AN OBJECT DATA MODEL
WITH ROLES!?

A. Albano, R. Bergamini, G. Ghelli, R. Orsini

Dipartimento di Informatica — Universita di Pisa
Corso ltalia 40, 56100 Pisa — Italy

Abstract

Fibonacci is a strongly typed, object-oriented databa
programming language with a new mechanism to moc
objects with roles. Traditional object-oriented programmir
languages do not have the possibility of changir
dynamically the type of an object to model the behaviour
real world entities which change their status over time. T}
is a severe limitation in the context of a databa:
programming language. Besides this, traditional objet
oriented languages do not model the fact that the behavi
of real world entities may depend on the role that the ent
plays in a context. We propose a mechanism to face b
problems in the context of a statically strongly typed objec
oriented database programming language, and show that
two problems are strictly related. We show that the proble
can be solved without giving up the most useful features
object-oriented programming, namely inheritance, la
binding and encapsulation. Examples will be given referril
to the prototype implementation of the language.

1 Background

One of the major problems encountered in the maintenal

1 This work has been supported in part by grants from t
C.E.C. under ESPRIT BRA No0.6309 (FIDE2: Fully Integrate
Data Environment), and the Progetto finalizzato “Sisten
informatici e calcolo parallelo” of C.N.R. under grant No
92.01561.PF69.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or ditributed for
direct commercial advantage, the VLDB copyright notice and
the title of the pubblication abd its date appear, and notice is
given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee andfor special permission from the Endowment

Proceedings of the 19th VLDB Conference

Dublin, Ireland, 1993, Rakesh Agrawal, Sedn Baker,
David Bell editors, Morgan Kaufmann Publishers,
San Mateo, CA, USA. pp. 39-51.

of a database application is how to manage changes. Wi
share completely the opinion of Richardson and Schwarz
expressed in [7]: “Most object-oriented database systems
display serious shortcoming in their ability to model both

the dynamic nature and the many-faceted nature of commor
real-world entities. The most obvious example of this kind

of entity is a person. While existing OODBSs may capture
the notion that a student is a person, they do not support th
notion that a given person may become a student. After
graduation, that person ceases to be a student, and becom
an alumnus in the meantime, he or she may also be at
employee, a customer, a club member, etc. Throughout his
or her life, a person gains and loses many roles.”

This problem has been investigated in the object-
oriented database community by several authors, and we wil
comment on related works later on. The main contribution
of this paper is the extension of an object-oriented data
model with the notion of objects with roles, such that an
object can have several roles and is always accessed throuc
one of its roles. The behaviour of an object depends on the
role used to access it. Moreover this mechanism is supporter
by a strongly typed programming language Fibonacci which
also offers other features such as: a) the separation betwee
the object interface, or type, and its implementation, to
allow the evolution of the implementation without affecting
the rest of the system which is only aware of the object
interface; b) the possibility of having different
implementations for a unique object type; c¢) the use of an
inclusion hierarchy with multiple inheritance to organize
object types. Besides objects, the data model provides also
class and association mechanism to model databases, but tt
presentation of these mechanisms is outside the scope of thi
paper and can be found in [2].

The paper is organized as follows. Section 2 describes
the features of the proposed mechanism for objects with
roles in a language independent fashion. Section 3 present
an overview of the Fibonacci type system to give the
prerequisite to understand in Section 4 the constructs of the
language to define objects with roles according to the
requirements defined in Section 2. Section 5 compares the
proposed solution with related works. In the conclusions, we
comment on our future plan.

2 The features of the Fibonacci object
mechanism

Real-world entities with roles. When constructing a
computerized information system, adopting a simplified
point of view, we will assume that the reality consists of
entities, with certairbehaviours which evolve over time.
Entities can play severables during their life, i.e. they
can belong to several conceptual categories. For example .
human being may be classified as a person, an employee,
teacher, a department chairman, a tennis player, a retired
employee, etc. In general an entity can have at same time
several roles, although there are cases where some role
cannot co-exists (e.g., a person cannot be an employee an
unemployed at the same time). However, any interaction
with an entity always takes place through one specific role
of the entity, and the behaviour of the entity may depend on

the role it is playing. The set of roles possessed by an en
can change over time, so that its behaviour changes ¢
time too.

Objects and messages. An object is the computer
representation of a real-world entity. An object is a softwa
entity which has an internal state equipped with a set of lo
operations fiethod¥ to manipulate that state. The reque:
to an object to execute an operation is calledegssageo
which the object can reply. The state of an object can ol
be accessed and modified through operations associated
that object ¢tate encapsulation Each object can send
messages to itselfsélf-referencg and so it is able to
activate his own methods¢€If-recursion. The message
interpretation (i.e. choosing the method to activate to repl
message) always depends on the object that receives
message.

Each object is distinct from all other objects and has
identity that persists over time, independently of changes
the value of its state. For instance, the object represent
the person John is different from any other obje
representing another person, but will remain the same e
if his address or some other attribute changes.

Roles. Each objects has a set mfles. An object is
not manipulated directly, but always through one of i
roles, so that we either say that a message is sent tc
object through one of its roles or, more simply, thi
messages are sent to roléEhe answer of an object to &
message may depend on the role which receives it. |
example, an object with role Graduate will answer to ti
message Introduce with “I am John Smith, graduate
Computer Science at the University of Toronto”, but i
another context it may be used with the role Manager a
then the answer at the same message will be “I am J
Smith, manager of the marketing division”. In traditione
object-oriented languages an object cannot show this kinc
behaviour.

Since messages are sent to roles, the set of messi
which an object can answer to, is not described by its obj
type but by the role types of the roles of the object. In tt
sense, role types are very similar to object types of ott
object-oriented languages.

Finally, roles (i.e. objects accessed through a role) ¢
denotable and expressible values of the language (first-cl
values). They can be assigned to variables, used as i
structure components and as parameters or results
functions.

Modeling roles and behaviour evolution.
Many kinds of entities throughout their life change their ro
and behaviour. An unemployed can become an employ
and then a manager. Consequently, to model nature
entities that evolve dynamically, they must be represented
objects that can change their set of roles without affecti
their identity. In traditional object-oriented languages ¢
object cannot show this kind of behaviour because obje
have an immutable type throughout their life.

Role type hierarchies. A subtyping relation is
defined on role types (we say either tRgtis asupertype
of R, or thatR; is asubtypeof R,). This relation is
asymmetric, reflexive and transitive. A role subtype can ha
several role supertypes, from which inherits all properti
(multiple inheritancg unless they are explicitly redefinec

in the subtype dverriding); besides, a role subtype can add
new properties. Properties of the supertype can only be
redefined in a controlled fashion so that a value of the
subtypeR; can be used in all contexts in which a value of
the supertyp&, is expectedifclusion polymorphisi

In figure 1 a role type hierarchy is represented, where
Student, Graduate and Employee are all subtypes of Persor
Associated to each type are some specific (i.e. not inherited
properties of the type. The Department property in Student
and Employee has a different meaning: it is the student’s
major department and the department where the employet
works.

Perso| = Introduce
/ i \
Student Graduat Employe:
I_ I—Introduce L Introduce I_ L Introduce
Department Department

Figure 1. A hierarchy of role types

Separation between object interface and object
implementations. A role type describes only the
interface for objects with that type, i.e. the signatures of
their methods. The implementation of the objects is given
separately and objects with the same role type can have
different implementations. This distinction between
interfaces and implementations allows the creation of
instances of the same type with differesttucture and
behaviour Other advantages of this approach will be
discussed later on.

Normal interpretation of messages. Objects can
acquire new roles during their lifetime and therefore new
methods. Consequently, in general, an object X, in a certair
point of its lifetime, may have several versions available for
the method M to use in answering the message M (e.g. the
Department as a Student and the Department as al
Employee), and so it must decide which version of M it
must use. In Fibonacci the decision is made by the role
which receives the message. A detailed description of this
decision process will be given in section 4; here we will
only describe the basic ideas:

— the behaviours depend on the role which receives the
message

— there are no interferences between “cousin” réles
the method to reply a message is chosen between thi
methods of the addressed role, including those inherited
from its ancestors, or between the methods of the presen
subroles: no overriding is possible between cousin roles;

— the most specialized behaviours pre¥afor example,
between Introduce of Person and Introduce of Employee
the last property is prevailing; this corresponds to the
classicalate bindingmechanism;

— the behaviours become more specialized when time goe:
on: when among the methods to choose there is not a

2 Wwith respect to a fixed role, all the other roles in an object
are eitherancestorsor descendantsr cousins

3 A metod M defined in the type T1 is a specialization of the
method M in the type T2 if T1 is a subtype of T2.

most specialized one, the most recently acquired one
chosen; e.g. let us suppose that the Introduce messag
sent to a person which is both Student and Graduate, t
between Introduce of Student and Introduce of Graduate
last method is chosen.

Strict interpretation of messages. Fibonacci provides
an alternative binding mechanisnstiict binding, to
observe the behaviour of an object in a certain role withc
taking into account possible specializations of that role. F
example, we may send the message Introduce to a Pe|
which is a Student too. With the normal binding
mechanism, this causes the activation of the meth
Introduce of Student; whereas, with the strict bindin
mechanism, the invoked method will be that of Persc
Strict binding allows to simulate the classic®nd-to-
supermechanism of object-oriented languages, but it is
more general and flexible tool because it allows tt
activation of any method of any rote.

Roles visibility. As we can ask to an individual if
he is a medical doctor and if so to behave as such, sc
Fibonacci it is possible to query an object to know i
current roles role inspection and to change the role
through the object is accessedlé casting.

It is important to say that, despite of the richness of t
model, if object extension and role casting are never us
the Fibonacci objects behave exactly the same as class
Smalltalk objects, and strict interpretation of messag
coincides with normal interpretation.

Objects can be created but not destroyed.
Objects are not destroyed explicitly, but they are eliminat
automatically when they becongarbage that is they are
no longer reachable from any variable or parent object in 1
programming environment.

A graphical representation of objects. Objects
are seen by their users as a black box accessible by a s
roles (see fig. 2). Messages are sent to a role. Internally
object is made of two components (see fig. 3): a) a set
blocks where data and methods are stored, and b) a dispat
in charge of directing the messages to the appropriate met
that produces the answer (the dispatcher implements
dynamic binding of methods to messages). The bloc
structure is not accessible to the users. The object identit
independent of its roles, of the content of the internal bloc
(data and methods) and of the dispatcher structure. Fina
figure 3 shows that an object can send messages to itse
to any other object.

R1
P4
~
” F—
”
- R2
- —
R3 - -
~ ~
~- answers
messages ™~ R4
roles

Figure 2. External view of an object

4 About strict vs. static bindingsee further sec. 4.7.

R N .
- | private
Phd | [| methods data |- T — =
_ - — ©
-—— g
— .2 rivate
~_ ~~ "R [T [methods pdata — T~ ™
~
+ o y;
I R 7
|
L

Figure 3. Internal view of an object

Figure 4 shows the internal structure of a simple object with
the only role Person. The dispatcher structure changes whe
a new role is acquired by the object.

methods

=

rn

e

Name

Address

Person
role

| private
[] data

modAddress _—

ooooooo

\

\

|
L
SRR
MR

Introduce -

properties
Figure 4. An object with the role Person

For example figure 5 shows how the object in figure 4
changes when it acquires the role Employee. In particular a
new binding is created for the message Introduce of the role
Person. The choice between the old and the new link depend
on which kind of binding is required: the old link (the one
with thinner dashes) is for strict binding, whereas the new
one is for normal binding (for all the other messages, normal
and strict binding coincide).

methods
EN IY _ ===
[n] lame . 1
e " E — - 11 m private
role o modAddress 7/ —E il
E Introduce - -’7-/! _m
Vi1,
2y
a Name / I\
E Address ;7\
| 0 modAddress \ methods
Employee |
role E Introduce = m v
E - - |
u] Salary —_ F-'" j:? --:1

Figure 5. An object with the roles Person and Employee
3 An overview of Fibonacci

Fibonacci is an object-oriented database programming
language descendent of the language Galileo [1].

Fibonacci is an expression-based, statically-scoped,
functional (functions are first-class values), interactive and
persistent language. The last property means that all dat:
transitively accessible from the global environment (top-
level), survive automatically between different work-

sessions, independently of their type. Data are removed

garbage collector when they are no longer reachable from .

identifier in the global environment.

Fibonacci is a strongly-typed language. Each leg
expression has (at least) a type which is statically check
Each type is related to a set of operators which can
applied to values of such type (e.g. the field selectors o
tuple type). The basic types a&@eol , String , Int , Real ,
Any, None, andNull . Each basic type is different from othe
basic types and from all the user defined types. The instan
of basic types are all disjoint, with a notable exception: tl
valueunknown (of typeNone), which belongs to any type
whatsoever.

A set of type constructors is provided to define ne
types: tuples, labelled variants, sequences, functions. Th
type constructors take types as parameters, and produce ¢
types on which the equality is structural (i.e. two types &
equal if they are built with the same constructor applied
types recursively equal). Basic and constructed types will
referred, in the sequel, a®ncrete typego distinguish
them fromobjectandrole types

The type constructovar applied to a type T return the
type of variables of type T. On such type are defined t
usual assignment operator (:=), and an explicit dereferenc
operator 4t). The value constructear applied to a value v
of type T, return a variable cell containing the v value.

Values of concrete types share the following importa
properties:

— the equality on them is structural (two values are equa
they are of the same type and have recursively eq
components), except for functions and modifiable value
on which equality is defined as identity (sameness);

— they are usedlirectly, and not by copying them, when
they are passed as parameters to functions, bounc
identifiers in declarations, and used in constructir
complex values.

An implicit subtype relation is defined on concrete type

This relation allows the so callédclusion polymorphism

to be exploited: if T1 is aubtypeof T2 (also, T2 is a

supertypeof T1), then a value of T1 is also a value of T

consequently, it can be used in every context where a ve

of T2 is expected. A subtype relation holds also among r

types when it is explicitly declaredNone andAny are

respectively the bottom and the top of the type hierarchy.

4 The Fibonacci object mechanism

In this section we will present the constructs which reali:
the model informally described in section 2.

4.1 Object and role types definition

The most peculiar feature of Fibonacci’'s object model is t
distinction between object and role values. In Fibonac
objects are not directly manipulated, but are always acces
through one of their roles. Hence, role values and role tyy
are used in Fibonacci to accomplish all the operatio
usually related to objects and object types. For this reas
we will often say “the object r” instead of “the role r of th
object 0.

At the value level, roles answer to messages wh

objects, essentially, retain the identity of a set of roles.
Referring to fig. 2, the object is the box while the roles are
the entry points for the object. In fact the only operators
available on objects are equality, extension with new roles,
role inspection and role casting (see sec. 4.7 and 4.8). Fo
these operations, the involved object is denoted by
specifying one of its roles (the specific role chosen is
irrelevant).

NewObject is the constructor for a new object type
which is the supertype of all its role types, i.e. ritde
type family Since messages are always sent to roles, anc
not directly to objects, the set of messages which an objec
can answer to is not specified in the object type but in the
role types of the corresponding role type family.

For example, a definition of a new object type
PersonObject is:
Let PersonObject = NewObiject ;

NewObject is a generative type definition: every time it is
used a new object type, different from any other, is defined.

A role type is defined with the constructoyA
With ... End as a subtype of an object type or as a subtype
of other role types. A role type is defined by a set of
properties which defines the method signature for its
values.IsA ... With ... End is agenerativeoperator; it
produces a new type, different from any other type, each time
is used.

Let Person= ISA PersonObject With
Name: String;

BirthYear: Int;

Age: Int;

Address: String;

modAddress (newAddress: String): Null;
Introduce: String;

End;
>>>| et Person <: PersonObject = <Role>

Figure 6. The Person role type

Figure 6 shows the definition of the role type Person,
entered interactively at the top-level, and the system answer.
TheLet keyword precedes a type declaration. Fibonacci
adopts the lexical convention by which all type constructs
and predefined type names are capitalized. <Type>
With <properties list> End is the type constructor for
role types. The semicolon terminates a phrase (declaration o
expression). The symbob> precedes the system answer to
the type definition. The symbol <: denotes the subtype
relation.

4.2 Object construction

A role type T defines the interface of the objects with such a
type, but doesn’'t give information about their internal
structure. An object with a role type T is created with the
constructrole T <implementation> end, where the
implementation specifies the private state of the object and
the body for all the methods specified in the interface.

Figure 7 shows the implementation for an object named
john with a role type Person.

let john= role Person

private
let Name =*“John Daniels”;
let BirthYear =1967;
let Address= var
(“123, Darwin road — London™);
methods
Name = Name;
BirthYear = BirthYear;
Age = currentYear() — BirthYear;
Address= at (Address);
modAddress (newAddress: String) =
Address := newAddress;
Introduce = “My name is " & Name &
“and Iwas bornin” &
intToString(BirthYear);
end;
>>> |et john : Person = <role>

Figure 7. Single object construction

Thelet keyword precedes a value declaration, which boun
a role of a newly created object to john. The evaluation
the expressionrole T private <private env>
methods <methods env> end creates a new object anc
returns a role of type T for that object; we say, more simp
that it creates a rolesprivate env> is asequenceof
declarations or expressions, evaluated once when the ok
is constructed. Each declaration or expression has visibi
of the preceding onesmethods env> is asetof method
specifications, i.e. all method names are different and th
order is not significant. A method is specified by giving it
name, its signature (compatible with the expected signatt
and its body (the expression following the = symbol). A
methods declared in the interface must be specified.

The evaluation of the expressiovle T private
<private env> methods <methods env> end involves
the following steps:

— the declarations irprivate env> aresequentially
evaluated to create a private environment on top of t
current external environment (in the example, the top-le\
environment);

— this private environment is extended with tbede of
methods defined iemethods env> ; even parameterless
methods are not evaluated at object construction but o
when they are called; methods may refer private or exter
data and also the whole object being built, throughttéie
identifier (see further);

— a new object is created which contains the methods,
private environment and the interface for role T (now w
can say that the objebasthe role T);

— the interface is connected to the appropriate methods;

— the specified role of the newly created object is returned.

Figure 8 shows the structure of the object john resulti

from the evaluation of the declaration shown in figure 7.

Once an object is created, its methods can be selec
with the dot notation. Method call causes the evaluation
an expression in the private environment with possible sic
effects; this is the only way to ask an object to modify i
internal state. Examples of method call are:

john.Address;
>>> 123, Darwin road — London” : String

john.modAddress(“Beagle — Pacific Ocean”);

>>> il : Null

john.Address;
>>> “Beagle — Pacific Ocean” : String

r
k|

Name

\E\

BirthYear

name John Daniels

x|l

[L.

Age

birthyear | 1967

Address

address Darwin road ...

A |

L T W T

dAdd!

Introduce

N
N

Figure 8. Inside the john object

4.3 “const” and “mod” properties

In object-oriented database applications, most messages al

used only to retrieve and update the value of a variable hidder

in the state of the object. It is important to give a special
status to these messages for three reasons:

— documentationgiving a declarative way to specify in the
interface of an object that some methods are meant to be
used as specified above improves program readability, like
any information about the expected behaviour of a method
does;

— usability. giving an easier way to implement this
common class of methods helps the programmer;

— implementationif the system knows that, for all objects
in a type, a given message just accesses a variable in th
state, it may exploit this kind of information to build an
index over that component of object state, to improve the
response time of queries involving that message.

Many languages face this issue by giving direct visibility to
object state, or to a part of it. In Fibonacci, when messages
are meant to be used just to access an object state, thi
information can be specified, without breaking
encapsulation, as follows.

A property of an object role type can be definedst
to mean that the value returned by the corresponding methot
is always the same, as long as the object is not extended int
a subtype; aonst property does not have parameters.
Moreover when two propertidd:Type andmodM(newM:
Type): Null are related by the fact that the second property
is used to modify the value returned by the first one, the
abbreviationmod M:Type can be used to define both of
them. This declaration also asserts that the value returned b
the M method is always the same untiremdMmethod is
called. According to these abbreviations the definition in
figure 9 is equivalent to that in figure 6.

Let Person= ISA PersonObject With

const Name: String;
const BirthYear: Int;
Age: Int;

mod Address: String;
Introduce: String;
End;

Figure 9. Another Person role type

More precisely, both definitions produce the same method
signature, but only the second one imposes some constraint

on the behaviour of methods Name, BirthYear and Address
The implementation of a role type wittonst and
mod properties is simplified since the system provides
standard implementationfor these properties. For a
property const P:TP it is sufficient to declare in the
private environment a value P of type TP’ <: TP. Then, if
method named P is not declared, the standard implementa
is automatically defined a® = P. For a propertynod
V:TV, a private variable V of type TV must be declared i
the private environment; then, the standard method¥ are:
atV andmodV(newV:TV) = V:i=newV . With the standard
implementation, the example 7 can be rewritten as showr
fig. 10.
let john= role Person
private
let Name ="“John Daniels”;
let BirthYear = 1967;
let Address= var (“123, Darwin road —
London”);
methods
Age = currentYear() — BirthYear;
Introduce = “My name is ” & Name &
“and Iwas bonin” &
intToString(BirthYear);
end;

Figure 10. Another constructor for john

The standard implementation is just a facility for th
programmer, which can always provide its ow
implementation for the messages, typically to check soi
constraints or to perform additional side-effects. But al:
when the implementation is explicitly defined, the syste
enforces the constraints implied by tbenst andmod
declarations.

4.4 Definition of an object constructor

In the previous examples single objects have been built fr
scratch, but usually we are interested in creating, for ec
role type, many instances with the same internal structi
and method bodies. The problem is solved by defining
constructor that is a function which returns new object
with a certain role. An example is shown in figure511

The expressiorun (<arguments>):<type> is
<exp> defines a function, with typeFun
(<arguments>):<type> and body<exp> .6 When the
function is applied, a new instance of Person is creat
While the private data are different for each instance, t
method bodies are shared by all instances.

In the body of the Introduce method the special identifi
me denotes the constructed object. Taemal type’ of me

5 This approach to the specification of object constructors
similar to the one adopted in Emerald [6].

6 A function definition has a syntax different from that of :
method to reflect the fact there are differences between functic
and methods: a function is a first class value, and so can
passed as parameter or returned as value by a function; a me
is not a value, and it can only be evaluated by the object
which belongs for side effects or to return a value.

7 Because of subtyping, the type of an expression

generally just a supertype of the type of the values which w
correspond to that expression at run time. For example, iX the
parameter of a function has typerson then it may be bound,
at run time, to values belonging to any subtypePefson in

is the type of theole expression whermeis used (in this
example Personjne can be used only in the method bodies
and in thenit expressionintToString is a predefined
function to convert an integer into a string. The infix
operator & is the concatenation operator on strings.

let createPerson = fun (name, address: String;
birthyear: Int) : Person is
role Person
private
let Name = name;
let BirthYear = birthyear;
if stringLength(address) < 2
failwith “incorrect address”
let Address= var (address);
methods
Age = currentYear() — me.BirthYear;
modAddress (newAddress: String) =
if stringLength(newAddress) < 2
then failwith “incorrect address”
else Address := newAddress
Introduce = “Name: ” & Name & “ — Age:”
& intToString(me.Age);

then
end;

end;

init
if meAge<0 or me.Age>150

then failwith “incorrect birth year”

end;

end

Figure 11. A Person constructor

The clausenit <exp> defines an expression which is
evaluated when the object is built before returning it. In the
expression the identifienecan be used as in a method body;
as a matter of fact, the claus@ may be seen as a special
method evaluated once before returning the object. If the
expression fails, the object construction fails and the effects
are undone, since object creation is atomic.
Lets us see some examples.

let paul = createPerson(“Horace De Saussure”;
“Geneva”; 1960);
>>> |et paul : Person = <role>

paul.Introduce;)
>>> “Name: Horace De Saussure — Age: 33" String

paul.modAddress(*);
>>> failure: “incorrect address”

let dante = createPerson(“Dante Alighieri”;
“Ravenna”; 1265);
>>> failure: “incorrect birth year”

4.5 Role type hierarchies and inheritance

An object role family can be extended dynamically by
defining a new role type T assaibtypeof others, called its
supertypes The subtypeinherits all properties of its
supertypes, unless they are explicitly redefined in the
subtype ¢verriding). In case of multiple inheritance, if a
property is present in more supertypes, and there is not at
explicit redefinition in the subtype, then the property of the
last specified supertypé inherited, but only if that
property has been defined in a common ancestor.

Figure 12 shows the definition of Student and
Employee, both subtypes of Person.

In a subtype definition S, for any property P of S

this case we say th&ersonis theformal type ofx.

(inherited, redefined or added), if P is also defined in tl

supertype T then the following conditions hold:

— the signature of P in T is a subsignature of that in
(contravarianceg; 8

—the output type of P in S is subtype of that in
(covariancg;

— if P is neitherconst normodin T, then P in S may be
declared asonst or mod,

— if P is declared asonst in T then the same must be ir
S;

—if Pin T is declared asodP:TP , then P must be declarec
asmodP:TP also in S.

The rule that a mod property cannot be redefined

specializing its type is a consequence of the fact that -

signature of a redefined method must be contravariant. In {

the declaratiomod P:TP introduces a methadodP(TP):

Null and the redefinitiomod P:TP’ , with TP’ subtype of

TP, introduces a methadodP(TP’):Null which violates

the contravariance rule for functional components.

Let Student = ISA Person With

mod Faculty: String;

const StudentNumber: Int;
Introduce: String;

End;

Let Employee = ISA Person
mod Department: String;
const EmployeeNumber: Int;
Introduce: String;

End;

With

Figure 12. Student and Employee role types
4.6 Subtype object construction

When a role type is defined by inheritance, a constructor-
objects belonging to that role may be either defined frc
scratch or by inheritance, i.e. by extending a construc
defined for a supertype. In this section we exemplify the fir
approach, while the second, which is more standard,
described in section 4.8. Figure 13 shows the direct (
inheritance) definition of the Student constructor.

To construct an object with role type T from scratcl
the method for each property must be specified. T
constructed object will have the role type T and all tt
supertypes of T. For example, with the following
declaration:

let spinoza = createStudent(“Bento d’Espinoza’;
“Cordoba’; “Philosophy”; 1966);

is created the objespinoza , shown in figure 14.

8 A signature is a list of zero or more paidentifier:

Type separated by semicolons. We say that S1 is
subsignatureof S2 if S1 extends S2 with new pairs or redefine
(in the same order) the S2 pairs with more specialized types.

let createStudent = fun (name, address,
faculty: String; birthyear: Int) : Student is
role Student
private

let Name =name;
let BirthYear = birthyear;

let Address= var (address);

let Faculty = var faculty;

let StudentNumber = newStudentNumber();
methods

Age = currentYear() — me.BirthYear;
Introduce = “Name: ” & Name & “— Age:”
& intToString(me.Age) &
“— Faculty: " & me.Faculty;
init
if me.Age <18 or me.Age >70

then failwith “incorrect birth year” end
end;
Figure 13. A Student constructor
Name
~
Address N
~ E |
modAddress ~
~ P
figE ~ Zlh == |
BirthYear Er—————
N [)
Introduce ™ (/ m pg;ta;e
Ifl'(;‘ = =
1,V |
/ [
Name 1, e
Address YA A / —_—
/ // == |
dAdd]
:0 == 7,1 o]
ge / / // /
BirthYear / / /
/
Introd
ntroduce //
Faculty
Stud.Num.

Figure 14. An object with two roles which share the
same implementation

4.7 Other operators: object comparison, role
inspection, role casting and strict binding

The language provides the following operators on objects:

— the equality operator (=) to test if two objects are the
same, independently of their current role type; for example

john = spinoza;
>>> false : Bool

— the infix predicateisAlso
certain role for example:

to test if an object has a

spinoza isAlso
>>> true: Bool

Person;

john isAlso Student;
>>> false: Bool

— the infix operator as to coerce an object to one of its
possible rolesrfle casting. The operator will fail if the
object does not have the specified role:

let baruch = spinoza as Person;
>>> let baruch : Person = <role>

baruch = spinoza;
>>>true : Bool

let johnAsStudent = john
>>> failure: “as”

as Student;

The expressiorn as T is well typed if T and the type of
x belong to the same role type family.

The following operators are on role values:

— the infix predicatésExactly
role value:

to test the actual type of a

spinoza isExactly
>>> true : Bool

Student;

— the infix operator ‘" to request an object role to evaluate
method without considering the possible redefinitions !
the method in its subrolest(ict binding. This operator
is useful, for example, to see the behaviour of a Pers
independently of the fact that he may also be an Employ
or a Student (examples will be given in sec. 4.8).

Strict binding should not be confused witatic binding
static binding takes place at compilation time and tt
method to activate is chosen on the base of the formal t
of the expression which denotes the receiver of the messi
Strict binding, which is a kind of dynamic binding, take
place at run-time and the method to activate is chos
depending on theactual typeof the receiver. The type
checker will guarantee that the actual type is a subtype of
formal type.

The combination of strict binding with role casting (e.c
(X as T)!IP) is a useful feature of Fibonacci, in that: a)
allows to simulate static binding, b) it allows to simulat
the traditionalsend-to-supemechanism of object-oriented
languages (see sec. 4.8), c) in extension operators, it all
the programmer to specify explictly from which ancestor
method implementation is inherited.

4.8 Dynamic object extension

To model therole and behaviour evolutionf entities,
Fibonacci provides aextensioroperator, which allows
an object to be extended dynamically with new subrole
Figure 15 shows the extension of john from Person
Student.

let johnAsStudent = ext john to Student
private
let Faculty = var “Science”;

let StudentNumber = newStudentNumber();
methods
Introduce = (me as Person) ! Introduce &
“.I'am a Science student”;
end;
>>> let johnAsStudent : Student = <role>

john = johnAsStudent;
>>>true : Bool

Figure 15. john becomes student

The object john acquires the role Student without changing
its identity (as results from the tesbhn =
johnAsStudent). Note the combination of role casting with
strict interpretation to call the method Introduce defined in
Person. The object johnAsStudent is represented in figure 1¢
(compare it with the representation of john given in figure
8). Note the twofold link for Introduce: the old link is
chosen for strict binding, whereas the new one for normal
binding. For example, let us see how the behaviour of john
has changed after the extension:

john.Introduce;
>>> “My name is John Daniels and | was born in
1967. | am a Science student” : String

johnAsStudent.Introduce;
>>> “My name is John Daniels and | was born in
1967. | am a Science student” : String

(johnAsStudent as Person)!Introduce; _
>>> “My name is John Daniels and | was born in
1967" : String
Name
S S
Address - — B ‘
modAddress ;1 VRIS,
Age :/I\/_ [rararrararar] | name John Daniels
BirthYear 07’ birthyear | 1967
~{/ /7;] m | [address | Darwin road ...
/ 777.
Name /Y/I | m
Address //y
modAddress 1/ \
Age / \\
BirthYear
: — _M Faculty Science
Faculty L | [swanum| 3252671
Stud.Num. - ===

Figure 16. The internal structure of john after the extension

To explain the difference between the creation of an object
from the scratch and by extension, it is useful to compare
graphical representation in figure 16 with that in figure 14.
The construcext has an headeext <object> to
<target types>) and an implementatiompiivate
methods ... init ...). The implementation part is
identical to that of the role operator (see sec. 4.2), while the
following differences appear in the header part:

— <object>
extended.

— <target types> are the role types that must be acquired
by the object. The order in which are listed determines the
order in which the roles are acquired. The last specified
(calledtarget-typeof the extension) must be a subtype of
all the previous ones. All the target types must belong to
the same role family to which the type<afoject> also
belongs.

— the methods defined in theethods section must be at
least those explicitly specified in the interfaces of the
target types.

is an expression which denotes the object to be

Let R1 and R2 be role types such that R1 <: R2, the obj
X is calledcompleteif X isAlso R1 impliesX isAlso
R2. Static and dynamic tests ensure that the extens
operation always producesomplete objects without
duplicate roles Figure 17 shows the definition of ar
extension operator to obtain an Employee from a Person.
The figure 18 shows how the behaviour of john chang
once it has acquired the role type Employee:

let toEmployee = fun (aPerson: Person; dept:

String) : Employee is
ext aPerson to Employee
private

let Department = var (dept);
let EmployeeNumber =newEmployeeNumber();
methods
Introduce = (me as Person) ! Introduce &
“.1am an employee”;
end;
Figure 17. An extension operator

toEmployee(john; “Quality Management”);

john.Introduce;
>>> “My name is John Daniels and | was born in
1967. 1 am an employee” : String

Figure 18. john becomes Employee

The behaviour of john as Student does not change onc
acquires the type Employee:

johnAsStudent.Introduce;
>>> “My name is John Daniels and | was born in
1967. | am a Science student” : String

Implementing constructors by inheritance

Using the constructor createPerson and the opera
toEmployee it is possible to define a constructc
createEmployee which makes use only of predefin
implementations:

let createEmployee =
fun (name, address, dept: String;
birthyear: Int) : Employee is
toEmployee(createPerson(name; address;
birthyear); dept);

Another way to reuse the implementation of createPersot
shown in figure 19.

let createStudent2 = fun (name, address,
faculty: String; birthyear: Int) : Student is
ext createPerson(name; address; birthyear)
to Student
private
let Faculty = var (faculty);
let StudentNumber = newStudentNumber();
methods
Introduce = (me as Person) ! Introduce &
“.lam a student of ” & me.Faculty;
end

Figure 19. Reusing a Person constructor to create students
Note that a role type can have multiple constructors, and t

in defining a constructor for a role subtype it is possible
choose which super-role constructor is extended.

Object extension and multiple inheritance

Let us define the type TeachingFellow to show other
examples of multiple inheritance and object extension.

Let TeachingFellow =
IsA Student, Employee
const Course: String;
Introduce: String;
End;

With

Figure 20 shows an operator to make a TeachingFellow
from a Student:

let fromStudentToTeachingFellow =
fun (aStudent: Student; dept,
course: String) : TeachingFellow is
ext aStudent to Employee, TeachingFellow
private
let Department = var (dept);
let EmployeeNumber =NewEmployeeNumber();
let Course = course;
methods
Introduce = (me as Student)!Introduce &
“—Course: " & course;
end;

Figure 20. An operator to make a TeachingFellow from a Student

The interesting aspect in the example is that there are twc
roles to be acquired: the first (Employee) is not a subtype of
Student, while the second role is a subtype of Student, anc
so the condition is satisfied that the target-type must be
subtype of those which precede it. Let us show how the
extension operation changes the behaviour of the object tc
be extended:

fromStudentToTeachingFellow(spinoza; “Hermetic
Philosophy”; “Ethica”);

spinoza.Introduce;
>>> “Name: Bento d’Espinoza — Age: 27 — Faculty:
Philosophy — Course: Ethica” : String

(spinoza as Employee).Introduce;
>>> “Name: Bento d’Espinoza — Age: 27 — Faculty:
Philosophy — Course: Ethica” : String

4.9 Object contraction (role dropping)

In order to meet the need for modelling roles and behaviours
evolution, Fibonacci should also providecantraction
operator, i.e. a mechanism to allow the objects to lose
some roles (e.gdrop R1,R2 from X). With such an
operator one could model, for instance, the fact that when &
student takes a degree loses his Student role and gains tt
role of Graduate, or the fact that a worker at the end of his
career loses the Employed role and becomes a Retired.
The Fibonacci's contraction mechanism should have the
following features:
— when a role is dropped from an object, all its subroles are
lost too;
— the objects are not destroyed (there are no dangling
references);
— casting toward a dropped role (eXy.as R) arises a

trappable failure, thus no one can take new acquaintanc
a dropped role (no new reference to it can be created a
the dropping);

— sending a message to a dropped role arises a trapp
failure (message passing failjre

— role inspection and equality still work on a dropped rol
since these operators refer to the object, rather than
roles;

— when a role is dropped from an object, previously hidd
behaviours are brought in the foreground; e.g. if jot
loses the Employee role, his answer (fjehn as
Person).Introduce will be again that of Student;

— role dropping is an important event in the life of an obje«
then such a state transition should be monitorable throt
preconditions expressible in the implementation (like tt
init clause).

It is important to notice that thmessage passing failume
Fibonacci is different from that of other object-oriente
languages (firstly Smalltalk): in Fibonacci the failure
informs the sender that the receiver has lost a role; where
in languages with dynamic type checking, this failure on
represents a wrong use of an object.

Role dropping is an operation similar to object remov:
thus the well known problem of theferential integrity
should be taken in account [7].

To model the fact that not every sequence of ro
acquisitions or role losses is admissible, it should |
possible to specifyadmissible historie®r migration
pathsin a role type hierarchy (sequenceseat /drop)
[10].

These problems are not dealt with in the currre
implementation of Fibonacci, but we are working on the
to provide the language with a contraction operator.

4.10 Message interpretation

The role mechanism is essential when objects can
extended with independent subroles. In this case, class
late binding without roles creates a problem. Suppose th:
type Person has two different subtypes Student a
Employee, and that both of them add a proper
PersonalCode to the supertype. The two personal codes t
unrelated semantics, and maybe even a different type.
john be created as a Person and later on extended, firs
Student with code 100200 and then to Employee with cc
"jhn698". In a language with late binding and without role
johnAsStudent answers "jhn698" to a messa(
PersonalCode, or johnAsEmployee answers 100200, becz
the objects always exhibit a uniform behaviour. This is ba
a semantic error and a type-level error. Since it is not kno
statically whether an object of type Student has also be
extended to Employee, we can conclude that the system
never be sure that any object of type Student answers
message PersonalCode with an integer. More generally,
is always possible to add new object types to the system,
type checker can never be sure of the type of the resuli
any message passing operation.

This problem may be faced by imposing constraints
methods appearing with the same name in cousin obj
types. This contrasts with the typical usage of objec

oriented languages. In these languages, if some programmel
work at the same time at the same project, any programme
is free to take general-purpose object types from libraries anc
specialize them, regardless of the fact that other programmer.
are producing cousin object types by specializing the same
library for different purposes. Forbidding name duplications
in all the possible specializations of a library object type
would damage one essential abstraction mechanism o
object-oriented programming. It could be likened to

forbidding the usage of the same name for a local variable in
two different unrelated functions. Preventing undesired
interactions between cousin roles, to attain full “cousin role
independence”, is one of the primary design choices of the
message interpretation rules.

Message interpretation can be described as follows.
When a role receives a message it first checks whether any ¢
its descendants has its own method (not inherited) to reply tc
the massage. If such descendant is found, then it is
delegatedo answer the message. The descendants are trie
in reversal temporal order,e. the last acquired descendant
is tried first. Subtyping ensures that the delegated role car
safely substitute the receiving one. If no delegate is found,
the receiver searches an implementation for the messag
inside itself. If this is not found, then the receiver looks for
an implementation for the message in the ancestor role frorr
which the corresponding propertyiigherited The typing
rules ensure that this last search is always successful. Not
that this is just a way to describe the meaning of message
passing; alternatively, the same semantics can be describe
by specifying, with reference to Figures 3, 4 and 5, how the
dispatching structure of an object is set up and how it is
modified when an object is extended.

For example, the message Introduce sent to john (se¢
figure 18) causes the activation of the Introduce method of
Employee, because Employee is the last acquired subrole ¢
the object, hence the method will be executed by
delegation The message Introduce senjditnAsStudent
will be answered by the method of Student, because there i
no descendant of Student ipohn . Instead, if
johnAsStudent receives the message Name the answering
method will be that of Person, hence it will be executed by
inheritance

Self-reference semantic

The distinction between delegation and inheritance is
essential to understand the meaning of self-references in th
method body. The following rules apply: a) when a method
M, belonging to the role R, is activated by delegation (in
other words the receiving role is a superrole of R), the actual
type of me in that activation of M will be just R (i.e. its
formal type); b) when the same method is executed by
inheritance (the receiving role is subrole of R) the actual
type ofme will be that of the role which originally received
the message M.

Rule a) is essential to thgpe safetyof the language.
Let, indeed, RR be the receiving role of the message, let DR
be the role delegated to answer (then DR <: RR); the formal
type ofmein DR’s method is DR, then to ensure a type-safe
execution the actual type ofe must be DR or a subtype of
DR.

Rule b) is the classical rule adopted by object-orient
languages. Suppose for example that in a graphical editol
object type Picture is defined with a method Draw taking
color as a parameter. Squares and Circles are subtyp:
Picture, and contain the actual code for the Draw metht
However, a method DrawBlack can be implemented once
all for the object type Picture, as.Draw(black) . When a
Square executes by inheritance the DrawBlack method,
Draw(black) message is sentte seen as a Square.

It can be interesting to note that the rule b), besid
being useful, is a consequence of the principlenoh-
interference between cousiiéme in a method which is
activated by inheritance were bound to the role where 1
method is defined, then self-reference would allow metha
of cousin roles to be activated. Let us consider the exam
in figure 21, where each method is associated with t
corresponding body.

R1 — P =me.Q
— Q="R1"
R2 — Q="R2" R3 — Q="R3"

Figure 21. A role type hierarchy

Let us assume that the object X has been created with r
R1 and R2 and then extended with role R3. Adopting t
correct rule to solve self-reference, when the message |
sent to X seen through the role R2, the answer is “R2".
we had adopted the other rule (self-reference bound to the
which owns the method activated by inheritance), the ans\
would have been “R3”, and therefore the method of
receiving role (R2) would beoveredby a method of a
cousin role.

Final remarks

In traditional object-oriented languages all methods a
executed either by the receiving role or by inheritance. Tl
happens because the only role accessible of an object is
bottom role, which has no descendant. So we can affirm t
both binding mechanisms of Fibonacci are a generalizati
of the classical late binding mechanism.

With respect to a fixed role, all the other roles in
Fibonacci object are either ancestors or descendants
cousins. The message interpretation mechanism ensures,
word, that there is neither interference nor inheritan
between cousins. This is very important, since in gene
when an object is extended with two cousin roles (e.g.
Person with Student and Employee), if the same methoc
defined in all the three roles, the two cousins can special
it with two subtypes T’ and T” of the type T assigned b
the father to that method, but there is no subtype relati
between T' and T”, which implies that inheritance betwee
cousins would be unsound not only with respect to tl
modelling principles, but also with respect to the langua
typing rules.

5 Previous works

In the last fifteen years the need for data modeling features
capable of capturing the evolving and multifaceted nature of
real world entities has been pointed out by many researchers
The first attempt in this direction was thele modelof
Bachman and Daya [4], aimed to enhance the expressive
power of network data model. In more recent years, the
Galileo language provides a mechanism to allow instances o
a class to become, dynamically, instances of a subclass anc
at the same time, to acquire new behavioral aspects withou
losing their identity [1]. This mechanism was found useful
to model the behavioral specialization of world entities over
their lifetime, but it has limitations because of the
assumption that every object always belongs to a unique
most specialized class (type). In what follows we review
some of the more relevant recent proposals in the context o
object-oriented database programming languages.

Iris

Iris [5] is an OODBMS equipped with explicit features to
model behavioral evolution of entities. Iris objects may
acquire or lose types during their life, retaining their identity;
but is not possible to observe an object from different
perspectives, indeed, despite type multiplicity, an object, in
a fixed instant of its life, always exhibits a uniform
behaviour, no matter the context from which is observed.
For instance, suppose a property P is differently defined in
types T1 and T2; then an object X, belonging to both of
them, will always answer to the message P with the methoc
of the most specialized type between T1 and T2. But if there
is no such type the answer will depend amh hocrules
which the user must establish to resolve such ambiguities.
This approach is unsatisfactory because the type multiplicity
cannot be used to model role multiplicity, and the objects
show the behavioral uniformity typical of traditional object-
oriented languages (i.e. Smalltalk). In addition, the
resolution of ambiguities in message dispatching is left to
the programmer, whereas, we believe it should be an
important concern of the supported data model.

Clovers

Stein and Zdonik [9] propose a mechanism catlexvers
which allows to model entities with multiple and
independent roles. The language which supports this
mechanism has provision for strong type-checking and
subtyping. With clovers an object created in a type T may
become an instance of T' subtype of T, acquiring methods
and data specific of T'. The object behaviour depends strictly
on the type through which the object is observed, and there
is no late binding Clovers provides also an operator for
type inspection and two operators for type coercion: one to
go up and one to go down in the type hierarchy, but without
explicit mention of the target type. The main differences
from Fibonacci are the lack of support for late binding, and
the impossibility of explicitly referring the types to which
one is interested.

Views

Shilling and Sweeney [8] present an extension of the obj
data model based on the conceptiefv. In that model, an

object is equipped with multiple interfaces (views). Evel
interface has its own set of methods and the interfaces of
object are separated and independent each of the others
object is always referred through one of them, so there is
conflict between methods with same name belonging
different views. Every interface has a distinct implementatic
and a distinct set of variables accessible only to its methc
The object behaviour depends on the interface used to ac
it, and the object identity is preserved across the varic
views; that allows one to model multiple and independe
roles. That mechanism, on other hand, has no provision
late binding, inheritance and subtyping, moreover separat
between interfaces and implementations is not supported.

Aspects

Richardson and Schwarz [7] propose a model whose obje
may have multipleaspects(types) and may be extendec
with new ones during their lifetime, without losing thei
identity. Every aspect has its own methods and private d
and an object is always referred through one of its aspe
The observed behaviour is that specific of the referred asg
and the late binding and inheritance mechanism are |
supported. Interfaces are defined separately frc
implementations and the interface matching is structur
allowing to have more implementations for a given typ
but also to reuse an implementation for more types. T
type system has provision for an implicit subtyping relatic
(conformanc® A new aspect added to an object X or t
another aspect A of X, may hides some property defined
X; then there is no subtyping relation between an aspect
the type of the extended object. As already noted, the asp
proposal has no support for inheritance, neither sing
neither multiple. To overcome this limitation, an aspect
extending another aspect A, must explicitly replicate the
interface in its definition, and it must call the ancestt
methods with asend-to-supeprimitive. Is not possible to
extend an object with more aspects in a unique operati
Due to the structural matching between types, the aspe
mechanism does not have operators for role inspection i
role coercion.

Nuovo Galileo

In the data model proposed in [3] the objects can
dynamically extended with new types and are not constrair
to have a unique minimal type, but the role mechanism
not provided. Then in order to support late-binding, tt
assumption is made that for each method a most speciali
version of it always exists. Thus, the objects always exhi
a uniform behaviour, no matter the type through they ¢
accessed. This object mechanism has been the first ste
the development of the object mechanism of Fibonacci.

Summary

All proposals share the following features, found also in

Fibonacci:

— objects may acquire new types and new behaviours;

— objects retain their identity during their life, no matter
which extensions are operated and independently of the
point of view through they are observed,;

— encapsulation is preserved, because the extensions have r
direct access to private data of the existing object.

A novel aspect of Fibonacci is, instead, the coexistence of
late-binding and multiple inheritance with role multiplicity
and dynamic object extension, in a framework with strong
type-checking and subtyping. Moreover, the combination of
such complex features is obtained neither to detriment of
semantic clarity, neither relying on specification ambiguities
which introduce implementation dependent ad hoc
semantics. Indeed, the full meaning of the various
mechanisms is established at first in the data model and thel
substantiated in the constructs of the language.

Significantly, the proposals which support late-binding
(Galileo, Iris and Nuovo Galileo), always assume the
existence of a most specialized method in order to resolve the
message dispatching ambiguities that can arise from type
multiplicity. Vice versa, when the previous assumption is
abandoned and objects are allowed to have multiple minimal
types (Clovers, Views and Aspects), late-binding is never
provided.

6 Conclusions

An object mechanism for a strongly typed database
programming language has been presented. The objec
mechanism, besides the usual properties of state
encapsulation, unchangeable identity, separate definition of
interface and implementation, and late binding, has a role
mechanism characterized by the following features:

— plurality of behavioursa unique object can be accessed
through different roles, which have different types and can
answer in different ways to a message. Plurality of
behaviours allows to model situations where a unique
entity of the domain of discourse can play different roles
and behaves in a different way according to its role. That
relates roles to a view mechanism.

— independence of extensiorisis possible to perform
two independent extension of a unique role with two
cousin roles, without interference between them.
Independence of extensions is especially helpful in the
development of applications structured as independent
modules.

— strict and late bindingthe sender can choose between the
two binding mechanisms, thus, it can decide whether
delegation is allowed. The distinction between strict and
late binding is most useful in implementing methods by
extending or reusing existing implementations, and it is
related to thesuper of most traditional object-oriented
languages.

— role casting and role inspectiothese are crucial features
to fully exploit the richness of the object model; they
allow one to navigate freely in the role graph of an object,

and to observe all its possible aspects and behaviol
These capabilities are very important in languages w
strong typing, since they give, informally, the ability o
dynamically changing the type of an object.

It is important to note that if a programmer does not u
extension operators, but always builds objects in tl
subtypes using constructors, then there is no need
distinguish objects from roles, neither strict from lat
binding, and all the usual rules of object-oriented languag
apply. So the complexity of the role mechanism comes ir
play only when really needed.

The object mechanism is one of the Fibonacci featur
designed to model object-oriented databases. The langu
provides also (a) a class mechanism to model a modifia
collection of values, on which it is possible to define ¢
inclusion constraint, and (b) an association mechanism
model modifiable n-ary relations among classes [2]. A
these features have been considered in the curr
implementation of a prototype of the language compiler.

Refer ences

[1] A. Albano, L. Cardelli and R. Orsini “Galileo: A
Strongly Typed, Interactive Conceptual Language
ACM Transactions on Database SysteMsl. 10,
No. 2, pp. 230-260, 1985. Also iReadings in
Object-Oriented Database Syster&sB. Zdonik and
D. Maier (eds), Morgan Kauffman, San Matec
California, pp.147-161, 1990.

[2] A. Albano, G. Ghelli and R. Orsini “A Relationship
Mechanism for a Strongly Type Object-Oriente:
Database Programming LanguagBtpc. of 17th Int.
Conf. on VLDBBarcelona, 1991, pp. 565-575.

[3] A. Albano, G. Ghelli and R. Orsini “Objects for a
Database Programming Languagpfoc. of the third
Intl. Workshop on Data Base Programming
LanguagesP. Kannelakis, and J. W. Schmidt (eds
Morgan Kauffman, San Mateo, California, pp.236
256, 1992.

[4] C.W. Bachman and M. Daya “The role concept in da
models”, Proceedings of the Third Int. Conf. or
VLDB, pp. 464-476, 1977

[56] D.H. Fishman et al. “Iris: An Object-Oriented
Database Management SystemACM Trans. on
Office Information Systemsol. 5, n. 1, pp. 48-69,
Jan. 1987.

[6] A. Black, N. Hutchinson, E. Jul, and H. Levy “Objec
Structure in the Emerald SystemQOPSLA '86,
ACM SIGPLAN Noticespp. 76-86, Sept. 1986

[71 J. Richardson and P. Schwartz “Aspects: Extendil
objects to support multiple, indipendent roles”
Proceedings of the Int. Conf. on Management .
Data, ACM SIGMOD Recordvol. 20, pp. 298-307,
May 1991

[8] J.J. Shilling and P.F. Sweeney “Three Steps to View:
Extending the Object-Oriented Paradig@OPSLA
'89, ACM SIGPLAN Noticesvol. 24, n. 10, pp.
353-361, Oct. 1989

[9] L.A. Stein and S.B. Zdonik “Clovers: The Dynamic
Behavior of Type and Instances” Brown University
Technical Report No. CS-89-42, Nov. 1989

[10] J. Su “Dynamic Constraints and Object Migration”,
Proc. of 17th Int. Conf. on VLDBBarcelona, 1991,
pp. 233-242.

