
of a database application is how to manage changes. We
share completely the opinion of Richardson and Schwarz

AN OBJECT DATA MODEL expressed in [7]: “Most object-oriented database systems
display serious shortcoming in their ability to model both

WITH ROLES 1 the dynamic nature and the many-faceted nature of common
real-world entities. The most obvious example of this kind
of entity is a person. While existing OODBSs may capture
the notion that a student is a person, they do not support the

A. Albano, R. Bergamini, G. Ghelli, R. Orsini notion that a given person may become a student. After
graduation, that person ceases to be a student, and becomes
an alumnus in the meantime, he or she may also be an Dipartimento di Informatica – Università di Pisa
employee, a customer, a club member, etc. Throughout his

Corso Italia 40, 56100 Pisa – Italy or her life, a person gains and loses many roles.”
This problem has been investigated in the object-

oriented database community by several authors, and we will
comment on related works later on. The main contributionAbstract
of this paper is the extension of an object-oriented data
model with the notion of objects with roles, such that anFibonacci is a strongly typed, object-oriented database
object can have several roles and is always accessed throughprogramming language with a new mechanism to model
one of its roles. The behaviour of an object depends on theobjects with roles. Traditional object-oriented programming
role used to access it. Moreover this mechanism is supportedlanguages do not have the possibility of changing
by a strongly typed programming language Fibonacci whichdynamically the type of an object to model the behaviour of
also offers other features such as: a) the separation betweenreal world entities which change their status over time. This
the object interface, or type, and its implementation, tois a severe limitation in the context of a database
allow the evolution of the implementation without affectingprogramming language. Besides this, traditional object-
the rest of the system which is only aware of the objectoriented languages do not model the fact that the behaviour
interface; b) the possibility of having differentof real world entities may depend on the role that the entity
implementations for a unique object type; c) the use of anplays in a context. We propose a mechanism to face both
inclusion hierarchy with multiple inheritance to organizeproblems in the context of a statically strongly typed object-
object types. Besides objects, the data model provides also aoriented database programming language, and show that the
class and association mechanism to model databases, but thetwo problems are strictly related. We show that the problem
presentation of these mechanisms is outside the scope of thiscan be solved without giving up the most useful features of
paper and can be found in [2].object-oriented programming, namely inheritance, late

The paper is organized as follows. Section 2 describesbinding and encapsulation. Examples will be given referring
the features of the proposed mechanism for objects withto the prototype implementation of the language.
roles in a language independent fashion. Section 3 presents
an overview of the Fibonacci type system to give the
prerequisite to understand in Section 4 the constructs of the
language to define objects with roles according to the
requirements defined in Section 2. Section 5 compares the
proposed solution with related works. In the conclusions, we1 Background comment on our future plan.

One of the major problems encountered in the maintenance

1 This work has been supported in part by grants from the 2 The features of the Fibonacci object
C.E.C. under ESPRIT BRA No.6309 (FIDE2: Fully Integrated mechanismData Environment), and the Progetto finalizzato “Sistemi
informatici e calcolo parallelo” of C.N.R. under grant No.

Real-world entities with roles. When constructing a92.01561.PF69.
computerized information system, adopting a simplified
point of view, we will assume that the reality consists ofPermission to copy without fee all or part of this material is
entities, with certain behaviours, which evolve over time.granted provided that the copies are not made or ditributed for

direct commercial advantage, the VLDB copyright notice and Entities can play several roles during their life, i.e. they
the title of the pubblication abd its date appear, and notice is can belong to several conceptual categories. For example a
given that copying is by permission of the Very Large Data human being may be classified as a person, an employee, a
Base Endowment. To copy otherwise, or to republish, requires teacher, a department chairman, a tennis player, a retired
a fee and/or special permission from the Endowment employee, etc. In general an entity can have at same time

several roles, although there are cases where some roles
Proceedings of the 19th VLDB Conference cannot co-exists (e.g., a person cannot be an employee and
Dublin, Ireland, 1993, Rakesh Agrawal, Seán Baker, unemployed at the same time). However, any interaction
David Bell editors, Morgan Kaufmann Publishers, with an entity always takes place through one specific role
San Mateo, CA, USA. pp. 39-51. of the entity, and the behaviour of the entity may depend on

the role it is playing. The set of roles possessed by an entityin the subtype (overriding); besides, a role subtype can add
can change over time, so that its behaviour changes overnew properties. Properties of the supertype can only be
time too. redefined in a controlled fashion so that a value of the

Objects and messages. An object is the computer subtype R1 can be used in all contexts in which a value of
representation of a real-world entity. An object is a software the supertype R2 is expected (inclusion polymorphism).
entity which has an internal state equipped with a set of local In figure 1 a role type hierarchy is represented, where
operations (methods) to manipulate that state. The request Student, Graduate and Employee are all subtypes of Person.
to an object to execute an operation is called a message to Associated to each type are some specific (i.e. not inherited)
which the object can reply. The state of an object can only properties of the type. The Department property in Student
be accessed and modified through operations associated withand Employee has a different meaning: it is the student’s
that object (state encapsulation). Each object can send major department and the department where the employee
messages to itself (self-reference) and so it is able to works.
activate his own methods (self-recursion). The message

Person Introduce

Introduce

Graduate Employee

Department
Introduce

Student

Department
Introduce

interpretation (i.e. choosing the method to activate to reply a
message) always depends on the object that receives the
message.

Each object is distinct from all other objects and has an
identity that persists over time, independently of changes to
the value of its state. For instance, the object representing
the person John is different from any other object
representing another person, but will remain the same even
if his address or some other attribute changes. Figure 1. A hierarchy of role types

Roles. Each objects has a set of roles. An object is
not manipulated directly, but always through one of its Separation between object interface and object
roles, so that we either say that a message is sent to animplementat ions . A role type describes only the
object through one of its roles or, more simply, that interface for objects with that type, i.e. the signatures of
messages are sent to roles. The answer of an object to a their methods. The implementation of the objects is given
message may depend on the role which receives it. Forseparately and objects with the same role type can have
example, an object with role Graduate will answer to the different implementations. This distinction between
message Introduce with “I am John Smith, graduate in interfaces and implementations allows the creation of
Computer Science at the University of Toronto”, but in instances of the same type with different structure and
another context it may be used with the role Manager andbehaviour. Other advantages of this approach will be
then the answer at the same message will be “I am Johndiscussed later on.
Smith, manager of the marketing division”. In traditional Normal interpretation of messages. Objects can
object-oriented languages an object cannot show this kind ofacquire new roles during their lifetime and therefore new
behaviour. methods. Consequently, in general, an object X, in a certain

Since messages are sent to roles, the set of messagespoint of its lifetime, may have several versions available for
which an object can answer to, is not described by its objectthe method M to use in answering the message M (e.g. the
type but by the role types of the roles of the object. In this Department as a Student and the Department as an
sense, role types are very similar to object types of otherEmployee), and so it must decide which version of M it
object-oriented languages. must use. In Fibonacci the decision is made by the role

Finally, roles (i.e. objects accessed through a role) arewhich receives the message. A detailed description of this
denotable and expressible values of the language (first-classdecision process will be given in section 4; here we will
values). They can be assigned to variables, used as dataonly describe the basic ideas:
structure components and as parameters or results of– the behaviours depend on the role which receives the
functions. message;

Modeling roles and behaviour evolution. – there are no interferences between “cousin” roles2:
Many kinds of entities throughout their life change their role the method to reply a message is chosen between the
and behaviour. An unemployed can become an employee, methods of the addressed role, including those inherited
and then a manager. Consequently, to model naturally from its ancestors, or between the methods of the present
entities that evolve dynamically, they must be represented by subroles: no overriding is possible between cousin roles;
objects that can change their set of roles without affecting – the most specialized behaviours prevail3: for example,
their identity. In traditional object-oriented languages an between Introduce of Person and Introduce of Employee
object cannot show this kind of behaviour because objects the last property is prevailing; this corresponds to the
have an immutable type throughout their life. classical late binding mechanism;

Role type hierarchies. A subtyping relation is – the behaviours become more specialized when time goes
defined on role types (we say either that R2 is a supertype on: when among the methods to choose there is not a
of R1 or that R1 is a subtype of R2). This relation is

2 With respect to a fixed role, all the other roles in an objectasymmetric, reflexive and transitive. A role subtype can have are either ancestors or descendants or cousins.
several role supertypes, from which inherits all properties 3 A metod M defined in the type T1 is a specialization of the
(multiple inheritance), unless they are explicitly redefined method M in the type T2 if T1 is a subtype of T2.

most specialized one, the most recently acquired one is R1
private
datamethods

methods
private
data

di
sp

at
ch

erR2

R3

R4

chosen; e.g. let us suppose that the Introduce message is
sent to a person which is both Student and Graduate, then
between Introduce of Student and Introduce of Graduate the
last method is chosen.

Strict interpretation of messages. Fibonacci provides
an alternative binding mechanism (strict binding), to
observe the behaviour of an object in a certain role without
taking into account possible specializations of that role. For
example, we may send the message Introduce to a Person Figure 3. Internal view of an object
which is a Student too. With the normal binding
mechanism, this causes the activation of the methodFigure 4 shows the internal structure of a simple object with
Introduce of Student; whereas, with the strict binding the only role Person. The dispatcher structure changes when
mechanism, the invoked method will be that of Person. a new role is acquired by the object.
Strict binding allows to simulate the classical send-to-
super mechanism of object-oriented languages, but it is a

methods

private
data

Name

Address

modAddress

Introduce

Person
role

properties









more general and flexible tool because it allows the
activation of any method of any role.4

Roles visibility. As we can ask to an individual if
he is a medical doctor and if so to behave as such, so in
Fibonacci it is possible to query an object to know its
current roles (role inspection) and to change the role
through the object is accessed (role casting).

It is important to say that, despite of the richness of the Figure 4. An object with the role Person
model, if object extension and role casting are never used,
the Fibonacci objects behave exactly the same as classicalFor example figure 5 shows how the object in figure 4
Smalltalk objects, and strict interpretation of messages changes when it acquires the role Employee. In particular a
coincides with normal interpretation. new binding is created for the message Introduce of the role

Objects can be created but not destroyed. Person. The choice between the old and the new link depends
Objects are not destroyed explicitly, but they are eliminated on which kind of binding is required: the old link (the one
automatically when they become garbage, that is they are with thinner dashes) is for strict binding, whereas the new
no longer reachable from any variable or parent object in theone is for normal binding (for all the other messages, normal
programming environment. and strict binding coincide).

A graphical representation of objects. Objects
are seen by their users as a black box accessible by a set of

Dept

Salary

Name

Address

modAddress

Introduce

methods

private
data

Name

Address

modAddress

Introduce

Person
role

Employee
role



















methods

private
data

roles (see fig. 2). Messages are sent to a role. Internally an
object is made of two components (see fig. 3): a) a set of
blocks where data and methods are stored, and b) a dispatcher
in charge of directing the messages to the appropriate method
that produces the answer (the dispatcher implements the
dynamic binding of methods to messages). The blocks
structure is not accessible to the users. The object identity is
independent of its roles, of the content of the internal blocks
(data and methods) and of the dispatcher structure. Finally,
figure 3 shows that an object can send messages to itself as
to any other object.

R1

R2

R3

R4

roles

messages

answers

Figure 5. An object with the roles Person and Employee

3 An overview of Fibonacci

Fibonacci is an object-oriented database programming
language descendent of the language Galileo [1].

Fibonacci is an expression-based, statically-scoped,Figure 2. External view of an object
functional (functions are first-class values), interactive and
persistent language. The last property means that all data
transitively accessible from the global environment (top-
level), survive automatically between different work-4 About strict vs. static binding see further sec. 4.7.

sessions, independently of their type. Data are removed by aobjects, essentially, retain the identity of a set of roles.
garbage collector when they are no longer reachable from anyReferring to fig. 2, the object is the box while the roles are
identifier in the global environment. the entry points for the object. In fact the only operators

Fibonacci is a strongly-typed language. Each legal available on objects are equality, extension with new roles,
expression has (at least) a type which is statically checked.role inspection and role casting (see sec. 4.7 and 4.8). For
Each type is related to a set of operators which can bethese operations, the involved object is denoted by
applied to values of such type (e.g. the field selectors of aspecifying one of its roles (the specific role chosen is
tuple type). The basic types are Bool , String , Int , Real , irrelevant).
Any, None, and Null . Each basic type is different from other NewObject is the constructor for a new object type
basic types and from all the user defined types. The instanceswhich is the supertype of all its role types, i.e. its role
of basic types are all disjoint, with a notable exception: the type family. Since messages are always sent to roles, and
value unknown (of type None), which belongs to any type not directly to objects, the set of messages which an object
whatsoever. can answer to is not specified in the object type but in the

A set of type constructors is provided to define new role types of the corresponding role type family.
types: tuples, labelled variants, sequences, functions. These For example, a definition of a new object type
type constructors take types as parameters, and produce otherPersonObject is:
types on which the equality is structural (i.e. two types are
equal if they are built with the same constructor applied to Let PersonObject = NewObject ;
types recursively equal). Basic and constructed types will be
referred, in the sequel, as concrete types to distinguish NewObject is a generative type definition: every time it is
them from object and role types. used a new object type, different from any other, is defined.

The type constructor Var applied to a type T return the A role type is defined with the constructor IsA …
type of variables of type T. On such type are defined the With … End as a subtype of an object type or as a subtype
usual assignment operator (:=), and an explicit dereferencingof other role types. A role type is defined by a set of
operator (at). The value constructor var applied to a value v properties which defines the method signature for its
of type T, return a variable cell containing the v value. values. IsA … With … End is a generative operator; it

Values of concrete types share the following important produces a new type, different from any other type, each time
properties: is used.
– the equality on them is structural (two values are equal if

they are of the same type and have recursively equalLet Person = IsA PersonObject With
Name: String;components), except for functions and modifiable values,
BirthYear: Int;on which equality is defined as identity (sameness); Age: Int;

– they are used directly, and not by copying them, when Address: String;
they are passed as parameters to functions, bound to modAddress (newAddress: String): Null;

Introduce: String;identifiers in declarations, and used in constructing
End;complex values.

>>> Let Person <: PersonObject = <Role>
An implicit subtype relation is defined on concrete types.

Figure 6. The Person role typeThis relation allows the so called inclusion polymorphism
to be exploited: if T1 is a subtype of T2 (also, T2 is a
supertype of T1), then a value of T1 is also a value of T2, Figure 6 shows the definition of the role type Person,
consequently, it can be used in every context where a valueentered interactively at the top-level, and the system answer.
of T2 is expected. A subtype relation holds also among role The Let keyword precedes a type declaration. Fibonacci
types when it is explicitly declared. None and Any are adopts the lexical convention by which all type constructs
respectively the bottom and the top of the type hierarchy. and predefined type names are capitalized. IsA <Type>

With <properties list> End is the type constructor for
4 The Fibonacci object mechanism role types. The semicolon terminates a phrase (declaration or

expression). The symbol >>> precedes the system answer to
In this section we will present the constructs which realize the type definition. The symbol <: denotes the subtype
the model informally described in section 2. relation.

4 . 2 Object construction4 . 1 Object and role types definition

A role type T defines the interface of the objects with such aThe most peculiar feature of Fibonacci’s object model is the
type, but doesn’t give information about their internaldistinction between object and role values. In Fibonacci
structure. An object with a role type T is created with theobjects are not directly manipulated, but are always accessed
construct role T <implementation> end , where thethrough one of their roles. Hence, role values and role types
implementation specifies the private state of the object andare used in Fibonacci to accomplish all the operations
the body for all the methods specified in the interface.usually related to objects and object types. For this reason,

Figure 7 shows the implementation for an object namedwe will often say “the object r” instead of “the role r of the
john with a role type Person.object o”.

At the value level, roles answer to messages while

let john = role Person >>> nil : Null
private

let Name = “John Daniels”; john.Address;
let BirthYear = 1967; >>> “Beagle – Pacific Ocean” : String
let Address = var

(“123, Darwin road – London”);
Name

Address

modAddress

Introduce

Age

BirthYear
name

address

birthyear

John Daniels

1967

Darwin road …

methods
Name = Name;
BirthYear = BirthYear;
Age = currentYear() – BirthYear;
Address = at (Address);
modAddress (newAddress: String) =

Address := newAddress;
Introduce = “My name is ” & Name &

“ and I was born in ” &
Figure 8. Inside the john objectintToString(BirthYear);

end ;
>>> let john : Person = <role> 4 . 3 “const” and “mod” properties

Figure 7. Single object construction
In object-oriented database applications, most messages are
used only to retrieve and update the value of a variable hiddenThe let keyword precedes a value declaration, which bounds
in the state of the object. It is important to give a speciala role of a newly created object to john. The evaluation of
status to these messages for three reasons:the expression role T private <private env>
– documentation: giving a declarative way to specify in themethods <methods env> end creates a new object and

interface of an object that some methods are meant to bereturns a role of type T for that object; we say, more simply,
used as specified above improves program readability, likethat it creates a role. <private env> is a sequence of
any information about the expected behaviour of a methoddeclarations or expressions, evaluated once when the object
does;is constructed. Each declaration or expression has visibility

– usabil ity: giving an easier way to implement thisof the preceding ones. <methods env> is a set of method
common class of methods helps the programmer;specifications, i.e. all method names are different and their

– implementation: if the system knows that, for all objectsorder is not significant. A method is specified by giving its
in a type, a given message just accesses a variable in thename, its signature (compatible with the expected signature)
state, it may exploit this kind of information to build anand its body (the expression following the = symbol). All
index over that component of object state, to improve themethods declared in the interface must be specified.
response time of queries involving that message.The evaluation of the expression role T private

<private env> methods <methods env> end involves
Many languages face this issue by giving direct visibility tothe following steps:
object state, or to a part of it. In Fibonacci, when messages– the declarations in <private env> are sequentially
are meant to be used just to access an object state, thisevaluated to create a private environment on top of the
information can be specified, without breakingcurrent external environment (in the example, the top-level
encapsulation, as follows.environment);

A property of an object role type can be defined const– this private environment is extended with the code of
to mean that the value returned by the corresponding methodmethods defined in <methods env> ; even parameterless
is always the same, as long as the object is not extended intomethods are not evaluated at object construction but only
a subtype; a const property does not have parameters.when they are called; methods may refer private or external
Moreover when two properties M:Type and modM(newM:data and also the whole object being built, through the me
Type): Null are related by the fact that the second propertyidentifier (see further);
is used to modify the value returned by the first one, the– a new object is created which contains the methods, the
abbreviation mod M:Type can be used to define both ofprivate environment and the interface for role T (now we
them. This declaration also asserts that the value returned bycan say that the object has the role T);
the M method is always the same until a modM method is– the interface is connected to the appropriate methods;
called. According to these abbreviations the definition in– the specified role of the newly created object is returned.
figure 9 is equivalent to that in figure 6. Figure 8 shows the structure of the object john resulting

from the evaluation of the declaration shown in figure 7.
Let Person = IsA PersonObject WithOnce an object is created, its methods can be selected

const Name: String;with the dot notation. Method call causes the evaluation of const BirthYear: Int;
an expression in the private environment with possible side- Age: Int;

mod Address: String;effects; this is the only way to ask an object to modify its
Introduce: String;internal state. Examples of method call are: End;

Figure 9. Another Person role typejohn.Address;
>>> “123, Darwin road – London” : String

More precisely, both definitions produce the same method
signature, but only the second one imposes some constraintsjohn.modAddress(“Beagle – Pacific Ocean”);

on the behaviour of methods Name, BirthYear and Address. is the type of the role expression where me is used (in this
The implementation of a role type with const and example Person); me can be used only in the method bodies

mod properties is simplified since the system provides a and in the init expression. intToString is a predefined
standard implementation for these properties. For a function to convert an integer into a string. The infix
property const P:TP it is sufficient to declare in the operator & is the concatenation operator on strings.
private environment a value P of type TP’ <: TP. Then, if a
method named P is not declared, the standard implementationlet createPerson = fun (name, address: String;

birthyear: Int) : Person isis automatically defined as: P = P. For a property mod
role Person

V:TV , a private variable V of type TV must be declared in private
the private environment; then, the standard methods are: V = let Name = name;
at V and modV(newV:TV) = V:=newV . With the standard let BirthYear = birthyear;

if stringLength(address) < 2 then implementation, the example 7 can be rewritten as shown in
failwith “incorrect address” end ;fig. 10.

let Address = var (address);
methods

let john = role Person Age = currentYear() – me.BirthYear;
private modAddress (newAddress: String) =

let Name = “John Daniels”; if stringLength(newAddress) < 2
let BirthYear = 1967; then failwith “incorrect address”
let Address = var (“123, Darwin road – else Address := newAddress end ;

London”); Introduce = “Name: ” & Name & “ – Age: ”
methods & intToString(me.Age);

Age = currentYear() – BirthYear; ini t
Introduce = “My name is ” & Name & if me.Age < 0 or me.Age > 150

“ and I was born in ” & then failwith “incorrect birth year” end
intToString(BirthYear); end ;

end ;
Figure 11. A Person constructor

Figure 10. Another constructor for john

The clause init <exp> defines an expression which is
The standard implementation is just a facility for the evaluated when the object is built before returning it. In the
programmer, which can always provide its own expression the identifier me can be used as in a method body;
implementation for the messages, typically to check someas a matter of fact, the clause init may be seen as a special
constraints or to perform additional side-effects. But also method evaluated once before returning the object. If the
when the implementation is explicitly defined, the system expression fails, the object construction fails and the effects
enforces the constraints implied by the const and mod are undone, since object creation is atomic.
declarations. Lets us see some examples.

4 . 4 Definition of an object constructor let paul = createPerson(“Horace De Saussure”;
“Geneva”; 1960);

In the previous examples single objects have been built from>>> let paul : Person = <role>

scratch, but usually we are interested in creating, for each
paul.Introduce;role type, many instances with the same internal structure>>> “Name: Horace De Saussure – Age: 33”: String

and method bodies. The problem is solved by defining a
constructor, that is a function which returns new objects paul.modAddress(“”);

>>> failure: “incorrect address”with a certain role. An example is shown in figure 11.5

The expression fun (<arguments>):<type> is
let dante = createPerson(“Dante Alighieri”;

< e x p > defines a function, with type F u n “Ravenna”; 1265);
(<arguments>):<type> and body <exp> .6 When the >>> failure: “incorrect birth year”
function is applied, a new instance of Person is created.
While the private data are different for each instance, the 4 . 5 Role type hierarchies and inheritance
method bodies are shared by all instances.

In the body of the Introduce method the special identifier An object role family can be extended dynamically by
me denotes the constructed object. The formal type 7 of me defining a new role type T as a subtype of others, called its

supertypes. The subtype inherits all properties of its
5 This approach to the specification of object constructors is supertypes, unless they are explicitly redefined in the
similar to the one adopted in Emerald [6]. subtype (overriding). In case of multiple inheritance, if a
6 A function definition has a syntax different from that of a property is present in more supertypes, and there is not anmethod to reflect the fact there are differences between functions

explicit redefinition in the subtype, then the property of theand methods: a function is a first class value, and so can be
passed as parameter or returned as value by a function; a methodlast specified supertype is inherited, but only if that
is not a value, and it can only be evaluated by the object to property has been defined in a common ancestor. which belongs for side effects or to return a value.

Figure 12 shows the definition of Student and7 Because of subtyping, the type of an expression is
Employee, both subtypes of Person.generally just a supertype of the type of the values which will

correspond to that expression at run time. For example, if the x In a subtype definition S, for any property P of S
parameter of a function has type Person, then it may be bound,
at run time, to values belonging to any subtype of Person; in this case we say that Person is the formal type of x.

(inherited, redefined or added), if P is also defined in the let createStudent = fun (name, address,
faculty: String; birthyear: Int) : Student issupertype T then the following conditions hold:

role Student– the signature of P in T is a subsignature of that in S private
(contravariance); 8 let Name = name;

– the output type of P in S is subtype of that in T let BirthYear = birthyear;
let Address = var (address);(covariance);
let Faculty = var faculty;– if P is neither const nor mod in T, then P in S may be
let StudentNumber = newStudentNumber();

declared as const or mod; methods
– if P is declared as const in T then the same must be in Age = currentYear() – me.BirthYear;

S; Introduce = “Name: ” & Name & “ – Age: ”
& intToString(me.Age) & – if P in T is declared as mod P:TP , then P must be declared
“ – Faculty: ” & me.Faculty;as mod P:TP also in S. ini t

The rule that a mod property cannot be redefined by if me.Age < 18 or me.Age > 70
specializing its type is a consequence of the fact that the then failwith “incorrect birth year” end

end ;signature of a redefined method must be contravariant. In fact
the declaration mod P:TP introduces a method modP(TP): Figure 13. A Student constructor
Null and the redefinition mod P:TP’ , with TP’ subtype of
TP, introduces a method modP(TP’):Null which violates

private
data

Name

Address

modAddress

Introduce

Age

BirthYear

Name

Address

modAddress

Introduce

Age

BirthYear

Faculty

Stud.Num.

the contravariance rule for functional components.

Let Student = IsA Person With
mod Faculty: String;
const StudentNumber: Int;
Introduce: String;
End;

Let Employee = IsA Person With
mod Department: String;
const EmployeeNumber: Int;
Introduce: String;
End;

Figure 12. Student and Employee role types

4 . 6 Subtype object construction

When a role type is defined by inheritance, a constructor for
objects belonging to that role may be either defined from
scratch or by inheritance, i.e. by extending a constructor

Figure 14. An object with two roles which share the defined for a supertype. In this section we exemplify the first
same implementation approach, while the second, which is more standard, is

described in section 4.8. Figure 13 shows the direct (no
4.7 Other operators: object comparison, roleinheritance) definition of the Student constructor.

inspection, role casting and strict bindingTo construct an object with role type T from scratch,
the method for each property must be specified. The

The language provides the following operators on objects: constructed object will have the role type T and all the
supertypes of T. For example, with the following

– the equality operator (=) to test if two objects are thedeclaration:
same, independently of their current role type; for example

let spinoza = createStudent(“Bento d’Espinoza”;
“Cordoba”; “Philosophy”; 1966); john = spinoza;

>>> false : Bool
is created the object spinoza , shown in figure 14.

– the infix predicate isAlso to test if an object has a
certain role; for example:

spinoza isAlso Person;
>>> true: Bool

john isAlso Student;
>>> false: Bool

– the infix operator as to coerce an object to one of its
8 A signature is a list of zero or more pairs Ident i f ier : possible roles (role casting). The operator will fail if the
T y p e separated by semicolons. We say that S1 is a

object does not have the specified role:subsignature of S2 if S1 extends S2 with new pairs or redefines
(in the same order) the S2 pairs with more specialized types.

let baruch = spinoza as Person;
>>> let baruch : Person = <role> The object john acquires the role Student without changing

its identity (as results from the test john =baruch = spinoza;
johnAsStudent). Note the combination of role casting with>>> true : Bool
strict interpretation to call the method Introduce defined in

let johnAsStudent = john as Student; Person. The object johnAsStudent is represented in figure 16
>>> failure: “as” (compare it with the representation of john given in figure

8). Note the twofold link for Introduce: the old link isThe expression x as T is well typed if T and the type of
chosen for strict binding, whereas the new one for normalx belong to the same role type family.
binding. For example, let us see how the behaviour of john
has changed after the extension:The following operators are on role values:

john.Introduce;
– the infix predicate isExactly to test the actual type of a >>> “My name is John Daniels and I was born in

role value: 1967. I am a Science student” : String

johnAsStudent.Introduce;spinoza isExactly Student;
>>> “My name is John Daniels and I was born in>>> true : Bool
1967. I am a Science student” : String

– the infix operator ‘!’ to request an object role to evaluate a
(johnAsStudent as Person)!Introduce;method without considering the possible redefinitions of
>>> “My name is John Daniels and I was born in

the method in its subroles (strict binding). This operator 1967” : String
is useful, for example, to see the behaviour of a Person
independently of the fact that he may also be an Employee

Name

Address

modAddress

Introduce

Age

BirthYear

Name

Address

modAddress

Introduce

Age

BirthYear

Faculty

Stud.Num.

Faculty

Stud.Num

Science

3452671

name

address

birthyear

John Daniels

1967

Darwin road …

or a Student (examples will be given in sec. 4.8).

Strict binding should not be confused with static binding:
static binding takes place at compilation time and the
method to activate is chosen on the base of the formal type
of the expression which denotes the receiver of the message.
Strict binding, which is a kind of dynamic binding, takes
place at run-time and the method to activate is chosen
depending on the actual type of the receiver. The type
checker will guarantee that the actual type is a subtype of the
formal type.

The combination of strict binding with role casting (e.g.
(X as T)!P) is a useful feature of Fibonacci, in that: a) it
allows to simulate static binding, b) it allows to simulate
the traditional send-to-super mechanism of object-oriented

Figure 16. The internal structure of john after the extensionlanguages (see sec. 4.8), c) in extension operators, it allows
the programmer to specify explictly from which ancestor a

To explain the difference between the creation of an objectmethod implementation is inherited.
from the scratch and by extension, it is useful to compare
graphical representation in figure 16 with that in figure 14.4 . 8 Dynamic object extension

The construct ext has an header (ext <object> to
<target types>) and an implementation (private …To model the role and behaviour evolution of entities,
methods … in i t …). The implementation part isFibonacci provides an extension operator, which allows
identical to that of the role operator (see sec. 4.2), while thean object to be extended dynamically with new subroles.
following differences appear in the header part:Figure 15 shows the extension of john from Person to

Student.
– <object> is an expression which denotes the object to be

extended.let johnAsStudent = ext john to Student
– <target types> are the role types that must be acquiredprivate

let Faculty = var “Science”; by the object. The order in which are listed determines the
let StudentNumber = newStudentNumber(); order in which the roles are acquired. The last specified

methods (called target-type of the extension) must be a subtype ofIntroduce = (me as Person) ! Introduce &
all the previous ones. All the target types must belong to“. I am a Science student”;
the same role family to which the type of <object> alsoend ;

>>> let johnAsStudent : Student = <role> belongs.
– the methods defined in the methods section must be at

john = johnAsStudent; least those explicitly specified in the interfaces of the
>>> true : Bool

target types.
Figure 15. john becomes student

Let R1 and R2 be role types such that R1 <: R2, the object
X is called complete if X isAlso R1 implies X isAlso Object extension and multiple inheritance
R2. Static and dynamic tests ensure that the extension
operation always produces complete objects without Let us define the type TeachingFellow to show other
duplicate roles. Figure 17 shows the definition of an examples of multiple inheritance and object extension.
extension operator to obtain an Employee from a Person.

The figure 18 shows how the behaviour of john changes
Let TeachingFellow =

once it has acquired the role type Employee: IsA Student, Employee With
const Course: String;

let toEmployee = fun (aPerson: Person; dept: Introduce: String;
String) : Employee is End;

ext aPerson to Employee
private Figure 20 shows an operator to make a TeachingFellowlet Department = var (dept);

from a Student: let EmployeeNumber =newEmployeeNumber();
methods

Introduce = (me as Person) ! Introduce & let fromStudentToTeachingFellow =
“. I am an employee”; fun (aStudent: Student; dept,

end ; course: String) : TeachingFellow is
Figure 17. An extension operator ext aStudent to Employee, TeachingFellow

private
let Department = var (dept);toEmployee(john; “Quality Management”);
let EmployeeNumber =NewEmployeeNumber();
let Course = course;john.Introduce;

methods>>> “My name is John Daniels and I was born in
Introduce = (me as Student)!Introduce & 1967. I am an employee” : String

“– Course: ” & course;
Figure 18. john becomes Employee end ;

Figure 20. An operator to make a TeachingFellow from a StudentThe behaviour of john as Student does not change once it
acquires the type Employee: The interesting aspect in the example is that there are two

roles to be acquired: the first (Employee) is not a subtype of
johnAsStudent.Introduce;

Student, while the second role is a subtype of Student, and>>> “My name is John Daniels and I was born in
so the condition is satisfied that the target-type must be1967. I am a Science student” : String
subtype of those which precede it. Let us show how the

Implementing constructors by inheritance extension operation changes the behaviour of the object to
be extended:

Using the constructor createPerson and the operator
fromStudentToTeachingFellow(spinoza; “HermetictoEmployee it is possible to define a constructor
Philosophy”; “Ethica”);createEmployee which makes use only of predefined

implementations: spinoza.Introduce;
>>> “Name: Bento d’Espinoza – Age: 27 – Faculty:

let createEmployee = Philosophy – Course: Ethica” : String
fun (name, address, dept: String;

birthyear: Int) : Employee is (spinoza as Employee).Introduce;
toEmployee(createPerson(name; address; >>> “Name: Bento d’Espinoza – Age: 27 – Faculty:

birthyear); dept); Philosophy – Course: Ethica” : String

Another way to reuse the implementation of createPerson is4 . 9 Object contraction (role dropping)
shown in figure 19.

In order to meet the need for modelling roles and behaviours
let createStudent2 = fun (name, address, evolution, Fibonacci should also provide a contractionfaculty: String; birthyear: Int) : Student is

operator, i.e. a mechanism to allow the objects to loseext createPerson(name; address; birthyear)
some roles (e.g. drop R1,R2 from X). With such an to Student

private operator one could model, for instance, the fact that when a
let Faculty = var (faculty); student takes a degree loses his Student role and gains the
let StudentNumber = newStudentNumber();

role of Graduate, or the fact that a worker at the end of hismethods
career loses the Employed role and becomes a Retired.Introduce = (me as Person) ! Introduce &

“. I am a student of ” & me.Faculty; The Fibonacci’s contraction mechanism should have the
end following features:

– when a role is dropped from an object, all its subroles areFigure 19. Reusing a Person constructor to create students
lost too;

Note that a role type can have multiple constructors, and that– the objects are not destroyed (there are no dangling
in defining a constructor for a role subtype it is possible to references);
choose which super-role constructor is extended. – casting toward a dropped role (e.g. X as R) arises a

trappable failure, thus no one can take new acquaintance oforiented languages. In these languages, if some programmers
a dropped role (no new reference to it can be created afterwork at the same time at the same project, any programmer
the dropping); is free to take general-purpose object types from libraries and

– sending a message to a dropped role arises a trappablespecialize them, regardless of the fact that other programmers
failure (message passing failure); are producing cousin object types by specializing the same

– role inspection and equality still work on a dropped role, library for different purposes. Forbidding name duplications
since these operators refer to the object, rather than thein all the possible specializations of a library object type
roles; would damage one essential abstraction mechanism of

– when a role is dropped from an object, previously hidden object-oriented programming. It could be likened to
behaviours are brought in the foreground; e.g. if john forbidding the usage of the same name for a local variable in
loses the Employee role, his answer to (john a s two different unrelated functions. Preventing undesired
Person).Introduce will be again that of Student; interactions between cousin roles, to attain full “cousin role

– role dropping is an important event in the life of an object; independence”, is one of the primary design choices of the
then such a state transition should be monitorable throughmessage interpretation rules.
preconditions expressible in the implementation (like the Message interpretation can be described as follows.
init clause). When a role receives a message it first checks whether any of

its descendants has its own method (not inherited) to reply to
It is important to notice that the message passing failure in the massage. If such descendant is found, then it is
Fibonacci is different from that of other object-oriented delegated to answer the message. The descendants are tried
languages (firstly Smalltalk): in Fibonacci the failure in reversal temporal order, i.e. the last acquired descendant
informs the sender that the receiver has lost a role; whereas,is tried first. Subtyping ensures that the delegated role can
in languages with dynamic type checking, this failure only safely substitute the receiving one. If no delegate is found,
represents a wrong use of an object. the receiver searches an implementation for the message

Role dropping is an operation similar to object removal, inside itself. If this is not found, then the receiver looks for
thus the well known problem of the referential integrity an implementation for the message in the ancestor role from
should be taken in account [7]. which the corresponding property is inherited. The typing

To model the fact that not every sequence of role rules ensure that this last search is always successful. Note
acquisitions or role losses is admissible, it should be that this is just a way to describe the meaning of message
possible to specify admissible histories or migration passing; alternatively, the same semantics can be described
paths in a role type hierarchy (sequences of ext /drop) by specifying, with reference to Figures 3, 4 and 5, how the
[10]. dispatching structure of an object is set up and how it is

These problems are not dealt with in the currrent modified when an object is extended.
implementation of Fibonacci, but we are working on them For example, the message Introduce sent to john (see
to provide the language with a contraction operator. figure 18) causes the activation of the Introduce method of

Employee, because Employee is the last acquired subrole of
4 . 1 0 Message interpretation the object, hence the method will be executed by

delegation. The message Introduce sent to johnAsStudent
The role mechanism is essential when objects can bewill be answered by the method of Student, because there is
extended with independent subroles. In this case, classicalno descendant of Student in j o h n . Instead, if
late binding without roles creates a problem. Suppose that ajohnAsStudent receives the message Name the answering
type Person has two different subtypes Student andmethod will be that of Person, hence it will be executed by
Employee, and that both of them add a property inheritance.
PersonalCode to the supertype. The two personal codes have
unrelated semantics, and maybe even a different type. LetSelf-reference semantic
john be created as a Person and later on extended, first to
Student with code 100200 and then to Employee with codeThe distinction between delegation and inheritance is
"jhn698". In a language with late binding and without roles, essential to understand the meaning of self-references in the
johnAsStudent answers "jhn698" to a message method body. The following rules apply: a) when a method
PersonalCode, or johnAsEmployee answers 100200, becauseM, belonging to the role R, is activated by delegation (in
the objects always exhibit a uniform behaviour. This is both other words the receiving role is a superrole of R), the actual
a semantic error and a type-level error. Since it is not knowntype of me in that activation of M will be just R (i.e. its
statically whether an object of type Student has also beenformal type); b) when the same method is executed by
extended to Employee, we can conclude that the system caninheritance (the receiving role is subrole of R) the actual
never be sure that any object of type Student answers thetype of me will be that of the role which originally received
message PersonalCode with an integer. More generally, if itthe message M.
is always possible to add new object types to the system, the Rule a) is essential to the type safety of the language.
type checker can never be sure of the type of the result ofLet, indeed, RR be the receiving role of the message, let DR
any message passing operation. be the role delegated to answer (then DR <: RR); the formal

This problem may be faced by imposing constraints on type of me in DR’s method is DR, then to ensure a type-safe
methods appearing with the same name in cousin objectexecution the actual type of me must be DR or a subtype of
types. This contrasts with the typical usage of object- DR.

Rule b) is the classical rule adopted by object-oriented 5 Previous works
languages. Suppose for example that in a graphical editor an
object type Picture is defined with a method Draw taking a In the last fifteen years the need for data modeling features
color as a parameter. Squares and Circles are subtype ofcapable of capturing the evolving and multifaceted nature of
Picture, and contain the actual code for the Draw method.real world entities has been pointed out by many researchers.
However, a method DrawBlack can be implemented once forThe first attempt in this direction was the role model of
all for the object type Picture, as me.Draw(black) . When a Bachman and Daya [4], aimed to enhance the expressive
Square executes by inheritance the DrawBlack method, thepower of network data model. In more recent years, the
Draw(black) message is sent to me seen as a Square. Galileo language provides a mechanism to allow instances of

It can be interesting to note that the rule b), besides a class to become, dynamically, instances of a subclass and,
being useful, is a consequence of the principle of non- at the same time, to acquire new behavioral aspects without
interference between cousins. If me in a method which is losing their identity [1]. This mechanism was found useful
activated by inheritance were bound to the role where theto model the behavioral specialization of world entities over
method is defined, then self-reference would allow methods their lifetime, but it has limitations because of the
of cousin roles to be activated. Let us consider the exampleassumption that every object always belongs to a unique
in figure 21, where each method is associated with the most specialized class (type). In what follows we review
corresponding body. some of the more relevant recent proposals in the context of

object-oriented database programming languages.

R1

R2 Q = "R2" R3

P = me.Q

Q = "R1"

Q = "R3"

Iris

Iris [5] is an OODBMS equipped with explicit features to
model behavioral evolution of entities. Iris objects may
acquire or lose types during their life, retaining their identity;
but is not possible to observe an object from different
perspectives, indeed, despite type multiplicity, an object, in
a fixed instant of its life, always exhibits a uniform

Figure 21. A role type hierarchy behaviour, no matter the context from which is observed.
For instance, suppose a property P is differently defined inLet us assume that the object X has been created with roles
types T1 and T2; then an object X, belonging to both ofR1 and R2 and then extended with role R3. Adopting the
them, will always answer to the message P with the methodcorrect rule to solve self-reference, when the message P is
of the most specialized type between T1 and T2. But if theresent to X seen through the role R2, the answer is “R2”. If
is no such type the answer will depend on ad hoc ruleswe had adopted the other rule (self-reference bound to the role
which the user must establish to resolve such ambiguities.which owns the method activated by inheritance), the answer
This approach is unsatisfactory because the type multiplicitywould have been “R3”, and therefore the method of a
cannot be used to model role multiplicity, and the objectsreceiving role (R2) would be covered by a method of a
show the behavioral uniformity typical of traditional object-cousin role.
oriented languages (i.e. Smalltalk). In addition, the
resolution of ambiguities in message dispatching is left toFinal remarks
the programmer, whereas, we believe it should be an
important concern of the supported data model.In traditional object-oriented languages all methods are

executed either by the receiving role or by inheritance. This
Clovershappens because the only role accessible of an object is the

bottom role, which has no descendant. So we can affirm that
Stein and Zdonik [9] propose a mechanism called cloversboth binding mechanisms of Fibonacci are a generalization
which allows to model entities with multiple andof the classical late binding mechanism.
independent roles. The language which supports thisWith respect to a fixed role, all the other roles in a
mechanism has provision for strong type-checking andFibonacci object are either ancestors or descendants or
subtyping. With clovers an object created in a type T maycousins. The message interpretation mechanism ensures, in a
become an instance of T’ subtype of T, acquiring methodsword, that there is neither interference nor inheritance
and data specific of T’. The object behaviour depends strictlybetween cousins. This is very important, since in general
on the type through which the object is observed, and therewhen an object is extended with two cousin roles (e.g. a
is no late binding. Clovers provides also an operator forPerson with Student and Employee), if the same method is
type inspection and two operators for type coercion: one todefined in all the three roles, the two cousins can specialize
go up and one to go down in the type hierarchy, but withoutit with two subtypes T’ and T’’ of the type T assigned by
explicit mention of the target type. The main differencesthe father to that method, but there is no subtype relation
from Fibonacci are the lack of support for late binding, andbetween T’ and T’’, which implies that inheritance between

cousins would be unsound not only with respect to the the impossibility of explicitly referring the types to which
modelling principles, but also with respect to the language one is interested.
typing rules.

Views Summary

Shilling and Sweeney [8] present an extension of the objectAll proposals share the following features, found also in
data model based on the concept of view. In that model, an Fibonacci:
object is equipped with multiple interfaces (views). Every – objects may acquire new types and new behaviours;
interface has its own set of methods and the interfaces of an– objects retain their identity during their life, no matter
object are separated and independent each of the others; the which extensions are operated and independently of the
object is always referred through one of them, so there is no point of view through they are observed;
conflict between methods with same name belonging to – encapsulation is preserved, because the extensions have no
different views. Every interface has a distinct implementation direct access to private data of the existing object.
and a distinct set of variables accessible only to its methods.
The object behaviour depends on the interface used to accessA novel aspect of Fibonacci is, instead, the coexistence of
it, and the object identity is preserved across the variouslate-binding and multiple inheritance with role multiplicity
views; that allows one to model multiple and independent and dynamic object extension, in a framework with strong
roles. That mechanism, on other hand, has no provision fortype-checking and subtyping. Moreover, the combination of
late binding, inheritance and subtyping, moreover separationsuch complex features is obtained neither to detriment of
between interfaces and implementations is not supported. semantic clarity, neither relying on specification ambiguities

which introduce implementation dependent or ad hoc
Aspects semantics. Indeed, the full meaning of the various

mechanisms is established at first in the data model and then
Richardson and Schwarz [7] propose a model whose objectssubstantiated in the constructs of the language.
may have multiple aspects (types) and may be extended Significantly, the proposals which support late-binding
with new ones during their lifetime, without losing their (Galileo, Iris and Nuovo Galileo), always assume the
identity. Every aspect has its own methods and private dataexistence of a most specialized method in order to resolve the
and an object is always referred through one of its aspects.message dispatching ambiguities that can arise from type
The observed behaviour is that specific of the referred aspectmultiplicity. Vice versa, when the previous assumption is
and the late binding and inheritance mechanism are notabandoned and objects are allowed to have multiple minimal
supported. Interfaces are defined separately from types (Clovers, Views and Aspects), late-binding is never
implementations and the interface matching is structural, provided.
allowing to have more implementations for a given type,
but also to reuse an implementation for more types. The6 Conclusions
type system has provision for an implicit subtyping relation
(conformance). A new aspect added to an object X or to An object mechanism for a strongly typed database
another aspect A of X, may hides some property defined forprogramming language has been presented. The object
X; then there is no subtyping relation between an aspect andmechanism, besides the usual properties of state
the type of the extended object. As already noted, the aspectsencapsulation, unchangeable identity, separate definition of
proposal has no support for inheritance, neither single interface and implementation, and late binding, has a role
neither multiple. To overcome this limitation, an aspect B mechanism characterized by the following features:
extending another aspect A, must explicitly replicate the A – plurality of behaviours: a unique object can be accessed
interface in its definition, and it must call the ancestor through different roles, which have different types and can
methods with a send-to-super primitive. Is not possible to answer in different ways to a message. Plurality of
extend an object with more aspects in a unique operation. behaviours allows to model situations where a unique
Due to the structural matching between types, the aspects entity of the domain of discourse can play different roles
mechanism does not have operators for role inspection and and behaves in a different way according to its role. That
role coercion. relates roles to a view mechanism.

– independence of extensions: it is possible to perform
Nuovo Galileo two independent extension of a unique role with two

cousin roles, without interference between them.
In the data model proposed in [3] the objects can be Independence of extensions is especially helpful in the
dynamically extended with new types and are not constrained development of applications structured as independent
to have a unique minimal type, but the role mechanism is modules.
not provided. Then in order to support late-binding, the – strict and late binding: the sender can choose between the
assumption is made that for each method a most specialized two binding mechanisms, thus, it can decide whether
version of it always exists. Thus, the objects always exhibit delegation is allowed. The distinction between strict and
a uniform behaviour, no matter the type through they are late binding is most useful in implementing methods by
accessed. This object mechanism has been the first step in extending or reusing existing implementations, and it is
the development of the object mechanism of Fibonacci. related to the super of most traditional object-oriented

languages.
– role casting and role inspection: these are crucial features

to fully exploit the richness of the object model; they
allow one to navigate freely in the role graph of an object,

and to observe all its possible aspects and behaviours. [8] J.J. Shilling and P.F. Sweeney “Three Steps to View:
These capabilities are very important in languages with Extending the Object-Oriented Paradigm” OOPSLA
strong typing, since they give, informally, the ability of ’89, ACM SIGPLAN Notices, vol. 24, n. 10, pp.
dynamically changing the type of an object. 353-361, Oct. 1989

[9] L.A. Stein and S.B. Zdonik “Clovers: The Dynamic
It is important to note that if a programmer does not use

Behavior of Type and Instances” Brown Universityextension operators, but always builds objects in the
Technical Report No. CS-89-42, Nov. 1989subtypes using constructors, then there is no need to

[10] J. Su “Dynamic Constraints and Object Migration”,distinguish objects from roles, neither strict from late
Proc. of 17th Int. Conf. on VLDB, Barcelona, 1991,binding, and all the usual rules of object-oriented languages
pp. 233-242.apply. So the complexity of the role mechanism comes into

play only when really needed.
The object mechanism is one of the Fibonacci features

designed to model object-oriented databases. The language
provides also (a) a class mechanism to model a modifiable
collection of values, on which it is possible to define an
inclusion constraint, and (b) an association mechanism to
model modifiable n-ary relations among classes [2]. All
these features have been considered in the current
implementation of a prototype of the language compiler.

References

[1] A. Albano, L. Cardelli and R. Orsini “Galileo: A
Strongly Typed, Interactive Conceptual Language”,
ACM Transactions on Database Systems, Vol. 10,
No. 2, pp. 230-260, 1985. Also in: Readings in
Object-Oriented Database Systems, S.B. Zdonik and
D. Maier (eds), Morgan Kauffman, San Mateo,
California, pp.147-161, 1990.

[2] A. Albano, G. Ghelli and R. Orsini “A Relationship
Mechanism for a Strongly Type Object-Oriented
Database Programming Language”, Proc. of 17th Int.
Conf. on VLDB, Barcelona, 1991, pp. 565-575.

[3] A. Albano, G. Ghelli and R. Orsini “Objects for a
Database Programming Language”, proc. of the third
Intl. Workshop on Data Base Programming
Languages, P. Kannelakis, and J. W. Schmidt (eds),
Morgan Kauffman, San Mateo, California, pp.236-
256, 1992.

[4] C.W. Bachman and M. Daya “The role concept in data
models”, Proceedings of the Third Int. Conf. on
VLDB, pp. 464-476, 1977

[5] D.H. Fishman et al. “Iris: An Object-Oriented
Database Management System”, ACM Trans. on
Office Information Systems, vol. 5, n. 1, pp. 48-69,
Jan. 1987.

[6] A. Black, N. Hutchinson, E. Jul, and H. Levy “Object
Structure in the Emerald System”, OOPSLA ’86,
ACM SIGPLAN Notices, pp. 76-86, Sept. 1986

[7] J. Richardson and P. Schwartz “Aspects: Extending
objects to support multiple, indipendent roles”,
Proceedings of the Int. Conf. on Management of
Data, ACM SIGMOD Record, vol. 20, pp. 298-307,
May 1991

