classes A and B depends on the class A (AB owned by
difficult. Removing an object from a class, by extensionA), when, any time an object is removed from the class
coincidence, is only allowed if the object can no longer beA, all the associations involving that object are removed.
reached by the associated type. In any object orientedClass A depends on AB (AB owns A) if an object is
language this condition is undecidable, and theautomatically removed from A when the last tuple in AB
implementation of any reasonable approximation of itinvolving that object is removed. An association can
requires either a system-controlled implementation ofsimultaneously own and be owned by a class. Classes and
associations or an extremely costly operation. A common associations can own or be owned by any number of other
alternative approach is to mark any object removed from aassociations and classes. AB owned by A and AB owns B
class as “killed”, which allows raising a failure when thattogether mean that, when the last element in A which
object is successively accessed; this is slightly better thanrefers to an element b in B is removed, then b is
leaving dangling references, but cannot be regarded as anremoved too. These constraints can be combined with
enforcement of the referential constraint. keys and surjectivity to express the many different flavors

To overcome the above limitations in modelling of composite objects described in literature [Kim 89].
association with an object-oriented data model, an object- – Constancy constraints can be defined. In the n-ary
relationship data model is presented. The maincase, the definition of constancy is: Let A1…An be
contribution of the proposal is the inclusion of thesome components of an association Assoc; Assoc is
following features in a strongly typed, object-orientedconstant with respect to A1…An if, for any tuple
database programming language: a1…an of values for A1…An, the set of tuples in
– a construct to represent associations as n - a r y Assoc with components a1…an is always the same in
symmetric relations among classes; any state where a1…an exist (i.e. in any state where
– associations can be organized into a specialization a1…an belong to their classes).
hierarchy; – Subsets of the components of an association can be
– the referential integrity constraint is actually enforced; declared as keys for the association. This means
– several constraints on associations, such as cardinality, cardinality constraints can be expressed, e.g.
surjectivity, dependency and non-mutability can be distinguishing between single and multi valued relations.
defined declaratively;
– the system is requested to implement associations, andThe class and association constructs are exemplified
the referential constraint can be enforced at a reasonablethrough a slight modification of the simplified university
cost. administration application used in [Casanova 89],

illustrated in Figure 1.
The focus will be on the mechanisms to model classes and

allocationsrooms

courses classes

schedules

students

enrolled

events

seminars
course
Instance

basic
courses

associations. The other features of the database
programming language, in particular the mechanism to
model objects, is beyond the scope of this paper, and is
given in [Albano 90].

The organization of the remainder of the paper is as
follows. Section 2 briefly overviews the object-
relationship data model. Section 3 discusses constructs to
model classes of objects and associations between classes
in an object-oriented programming language. Section 4
presents a minimal set of basic operations, where all the
high level constructs can be interpreted. Section 5
compares related works. Conclusion comments on the
work in progress.

class inclusion

key constraint

surjectivity constraint

2 The Object-Relationship Data Model

In the object-relationship data model, as in the object
model, real world entities are modeled by objects
collected in classes. Classes are sets of homogeneousFigure 1: Examples of classes and associations
objects, and inclusion and mutual disjointness constraints

Schedules is a class of time intervals; rooms are the are courses)
let students = new(classOf AStudent)available rooms; events are the events, such as classes,
let events = new(classOf AnEvent)seminars etc. that are scheduled; courses are the courses
let classes = new(classOf AClass are eventsthat can be offered; basicCourses are the fundamental

but not seminars)courses which are always offered; classes are the classes
let seminars = new(classOf ASeminar are eventsrunning; seminars are the scheduled seminars; students

but not classes)
are the registered students. The relationship allocations let allocations = new(assocOf
indicates which rooms are allocated for which events in TheRoom: ARoom in rooms
which time intervals; courseInstance indicates the course TheSchedule: ASchedule in schedules
of each class; enrolled indicates which students are TheEvent: AnEvent in events
enrolled in which classes. The following constraints are ContactPerson: string
specified: key (TheRoom TheSchedule))
1) inclusion constraints: let courseInstance = new(assocOf
– classes and seminars are disjoint subsets of events TheCourse: ACoursein courses

and basicCourses is a subset of courses; onto basicCourses
TheClass: AClass owned_by classes2) referential constraints:

onto classes– insertions into allocations, courseInstance and
constant_on (TheClass)enrolled fail if the objects used as components are not
key (TheClass))elements of the corresponding classes;

let enrolled = new(assocOf– the removal of an element x from the classes rooms,
TheStudent: AStudent owned_by studentsevents or schedules fails if x appears in allocations
TheClass: AClass in classes)

(i.e. x is the value of a field of an element of
allocations); In this model, the typical object-oriented mechanism of

– the removal of an element x from the class courses aggregation can still be used to build relations between
fails if x appears in courseInstance; objects, by defining object attributes with an object type.

– the removal of an element x from the class classes This can be used, for instance, to model complex
fails if x appears in enrolled; objects, i.e. objects with parts which can be viewed as

independent objects, when these parts are not collected– the removal of an element x from the class classes
into another class. However, in this model if aggregationdoes not fail if x appears in courseInstance, but
is used to define associations between classes, theforces the removal of the element of courseInstance
referential constraint is not enforced.where x appears;

– the removal of an element x from the class students 3 Classes and Associations for the Object-
forces the removal of all the elements of enrolled Relationship Data Model
where x appears;

3) surjectivity constraints: This section presents the constructs to describe classes,
associations, and the constraints supported by the object-– each element of c l a s s e s is associated by
relationship data model in an object-oriented databasecourseInstances with at least one element of courses;
programming language. The next section shows how the– each element of basicCouses is associated by
semantics of these constructs can be given in terms of acourseInstances with at least one element of classes;
minimal nucleus of primitive operators.4) key (cardinality) constraints:

In the language, classes are sets of data, and
– each element of c l a s s e s is associated by associations are relations, i.e. sets, of bindings, organized

courseInstances with a maximum of one element of into a specialization hierarchy. The basic operations on
courses; classes and associations are creation, insertion and

– each pair of elements of rooms and schedules is removal of elements. Constraints on classes and
associated by allocations with a maximum of one associations can be defined declaratively and are enforced
element of events; by a general trigger mechanism which is described in the

next section.5) constancy constraints:
Classes are first class values and class types are first– each element of classes is always associated by

class types, like sequences and sequence types are.courseInstances with the same element of courses;
Consequently (a) classes can be used in any combination
with the other data types constructors of the language toFor the sake of simplicity, in Figure 1 subclass
build complex structures, (b) no special namingdisjointness, dependency and constancy constraints were
mechanism is used for classes, and (c) the interaction ofnot represented. This database is described by the
classes with other features of the language, such asfollowing schema, using the constructs that will be
modules functions or object types, is governed by thedefined later; the definition of the object types (like
general rules of the language. The same is true forASchedule, ARoom…) is out of the scope of his paper.
associations: classes are just the unary case of the general
mechanism of n-ary associations. All the operators overlet schedules = new(classOf ASchedule)
classes and associations are statically and strongly typed.let rooms = new(classOf ARoom)
For any class the type of its elements is declared (thelet courses = new(classOf ACourse)

let basicCourses = new(classOf ABasicCourse element type of the class), but the elements of a class are

generally only a subset of all the values belonging to its new(classOf ElType are C1,…, Cn
element type. butnot A1,…, Am

Let us give first some definitions about subtyping, beforeInsert expr
equality, bindings and signatures, since these notions are beforeRemove expr): Class ElType
used to define associations, which are sets of bindings.

new classOf creates a new class which collects
3.1 Subtyping, bindings, equality and signatures elements of type ElType (usually an object type), and

such that its extension is always included in that of the
In the complete language an inclusion hierarchy is definedsuperclasses C1,…, Cn (extensional inclusion
on types, such that if A is a subtype of B, written A≤B, constraint), and it is always disjoint from that of the
any value belonging to type A also belongs to type B. classes A1,…, Am (extensional disjointness constraint).

A binding is a set of pairs <label, value>, and a These constraints are maintained automatically, as shown
signature is a set of pairs <label, type>; in both cases allin Section 4.
the labels are different. A binding satisfies a signature beforeInsert expr (beforeRemove expr) specifies
Sign if it contains all the labels of Sign and for any label that expr must be executed before the insertion (removal)
in the signature, the value associated with that label in theof an element in (from) the class. The identifier this can
binding belongs to the type associated in the signature.2

be used inside expr to denote the element to be insertedA binding is denoted as (let l1=v1 … let ln=vn). A
(removed), and self to denote the whole class. Thissignature (l1:T1 … ln:Tn) is a supersignature of another
mechanism can be combined with the assert and deferone (m1:U1 … mm:Um) if the set of the labels of the first
constructs described in Section 4 to define pre and postone is a subset of the set of the labels of the second, and if
conditions.the type associated with any label in the super-signature is

The declaration above is well typed only if the elementa supertype of the one associated with the same label in
types of the classes C1,…, Cn are all supertypes ofthe subsignature.
ElType (intensional inclusion constraint). If B is theIn the complete language equality is defined on all the
created class, C1,…, Cn are the i m m e d i a t etypes. It is defined by identity (i.e. by creation time) on
superclasses of B.functions and updatable values (objects, updatable

A1,…, Am are classes which must never intersect B.variables, classes and associations), and is defined by
If TAi is the type of the elements of the class Ai , thevalue on values belonging to the other non-updatable type
clause butnot is well typed only if any TAi is compatibleconstructors (bindings, variants and sequences).
with ElType. Both clauses are C1,…, Cn and butnotEquality is type dependent on types where it is value
A1,…, An can be omitted. Examples are given in Fig.1.defined: for example, if two bindings with labels a and b

have the same integer value in field a and different
A new empty association can be defined as follows:integer values in field b, they are equal if compared with

type (a:Int) and different if compared with type (a:Int andnew (assocOf ExtSignature are A1,…, Aj
b:Int). On the other hand, equality is type independent in { key keylist}
the other types: two objects are equal if and only if they { constant_on label [in class] … label [in class]}
have the same identity, whatever the type used to compare { beforeInsert expr}
them. { beforeRemove expr}):

Two types are compatible if there is a type V which Assoc Signature key keylist1 … key keylistn
is a supertype of both of them.

ExtSignature is a signature extended with a set of
constraint specifications, described below, and Signature3.2 Classes and associations
is ExtSignature without those specifications.

A class is an ordered set of distinct elements with the A keylist is a list of attributes of the signature,
same type, and an association is an ordered set of distinct specifying the constraint that two distinct bindings in the
bindings satisfying a fixed signature. Classes and association must differ in at least the value of one attribute
associations are first class values of the language, andfor each keylist.
their structure is described by the first class types constant_on is a constancy constraint, explained later.
Class(ElementType) and Assoc(Signature) key keylist1 beforeInsert expr (beforeRemove expr) specifies… key keylistn. This means that associations can be used

that expr must be executed before the insertion (removal)to form arbitrarily complex structures, although a scheme
of an element in (from) the association. The labels of theis usually defined by using associations with a flat

structure, as shown in the next section. association signature can be used inside expr to denote
Classes and associations are created empty, and then the fields of the binding to be inserted, and self to denote

elements and bindings are inserted and removed. Classesthe whole association.
and associations are inspected by using relational-like

The new assocOf operation builds a new emptybulk data operators.
association to collect bindings with the specified
signature. The extension of the new association is a subset3.2.1 Creation
of that of A1,…, Aj ; Signature must be a subsignature

A new empty class is defined by the following operation: of those of A 1 ,…, Aj , and the keylists of the new
association must imply those of A1 ,…, Aj . An
implication relation is defined on sets of keylists by the2 Bindings are similar to records, although in the full
transitive and reflexive closure of the following ruleslanguage there is a distinction between these two type
(where the single keylists and the list of the keylists areconstructors.

regarded as sets): last binding in an association referring to an element is
removed, then in the same transaction that element must

key list1 …key listn Û key list1 …key listn-1 be removed too. The complete language supports nested
key (list1) …key listn Û key (list1, a)…key listn transactions, as specified in the next section, and this

constraint is checked at the end of the transaction where
A description of the constraints which can be declared inthe class insertion or the association removal take place.
ExtSignature follows: Elements are supposed to be inserted first into classes and

then into associations, and conversely for removal.ExtSignature ::= {label : Type {constraint}}
Referential constraints can thus be checked immediately,constraint ::= in class | are class | owned_by class
whereas surjectivity constraints can only be checked at the| onto class | owns class
end of the smallest enclosing transaction.

The owns clause is the surjectivity counterpart of the
3.2.2 Referential constraints referential owned_by clause: like onto, when an element
label: Type in/are/owned_by class is inserted in the class, then in the same transaction a

binding referring to that element must be inserted in the
The attributes of a binding of an association are divided association, but when the last binding referring to an
into components, which are attributes whose values mustelement is removed from an association, that element is
belong to a specified class, and association attributes removed from the class too, at the end of the transaction.
(attributes in short), which have no such constraint.

There are three different declarative ways of defining a In object-relationship schemes, any component has one
referential constraint: in, are and owned_by. referential constraint, but it can have zero, one or more

These three clauses specify the same referential surjectivity constraints, defined on different subclasses of
constraint to be maintained with different styles, i.e. eitherthe class of the referential constraint (see the
by raising failures or by forcing its satisfaction. courseInstance association in Figure 1).

In more detail, the in clause means that: a) when a In the following tables the precise relationships
new binding is inserted in the association, a failure isbetween the above constraints are summarized. Tables 2
raised if the value of the component is not contained in and 3 highlight that in fact a fourth kind of referential
the specified class; b) when an element is removed from constraint could have been defined, characterized by the
the referred class, the operation fails if the element is abehaviour “class.insert(x) - fail ” (Table 2). But in the
component of a binding in the association. surjectivity family there are just two possible constraint,

The are clause means that: a) when a binding is since there is no alternative to failure if there is class
insertion (Table 3).inserted in the association, the value of the component is

inserted in the class; and b) when an element is removed
Table 1: Conditions Enforced and Operations Monitoredfrom the class, all the bindings with that element as a

by the Constraintscomponent are removed from the association.
The owned_by clause means that: a) when a new

Constraint Enforced Monitored binding is inserted in the association, a failure is raised if
condition operations that component is not contained in the specified class, as

ÐÐ

happens with the in clause; b) when an element is referential xìassoc.label assoc.insert,
removed from the referred class, the bindings referring ã xìclass class.remove
that element are removed, as happens with the a r e

surjectivity xìclass class.insert,clause. So owned_by codifies a dependency constraint,
 ã xìassoc.label assoc.removeand a dependency of the association from the class.

For the referential constraints in and owned_by, as for the ÐÐ

surjectivity and constancy constraint, the element type of
the referred class must be compatible with that of theTable 2: Action requested by a referential constraint,
attribute in the signature, even though they are usually before performing an insertion/removal operation
exactly the same type. For the referential constraint are
the type of the component must be a subtype of theConstraint assoc.ins(label=x…) class.rem(x)
element type of the referred class. if xííííclass if (label=x…)ììììassoc

ÐÐ

in fail fail3.2.3 Surjectivity constraints
owned_by fail assoc.rem(label=x)

label: Type onto/owns class are class.insert(x) assoc.rem(label=x)
ÐÐ

While the referential constraint specifies that the existence
of a binding in an association implies the existence of a

Table 3: Action requested at commit time by avalue in a class, the surjectivity (or totality) constraints
surjectivity constraint, if an insertion/removal

enforce the converse implication: the existence of operation is performed
elements in some classes necessitates the existence of a
binding involving them in some association. Constraint class.ins(x) assoc.rem(label=x)

The onto clause corresponds to the in clause; it means if (label=x…)ííííassoc if (x)ììììclass
that when an element is inserted in the class, then in theÐÐ

onto fail failsame transaction a binding referring to that element must
owns fail class.rem(x)be inserted in the association, and conversely, when the
ÐÐ

3.2.4 Constancy constraints of the class, and removes all the elements in the class
which match the argument. In both cases, remove just

constant_on label [in class] … label [in class] removes the argument from the class/association, without
destroying it, so that if that object/binding is accessible inWhen an association is constant on one component-class
some other way, it remains accessible after the removal.pair label-class, all the bindings involving a value el of
This is not a problem since the enforcement of thelabel can only be inserted in the association when el is
referential constraint does not depend on the coincidenceinserted in class (or rather in the same transaction). Any
of the extension of a class with the set of all the elementsother attempt to insert or remove associations involving
of the associated type.el would fail, apart from the final binding removal which

Two values a and b belonging to the compatible
can take place only when el is removed from its class.

types A and B “match” if they are equal with respect toConstancy on a list of pairs labeli -classi means that
any of the minimal common supertypes of A and B. Inthe bindings involving a binding
practice, if a and b are objects, they match if they have

{< label1,el1>,…,<labeln,eln>} the same identity, whereas if they are bindings they match
if the values associated to the common labels match. Formust be inserted in the association at the same time as the
example, referring to the example in Section 2, thelast eli is inserted in its class, and can only be removed
binding (let TheEvent = x) matches all the bindings inat the same time as at least one of the eli is removed
the association allocations whose field TheEvent isfrom its class. Constancy on many lists is just the
equal to x.conjunction on all the associated conditions.

This constraint is orthogonal to the cardinality (key),
3.2.6 Associative access operatorsreferential and surjectivity constraints. Its type rule

specifies that the type of any label in the signature must assoc.has(binding), assoc.get(binding)
be compatible with the element type of the correspondingclass.has(value), class.get(value)
class. If exactly one referential constraint is specified for
a component, the clause in class can be omitted in the has, like remove, receives a binding whose signature is
constancy constraint, and the class specified in thecompatible with that of the association, and returns true if
referential constraint is assumed. The constraint is wellthe association contains a binding which matches its
typed if the type of the components is compatible with the argument. On classes, it receives a value whose type is
associated classes. compatible with the element type of the class, and returns

true if the class contains an element which matches its
The constancy constraint completes the list of theargument.
declarative constraints which can be specified on classes The type constraint for the get operator is slightly
and associations. In the next subsection the operators todifferent. On classes, it receives a value of a type which is
update classes and associations are presented. not only compatible with the element type of the class, but

also has the same equality, which means that for any pair
3.2.5 Updating operators of elements belonging to both types, they are equal when

compared in one type if they are equal when compared inclass.insert(elem), class.remove(elem)
the other one. Any two compatible object types have theassoc.insert(binding), assoc.remove(binding)
same equality, since objects are compared by identity. get
returns the unique value in the class which is equal to itsThe insert operation takes a value of the element type of
argument, and fails if no such value exists. get can bethe specified class, executes all the declared constraint
used to perform a sort of run-time type coercion: letchecking and automatic insertions (if class has some
Student be a subtype of Person and (students: Classsuperclasses) and finally inserts the element in the class. If
Student) be a subclass of (persons: Class Person), andthe argument of insert is already contained in the class,
suppose that j o h n has type Person. I fthe operation has no effect.3 insert is atomic, which
students.get(john) does not fail, then it returns the sameimplies that if a failure is raised during its execution, all

its effects are undone. If insert causes an automatic object as john, but with type Student.
insertion in a superclass, the constraints and automatic On associations, get receives a binding whose
insertion of the superclass are executed too. insert signature GetSign satisfies the following constraints: (a)
behaves exactly in the same way on associations. GetSign is compatible with the signature AssocSign of

The remove operation on associations takes a binding the association; (b) the set of labels of GetSign includes
whose signature is compatible with the association, and a key of the association; (c) for all the labels belonging to
removes all the binding in the association which matchboth GetSign and AssocSign, the associated types have
the argument binding. It verifies all the associatedthe same equality. get returns the unique binding in
constraints for all these elements, executes all the assoc which matches the specified binding, and fails if
automatic removals, and finally removes them from theno such binding exists. The conditions (b) and (c) imply
association; like insert, remove is atomic. On classes, it that a maximum of one element of the association

matches the get argument.takes a value whose type is compatible with the elements

3 This is enough to maintain the set constraint, i.e. the 3.2.7 Relational-like algebra
constraint that all the elements of a class are different; in fact,

In the full language, a sequence type Seq exists, with a setsince all the updatable entities of the language are compared by
of relational-like operators, transforming sequences intoidentity, the set constraint cannot be violated as a side effect of
sequences.an update operation.

A type Assoc(Signature keylists) is a subtype of the Seq(l1:T1…lm:Tm m1:Seq U1 …mm:Seq Um)
type Seq Signature, and a type Class ElType is a

is returned.subtype of the type Seq ElType, so that the relational-
like operators of the language can be applied also toTwo operators, makeClass and makeAssoc(keylists), are
associations and classes.4 The abstract syntax of the defined to transform sequences and sequences of bindings
relational-like operators is listed below. They are divided into classes and associations, though these operators are
into the group of the operators defined on all sequences, usually not needed.
which can be applied to both classes and associations, and
those defined only on sequences of bindings, which can4 The Kernel Language
only be applied to associations.

In the previous section a language was presented which
supports the structure and the constraints of the object-General operators on sequences:
relationship data model. This section shows that the
language can be fully interpreted in a minimal kernel,R union S, R intersect S, R diff S
built around (a) the general failure handling mechanismsR select condition
of the language, (b) a simplified association mechanismR map function

R sort sortList with no predefined constraint declaration, and (c) a
general purpose constraint maintenance mechanism forThe meaning of the operators is specified by their name;
associations. In this way a formal semantics is given fortheir type constraints are specified below, supposing,
the constraints presented, and for any possiblewhere needed, that S and R have type Assoc
combination of them. Besides this, the general purpose

(Signature keylist…) or Class ElType. mechanism defined here is present in the language
union, intersect and diff can be applied to any pair of together with the specialization presented in Section 3, to

lists with a common supertype, returning a result in thatallow the programmer to specify different constraints, or
type. different flavors of the same constraints. The most

In s e l e c t, condition is a function of type appealing feature of the basic mechanism presented here
SignatureÛBool (ElTypeÛBool) is its simplicity, built around just one type operator and

seven value operators.In map, function is a function of type SignatureÛT
In Section 4.1 the general failure handling and nested(ElTypeÛT), applied to all the elements of the

transaction mechanism of the language are outlined; in
association (or class) R to obtain a sequence of type Seq Section 4.2 the basic association mechanism is defined. In
T. Appendix A the semantics of the declarative constraints is

In sort, sortlist is a sort condition for the element type presented by giving their translation into the basic
of the sequence R; see [Ghelli 90a] for the precise mechanism.
language used to express sort conditions.

4.1 The transaction and failure mechanism
Operators on sequences of bindings:

The full language supports nested transactions and a
R project labelList nested failure management mechanism, based on the
R times S following operators.
R rename renameList
R groupby groupList Failure management operators:

In project , labelList is a subset of the list of the labels let exc excname: type;
failwith excname=valueof R.
assert boolexpr elsefail excname=valuetimes takes two sequences of bindings with disjoint
try expr exc excname1=var1 do handler1sets of labels, and returns a sequence of bindings

containing the union of the labels of the arguments. …
exc excnamen=varn do handlernI n rename, renameList is a binding such as the
[else do handler]expression let n1=o1 … nm=om where o1,…, om are

labels of the original relation and n1,…, nm are all let exc introduces a new exception name excname
mutually different labels not included in the labels whichwhich is associated with values of type type.5
remain in the relation after the oi labels are removed.

failwith raises an exception with name excname andIn groupby, if Signature is equal to
value value; excname has been previously introduced by

l1:T1…lm:Tm m1:U1 …mm:Um let exc. The exception propagates along the dynamic
activation chain until an exception handler, defined usingand groupList is equal to l1…lm, then R is partitioned
the try construct below, is found.in sequences where all the fields l1…lm have the same

assert is equivalent to if boolexpr then nil elsevalue, each of these subsequences is transformed into just
failwith excname=value; if the clause elsefail is omittedone binding of signature
it fails with failure=nil .(l1:T1…lm:Tm m1:Seq U1 … mm:Seq Um)

try executes expr; if it fails with a name excnamei
and the resulting sequence of type then try executes the handler handleri binding vari to

the value of the exception. If the exception name is
4 Associations and classes are ordered by insertion time;

this ordering means thay can be viewed as sequences. 5 Type is a ground type built without using object types.

different from all the names excnamei , then there are two Appendix A — here, only the translation of classes is
possibilities: if the else do branch is defined then the specified.
corresponding general handler is executed, otherwise the A class of type Class Type is translated as an
exception is propagated. association of type Assoc (label: Type), where the label is

arbitrary, and never used. The operations on classes are a
Nested transactions operators: syntactic abbreviation of the operations on associations,

where a type ElType substitutes a signatureatomic expr, defer expr, old assoc
label:ElType and values of type ElType substitute

atomic executes expr, and if it fails, before propagating bindings satisfying label:ElType:
the failure, rebuilds the state as it was before executing

new (classOf Type): Class Type Ûexpr. In more detail, it undoes all the variable updates,
new (assocOf label: Type): Assoc Typethe class/association insertions and removals and the

effect of the operation extend, defined in the full class.insert/remove(value) Û
language, which changes the type of an object without assoc.insert/remove(let label = value)
affecting its identity. atomic is a nested transaction

class.beforeInsert/Remove(func) Ûmechanism; the outermost atomic is the transaction used
assoc.beforeInsert/Remove(for concurrency control.

fun(bind:{label:Type}) func(bind.label))A list of expressions to be executed before committing
is associated with any transaction; defer is used to build class.get/has(value) Û
this list, adding the specified expression to the end of the assoc.get/has(let label = value)
list of the current transaction. defer is used typically to
defer the control of an integrity constraint to the end of a 5 Related Work
transaction.

old applied to a variable or to an association (or class) The relation mechanism in data models has been
extensively studied since the proposal of the relational andreturns a copy of the value of that variable or association
entity-relationship data models. A recent proposal in theat the beginning of the current transaction. It is used to
field of entity-relationship model, similar to the onecheck dynamic integrity constraints.
presented here, is in [Casanova 89], where a data
definition language is presented for an extended E-R4.2 The basic association mechanism
model. The language allows entity sets to be defined as

In the kernel of the language, classes are not defined, butwell as relationship sets. Relationship sets can have keys
only associations are. An association is only characterized and surjectivity constraints. Besides general assertions,
by a signature and a list of keylists, without inclusionmutual exclusion and referential integrity constraints can
hierarchies or constraints. be specified both on entity and relationship sets. These

The primitive creation operation for associations is: assertions are complemented by the facility to specify the
existence of triggers, immediate or deferred, onnew (assocOf Signature key keylist1 … key keylistn):
operations. Only the conditions for firing triggers are

 Assoc Signature key keylist1 … key keylistn described, not the triggers themselves, since the paper
does not propose a particular data manipulation language.On the basic associations a general purpose constraint
Entity and relationship sets can be organized into averification/enforcement mechanism is defined. Any
specialization graph, to provide both inheritance andassociation contains two lists of function, called the
inclusion hierarchy.insertion and removal pre-operations, which are applied

While this work is similar to ours from a data modelingto each binding which is inserted in an association, or is
point of view, our proposal is expressed in the frameworkremoved from it. If the argument of the insert operation is
of a full language, which is both object-oriented andalready contained in the association, the pre-operation is
strongly and statically typed. Moreover, our kernelnot executed. These pre-operations are defined with the
language is conceptually simpler and more regular.following operators:

From the field of object-oriented languages, both
assoc.beforeInsert(fun(Signature) expr6) [Rumbaugh 87] and [Diaz 90] present a proposal to
assoc.beforeRemove(fun(Signature) expr) enhance object-oriented languages with a construct to

beforeInsert/beforeRemove add the function represent user-defined relations. Rumbaugh was the first
fun(Signature) expr at the head of the insertion/removal to stress the relevance of a relation construct in this
pre-operations lists; Signature is the signature of the context. His proposal allows n-ary relations to be defined
association. over objects, but only with simple cardinality constraints.

insert, remove, get and has are defined on the basic The language presented is untyped, and no specialization
associations as they are on the sugared version. These is defined over associations. Implementation issues are
operators complete the definition of the basic associationdiscussed together with the description of an actual
mechanism. implementation in a production-quality programming

system developed by the author at General Electric. The4.3 Translating classes and predefined constraints into
proposal in [Diaz 90], expressed in the framework ofthe basic calculus
knowledge representation language based on frames,

The complete translation of constraints is given in presents a construct to define binary relationships between
objects, with assertions and attributes which belong to the6 Actually any function of type SignatureÛType is
relationship as well as assertions and attributes added toaccepted as an argument by beforeInsert and beforeRemove.

the objects for as long as they participate in the
The mechanisms presented are included in a completerelationship. In addition, surjectivity, cardinality and
database programming language, which is currently underdependency constraints can be specified on relationships.
implementation, with the following features [Albano 90]:Relationships are objects which can be specialized, and
– it is statically and strongly typed;whose methods for creation, retrieval and updating can be
– it supports a module mechanism for structuringmodified. General constraints are intended as invariants to

complex schemes and applications;be preserved in the database: a complex system executes
– it supports all the features of an object orientedthis task. In this language there is no concept of type or

language: object identity, state and methodstype checking, and, like in the Rumbaugh proposal, there
encapsulation, type inclusion, multiple inheritance;are no retrieval or other bulk operators on relations. The

– it supports an object mechanism with separationconstructs proposed are embedded in a high level object
between interface and implementation of an object typeoriented extension of Prolog.
definition, and with an operator to change the type ofIn [Atkinson 91] a new type constructor called map is
an object dynamically without affecting its identity.

presented. Whereas associations are inspired by the
mathematical notion of finite relation, maps are inspired6.2 References
by the notion of finite function. The expressive power of
the two notions is similar, since associations can be seen Albano A., L. Cardelli and R. Orsini, “Galileo: a
as maps without a range, while maps can be seen asStrongly Types Interactive Conceptual Language”, ACM
associations with just a key. An interesting characteristicTrans on DataBase Systems. 10 (2), pp. 230-260, 1985.
of this proposal is that both an ordering and an equality

Albano A., Ghelli G. and Orsini R., “Objects andspecification for the key can be declared together with the
Classes for a Database Programming Language”, Tech.map type, and then become part of the type. The only
Rep. 5/24 Progetto Finalizzato Sistemi Informatici econstraint which can be defined on a map type is a form
Calcolo Parallelo, CNR, Roma, November 1990.of constancy constraint. Many operations are provided to

Atkinson M.P., Bancilhon F., DeWitt D., Dittrich K.,access and modify elements of maps, either singularly or
Maier D., and Zdonik S., “The Object-Oriented Databaseby iterating over a specific subset of a map. An algebra
Manifesto”, Proc. DOOD 89, Kyoto, Japan, 1989.over maps is defined, through classical operations on sets

as well as through an operator similar to comprehension. Atkinson M.P., Lécluse C., and Richard P., “Bulk
Associations are proposed mainly as a data modelling Types for Data Base Programming Languages: A
abstraction mechanism, and for this reason they have aProposal”, submitted for publication, 1991.
rich set of constraint specifications and can be organized

Casanova M.A., Tucherman L., Gualandi P.M.,into a specialization hierarchy. Maps, on the other hand,
Pacheco A., and Cavalcanti M.R., “A Data Definitionare also proposed both as an efficient bulk structure for
Language for Extended Entity-Relationship Model”, Riodatabase programming languages and as the data format
Scientific Center, Technical Report CCR-072, 1989.of a canonical store manager for complex structured data.

Maps could thus be used as a low-level structure to Diaz O., and Gray P.M.D., “Semantic-rich User-
implement classes and associations efficiently, as well asdefined Relationships as a Main Constructor in Object
associative data structures on them. Oriented Database”, Conf. on Object-Oriented

Databases, Windermere, UK, 2-6 July 1990.
6 Conclusions

Dittrich K., “Object-Oriented Database Systems: The
A mechanism has been defined to represent classes and Next Miles of the Marathon”, Information Systems, Vol.
associations in a database object oriented language. This 15, N. 1, pp. 161-167, 1990a.
proposal stems from the experience gained in designing, Ghelli G., “Proof Theoretic Studies about a Minimal
implementing, and using the Galileo database Type System Integrating Inclusion and Parametric
programming language [Albano 85]. It is characterized by

Polymorphism”, PhD Thesis, TD-6/90, Dipartimento dithe following features:
Informatica, Università di Pisa, Italy, 1990b.– Associations are not described by aggregation, as in the

standard object oriented data models, but by a separate Ghelli G., and R. Orsini, “Types and subtypes as
mechanism. With this approach the implementationpartial equivalence relations”, In Inheritance hierarchies
choices about associations are left to the DBMS. in Knowledge Representation, Lenzerini M., Nardi D,

– Classes and associations are first class values of theSimi M. (eds.), J. Wiley & Sons, Chichester, England,
language, and their structure is described by a firstpp.191-209, 1991.
class type. This means that these constructors can be

Kim W., Bertino E., and Garza J., “Composite objectscombined in any way with the other data type
revised”, Proc. ACM SIGMOD Conf. Management Data,constructors of the language.
Portland, OR, June 1989.– The following constraints can be defined declaratively:

class and association inclusion, key, referential, Rumbaugh J., “Relations as Semantic Constructs in an
surjectivity, dependency and constancy constraints. Object-Oriented Language”, OOPSLA’87,466-481, 1987.

– All the above constraints are formally defined in terms
Zdonik S.B., and Maier D., “Fundamentals of Object-of a minimal kernel based on just one data type

Oriented Databases”, in Readings in Object-Orientedconstructor (Assoc).
Database Systems, Zdonik S.B., and Maier D. (eds),– All the constructs presented permit a strong type

checking (no type error is raised at run time by a well Morgan Kaufmann Publishers, San Mateo, CA, 1990.
typed expression) which can be performed completely
at compile time.

Appendix A: The translation of the constraints self.beforeInsert(fun(bind:Sign) Cn.insert(bind))
Cn.beforeRemove(fun(bind:SignAn)In this appendix the constraints presented in Section 3 areself.remove(bind:SignAn))

translated into the basic language presented in Section 4.
The constraints are translated separately. Each of them The insertion messages Cj .insert(bind) are type
produces a set of beforeInsert/Remove operations, which correct since Sign is a subsignature of SignAj : the type
are all collected together. For simplicity, the sugaredof the argument of insert must be a subtype of the type of
notation for has insert and remove on classes is used. the association. On the other hand, the messages

self.remove(SignAj) are type correct even though Sign
beforeInsert/Remove constraints ≤ SignAj , since remove accepts arguments belonging to

any supertype of the signature of the association. The
new (assocOf Signature {beforeInsert expr} translation is identical for classes.

 {beforeRemove expr}): Assoc Signature An inclusion constraint R ≤ S only forces a set-
inclusion relation between two associations R and S ifThe expression above is translated as:
the corresponding signatures SignR and S i g n S are

let self: Assoc Signature = new (assocOf Signature) equality compatible, i.e. they are associated with the
in (self.beforeInsert(fun(Signature) expr); same equality operation. Otherwise, if more bindings,

self.beforeRemove(fun(Signature) expr); which are all mutually different in SignR but equal in
self SignS, are inserted in R, only the first of them is inserted

) in S, and when this binding is removed from R, all the
corresponding bindings are removed from S. In this casefun(Signature) expr returns a function whose formal
this “inclusion” constraint does not model set inclusionparameters are defined by Signature. let introduces and
exactly but only set inclusion modulo equality, i.e. P.E.R.binds a new identifier; the form let … in scope
inclusion as discussed in [Ghelli 90b]. On the other hand,introduces it into the local scope scope. (expr;…;expr)
inclusion modulo equality coincides with set inclusion onevaluates the expressions and returns the value of the last
associations when a key constraint is defined on aone.
component of the superassociation, and on classes whenAll the expressions produced by the successive
the element type is an object type.translations are added in the scope of the let above, so

that the identifier self can be used in all of them.
mutual disjointnessOn classes, beforeInsert/Remove are translated in the

same way. new (classOf ElType butnot B1,…,Bn): Class Type

This constraint specifies that the classes B1,…,Bn mustkey constraints
never intersect self. If TBi is the type of the elements of

new (assocOf Signature key keylist1 … key keylistl) the class Bi , it is only well typed if ElType is compatible
withTBi .key constraints belong to the kernel language,

This constraint is enforced defining the followingnevertheless their precise meaning can be defined by a
insertion preconditions (beforeIns stands forpre-operation, as happens for the derived constraints. Let
beforeInsert):l1:T1…,l j :Tj be a subset of the association signature;

then the constraint key l1 ,…,l j forces the automatic self.beforeIns(fun(elem:Type) assert not (B1.has(elem))
production of the following pre-operation: B1.beforeIns(fun(elem:TB1) assert not (self.has(elem))

…self.beforeInsert
self.beforeIns(fun(elem:Type) assert not (Bn.has(elem)) (fun(Signature) assert not self.has(let l1=l1…,let lj=lj));
Bn.beforeIns(fun(elem:TBn) assert not (self.has(elem))

Inclusion constraints Note that has is well typed since TBi is compatible with
ElType.new (assocOf Signature are A1,…,Aj)

new (classOf ElType are A1,…,Aj)
referential constraint

The above declarations ask the system to maintain
label: Type in/are/owned_by classautomatically an inclusion relation between the new

association and each of the immediate superassociations.In the cases of in and owned_by , Type is compatible
They are enforced by defining an insertion pre-operationwith the element type ElType of class; in the case of are
which inserts the element in the immediateType must be a subtype of ElType. This is the
superassociations, and a removal pre-operation in anytranslation:
superclass which removes the element from immediate

label: Type in class: class ElType Ûsubassociations (the signatures SignA1,…,SignAj of
A1,…,Aj are super-signatures of the signature Sign of self.beforeIns(fun(bind:Sign)assert class.has(bind.label))
the association defined): class.beforeRemove

 (fun(el:ElType) assert not (self.has(let label =el)))self.beforeInsert(fun(bind:Sign) C1.insert(bind))
C1.beforeRemove(fun(bind:SignA1) label: Type owned_by class: class ElType Û
self.remove(bind:SignA1)) self.beforeIns(fun(bind:Sign)assert class.has(bind.label))
… class.beforeRemove

(fun(el:ElType) self.remove(let label=el))

label: Type are class: class ElType Û
self.beforeInsert(fun(bind:Sign) class.insert(bind.label))
class.beforeRemove

(fun(el:ElType) self.remove(let label=el))

Notice that the translation of the a r e referential
constraint is identical to the are inclusion constraints,
justifying the notation.

surjectivity constraints

label: Type onto/owns class

Type is compatible with the element type ElType of
class. This is the translation:

label: Type onto class: class(ElType) Û

class.beforeInsert(fun(el:ElType) defer assert
class.has(el) implies self.has(let label=el))

self.beforeRemove(fun(bind:Sign) defer assert
class.has(bind.label) implies

self.has(let label=bind.label))

label: Type owns class: class(ElType) Û
class.beforeInsert(fun(el:ElType) defer assert

class.has(el) implies self.has(let label=el))
self.beforeRemove(fun(bind:Sign) defer

if self.has(let label=bind.label) then skip
else class.remove(bind.label);

A implies B is a boolean expression equivalent to
((not A) or B).

constancy constraints

new (assocOf Signature
 constant_on label1 in class1 labeln in classn)

Constancy on a set of components (each associated with a
class) means that, once a binding b for those components
has been fixed, all the bindings extending b must be
inserted when the elements appearing in b are inserted in
their classes, and can only be removed when the elements
in b are removed from their class (at least one of them).
This is not the only possible interpretation of the
constancy constraint; different interpretations can be
enforced procedurally.

The type constraint is that the type of the components
must be compatible with the associated classes; the
translation is as follows:

self.beforeInsert(fun(bind:Sign) assert
not ((old class1).has(bind.label1)

and …
and (old classn).has(bind.labeln)

)
self.beforeRemove(fun(bind:Sign) defer assert

not ((class1).has(bind.label1) and …
and (classn).has(bind.labeln))

