
Oracle9 iAS Containers for J2EE

User’s Guide

Release 2 (9.0.2)

April 2002

Part No. A95880-01

Oracle9iAS Containers for J2EE User’s Guide, Release 2 (9.0.2)

Part No. A95880-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Contributing Authors: Sheryl Maring, Mike Sanko, Brian Wright, Timothy Smith

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Portions of this software are copyrighted by Data Direct Technologies, 1991-2001.

Contents

Send Us Your Comments ... xi

Preface .. xiii

1 J2EE Overview

OC4J Features .. 1-2
Set of Pure Java Containers and Runtime Executing on the JDK.. 1-2
J2EE Certified .. 1-2

Overview of J2EE APIs and OC4J Support.. 1-3
Java Servlets... 1-3
JavaServer Pages... 1-5
Enterprise JavaBeans.. 1-7
Java Database Connectivity Services ... 1-10
Java Naming and Directory Interface.. 1-12
Java Transaction API ... 1-12
Java Messaging Service.. 1-13
JAAS Provider... 1-13

Tunneling, Load Balancing, and Clustering Services Provided by OC4J.............................. 1-14
RMI Tunneling Over HTTP .. 1-15
Load Balancing and Clustering .. 1-16

Java Plug-In Partners and Third Party Tools Support ... 1-17
Actional Control Broker... 1-17
Blaze Advisor .. 1-17
Borland JBuilder.. 1-18
Cacheon Business Service Center... 1-18
iii

Computer Associates Cool:Joe.. 1-18
Compuware OptimalJ .. 1-18
Documentum WDK.. 1-18
Empirix BeanTest .. 1-19
FatWire UpdateEngine... 1-19
ILOG JRules ... 1-19
Macromedia UltraDev ... 1-19
Mercury Interactive LoadRunner... 1-20
Neuvis NeuArchitect.. 1-20
Pramati Studio... 1-20
Rational Rose ... 1-20
Sitraka JProbe .. 1-21
Sonic Software SonicMQ.. 1-21
Sun Forte .. 1-21
TogetherSoft ControlCenter .. 1-21
VMGear Optimizeit .. 1-22
WebGain Visual Cafe ... 1-22

2 Configuration and Deployment

OC4J Installation... 2-2
Using OC4J in an Enterprise or Standalone Environment ... 2-2

Managing Multiple OC4J Instances in an Enterprise Environment...................................... 2-3
Managing a Single OC4J Instance .. 2-3
OC4J Documentation Set Assumptions... 2-4

OC4J Communication .. 2-5
HTTP Communication... 2-5
Requirements... 2-6

Starting and Stopping the Oracle Enterprise Manager Web Site .. 2-6
Creating or Deleting an OC4J Instance .. 2-7
OC4J Home Page ... 2-8

General and Status.. 2-8
Deployed Applications .. 2-9
Administration .. 2-10

Starting and Stopping OC4J ... 2-11
Testing the Default Configuration ... 2-12
iv

Creating the Development Directory.. 2-13
Configuring the Pet Store Web Application Demo .. 2-14

Downloading An OC4J-Ready Pet Store Demo... 2-14
Explanation of the Changes to the Pet Store Demo... 2-17

Deploying Applications .. 2-20
Basic Deployment ... 2-20

Recovering From Deployment Errors ... 2-29
Undeploying Web Applications .. 2-29

3 Advanced Configuration, Development, and Deployment

Configuring OC4J Using Enterprise Manager .. 3-2
OC4J Instance Level Configuration ... 3-2
Application Level Configuration ... 3-17

Overview of OC4J and J2EE XML Files.. 3-19
XML Configuration File Overview .. 3-19
XML File Interrelationships .. 3-23

What Happens When You Deploy? ... 3-26
OC4J Tasks During Deployment.. 3-26
Configuration Verification of J2EE Applications... 3-27

Understanding and Configuring OC4J Listeners ... 3-28
HTTP Requests.. 3-28
RMI Requests .. 3-29

Configuring Oracle HTTP Server With Another Web Context.. 3-29
Building and Deploying Within a Directory... 3-30

4 Data Sources Primer

Introduction ... 4-2
Definition of Data Sources.. 4-2
Retrieving a Connection From a Data Source ... 4-8

5 Servlet Primer

What Is a Servlet?.. 5-2
The Servlet Container... 5-2
Servlet Performance ... 5-3
v

Two Servlet Examples .. 5-3
The Hello World Servlet .. 5-4
The GetEmpInfo Servlet... 5-6

Session Tracking.. 5-13
Session Tracking Example ... 5-13

Servlet Filters ... 5-16
A Logging Filter .. 5-17

Learning More About Servlets ... 5-20

6 JSP Primer

A Brief Overview of JavaServer Pages Technology ... 6-2
What Is JavaServer Pages Technology?... 6-2
JSP Translation and Runtime Flow .. 6-3
Key JSP Advantages ... 6-4
JSP in Application Architecture.. 6-5

Running a Simple JSP Page .. 6-6
Create and Deploy the JSP... 6-6
Run welcomeuser.jsp ... 6-6

Running a JSP Page That Invokes a JavaBean .. 6-7
Create the JSP—usebean.jsp.. 6-8
Create the JavaBean—NameBean.java .. 6-9
Run usebean.jsp .. 6-10

Running a JSP Page That Uses Custom Tags... 6-11
Create the JSP Page—sqltagquery.jsp.. 6-11
Set Up Files for Tag Library Support .. 6-12
Run sqltagquery.jsp.. 6-13

Overview of Oracle Value-Added Features for JSP Pages .. 6-15

7 EJB Primer

Developing EJBs.. 7-2
Creating the Development Directory... 7-2
Implementing the Enterprise JavaBeans ... 7-3
Creating the Deployment Descriptor... 7-9
Archiving the EJB Application.. 7-10

Preparing the EJB Application for Assembly.. 7-11
vi

Modifying Application.XML .. 7-11
Creating the EAR File... 7-12

Deploying the Enterprise Application to OC4J .. 7-13

8 Security

Overview of Security Functions .. 8-2
Provider Types... 8-3

Using the JAZNUserManager Class .. 8-4
Using the XMLUserManager Class.. 8-5

Specifying Your User Manager .. 8-6
Specifying Users, Groups, and Roles ... 8-9

Shared Groups, Users, and Roles ... 8-9
Application-Specific Groups, Users, and Roles ... 8-10
Specifying Users and Groups in jazn-data.xml.. 8-12
Specifying Users and Groups in XMLUserManager... 8-13
Permissions.. 8-13

Authenticating HTTP Clients... 8-13
Authenticating EJB Clients ... 8-14

Setting JNDI Properties.. 8-14
Using the Initial Context Factory Classes ... 8-16

Authorization In J2EE Applications.. 8-17
Specifying Logical Roles in a J2EE Application ... 8-18
Mapping Logical Roles to Users and Groups... 8-19

Creating Your Own User Manager .. 8-21
Example of Customer User Manager With the DataSourceUserManager Class 8-23

9 Oracle9 iAS Clustering

About Oracle9iAS Clustering... 9-2
Scalability... 9-2
Availability .. 9-3
Manageability.. 9-4
Component Support... 9-5
Non-Managed Clustering.. 9-6

Architecture.. 9-8
Front-End Load Balancer... 9-9
vii

Metadata Repository in the Infrastructure.. 9-10
Farm.. 9-10
Cluster .. 9-10
Application Server Instance .. 9-11
Management Features .. 9-13
Component Instances... 9-15
J2EE Applications ... 9-21

Enterprise Manager Configuration Tree ... 9-22
Instance-Specific Parameters .. 9-23
Examples ... 9-24

Software Failure .. 9-24
Hardware Failure.. 9-25
State Replication.. 9-26

Cluster Configuration... 9-28
Managing an Oracle9iAS Cluster ... 9-28
Managing Application Server Instances in a Cluster .. 9-31
OC4J Instance Configuration .. 9-33
Configuring Single Sign-On .. 9-38
Configuring Instance-Specific Parameters .. 9-40

A DCM Command-Line Utility (dcmctl)

Overview... A-2
About dcmctl Commands and Options... A-3
Using dcmctl in a Clustered Environment.. A-5
Passing Parameters to the JVM... A-6

Starting and Stopping .. A-6
Managing Application Server Instances .. A-7
Managing Components.. A-8
Managing Clusters.. A-8
Deploying Applications ... A-10
Saving a Backup ... A-11
Using the dcmctl Shell .. A-12
Executing dcmctl from a Command File ... A-12
viii

B Additional Information

Description of XML File Contents... B-2
OC4J Configuration XML Files... B-2
J2EE Deployment XML Files... B-5

Elements in the server.xml File .. B-7
Configure OC4J... B-7
Reference Other Configuration Files ... B-8

Configuration and Deployment Examples .. B-15

C Third Party Licenses

Apache HTTP Server.. C-2
The Apache Software License... C-2

Apache JServ.. C-4
Apache JServ Public License ... C-4

Index
ix

x

Send Us Your Comments

Oracle9 iAS Containers for J2EE User’s Guide, Release 2 (9.0.2)

Part No. A95880-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail—jpgcomment_us@oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 4op9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This preface introduces you to the Oracle9iAS Containers for J2EE User’s Guide,

discussing the intended audience, structure, and conventions of this document. It

also provides a list of related Oracle documents.

Intended Audience
This manual is intended for anyone who is interested in using Oracle9iAS

Containers for J2EE (OC4J), assuming you have basic knowledge of the following:

■ Java and J2EE

■ XML

■ JDBC

Structure
The Oracle9iAS Containers for J2EE User’s Guide contains the following chapters and

appendices:

Chapter 1, "J2EE Overview"
This chapter describes OC4J primary features, an overview of J2EE APIs and OC4J

support, and tunneling and performance services provided by OC4J.

Chapter 2, "Configuration and Deployment"
This chapter discusses how to install OC4J, how to configure Pet Store, the popular

J2EE demo application from Sun Microsystems, and how to deploy a Web

application.
xiii

Chapter 3, "Advanced Configuration, Development, and Deployment"
This chapter covers advanced OC4J information. It includes an overview of OC4J

XML configuration files, how they relate to each other, what happens when you

deploy an application, some tips on manual XML configuration file editing for

applications, when OC4J automatic deployment for applications occurs, and

building and deploying within a directory.

Chapter 4, "Data Sources Primer"
This chapter documents how to use data sources and the JDBC driver.

Chapter 5, "Servlet Primer"
This chapter instructs how to create and use a servlet in OC4J.

Chapter 6, "JSP Primer"
This chapter instructs how to create and use a JSP page in OC4J.

Chapter 7, "EJB Primer"
This chapter instructs how to create and use an EJB in OC4J.

Chapter 8, "Security"
This chapter presents an overview of security features. It describes how to configure

authorization and authentication for security.

Chapter 9, "Oracle9iAS Clustering"

This chapter describes how to cluster application server instances, Oracle HTTP

Servers, and OC4J instances.

Chapter A, "DCM Command-Line Utility (dcmctl)"
This appendix describes the DCM command-line utility, which is used to bypass the

Oracle Enterprise Manager for application deployment, starting or stopping

application server instances, and other functions.

Chapter B, "Additional Information"
This appendix describes the elements of the server.xml file, OC4J command-line

tool options, and provides configuration and deployment examples.
xiv

Related Documents
For more information on OC4J, see the following documentation available from

other OC4J manuals:

■ OC4J Quick Reference Card

■ Oracle9iAS Containers for J2EE Services Guide

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

■ Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

The following documentation may also be helpful in understanding OC4J:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle HTTP Server Administration Guide

Conventions
In this manual, Windows refers to the Windows95, Windows98, and Windows NT

operating systems.

In examples, an implied carriage return occurs at the end of each line, unless

otherwise noted. You must press the Return key at the end of a line of input.

This manual also uses the following conventions:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted
xv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning
xvi

J2EE Ove
1

J2EE Overview

Oracle9iAS provides a complete set of Java 2 Enterprise Edition (J2EE) containers

written entirely in Java that execute on the Java virtual machine (JVM) of the

standard Java Development Kit (JDK). You can run Oracle9iAS Containers for J2EE

(OC4J) on the standard JDK that exists on your operating system. Refer to the

certification matrix on http://otn.oracle.com .

OC4J is J2EE compliant and provides all the containers that J2EE specifies. OC4J is

based on technology licensed from Ironflare Corporation, which develops the Orion

server—one of the leading J2EE containers. Although OC4J is integrated with the

Oracle9iAS infrastructure, the product and some of the documentation still contains

some reference to the Orion server.

This chapter includes the following topics:

■ OC4J Features

■ Overview of J2EE APIs and OC4J Support

In addition to the J2EE overview, the following OC4J services are highlighted.

■ Tunneling, Load Balancing, and Clustering Services Provided by OC4J

■ Java Plug-In Partners and Third Party Tools Support
rview 1-1

OC4J Features
OC4J Features
The features of OC4J are the following:

■ Set of Pure Java Containers and Runtime Executing on the JDK

■ J2EE Certified

Set of Pure Java Containers and Runtime Executing on the JDK
The J2EE containers are implemented completely in Java and have the following

capabilities:

1. Lightweight—It takes less than 25 MB of disk space after being unzipped.

2. Quick installation—The installation, which comes with a default configuration,

requires less than 5 minutes. It comes installed with the Oracle9iAS product.

3. Leverages the JDK JVM—OC4J is certified to run on JDK 1.3.x.x. It leverages the

performance enhancements and features of this JDK release for each operating

system and hardware platform.

4. Easy to use—It supports standard Java development and profiling tools.

5. It is available on all standard operating systems and hardware platforms,

including Solaris, HP-UX, AIX, Tru64, Windows NT, and Linux.

J2EE Certified
OC4J is J2EE compliant; therefore, it includes a JSP Translator, a Java servlet

container, and an Enterprise JavaBeans (EJB) container. It also supports the Java

Messaging Service (JMS), and several other Java specifications as Table 1–1 shows.

Table 1–1 Oracle9iAS J2EE Support

J2EE Standard Interfaces Version Supported

JavaServer Pages (JSP) 1.1

Servlets 2.3

Enterprise JavaBeans (EJB) 1.1 and part of 2.0

Java Transaction API (JTA) 1.0.1

Java Messaging Service (JMS) 1.0.1

Java Naming and Directory Interface (JNDI) 1.2

Java Mail 1.1.2
1-2 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
Overview of J2EE APIs and OC4J Support
OC4J supports and is certified for the standard J2EE APIs, as listed in Table 1–1,

which the following sections discuss:

■ Java Servlets

■ JavaServer Pages

■ Enterprise JavaBeans

■ Java Database Connectivity Services

■ Java Naming and Directory Interface

■ Java Transaction API

■ Java Messaging Service

■ JAAS Provider

■ Java Mail

■ JavaBeans Activation Framework

■ JAXP

■ JCA

Java Servlets
A Java servlet is a program that extends the functionality of a Web server. A servlet

receives a request from a client, dynamically generates the response (possibly

querying databases to fulfill the request), and sends the response containing an

HTML or XML document to the client. Servlets are similar to CGI but much easier

to write, because servlets use Java classes and streams. Servlets are faster to execute,

because servlets are compiled to Java Byte code. At run time, the servlet instance is

kept in memory, and each client request spawns a new thread.

Java Database Connectivity (JDBC) 2.0

JAAS 1.0

JCA 1.0

JAXP 1.0

Table 1–1 Oracle9iAS J2EE Support (Cont.)

J2EE Standard Interfaces Version Supported
J2EE Overview 1-3

Overview of J2EE APIs and OC4J Support
Servlets make it easy to generate data to an HTTP response stream in a dynamic

fashion. The issue facing servlets is that HTTP is a stateless protocol. That is, each

request is performed as a new connection, so flow control does not come naturally

between requests. Session tracking or session management maintains the state of

specific clients between requests.

OC4J Servlet Container
The OC4J servlet container provides the following support:

Support for Servlets The OC4J servlet container provides complete support for the

Servlet 2.3 specification, which is part of the J2EE 1.3 Specification.

100% Application Code Compatible with Tomcat The OC4J servlet container is 100%

application code compatible with the Tomcat servlet container delivered by the

Apache consortium. If you have used Apache and Tomcat to develop your

applications, then you can easily deploy them to the OC4J servlet container. A few

administrative changes, such as updating the application.xml file and

encapsulating the Web Application Archive (WAR) file in an EAR file, are required.

But, no changes to your code is necessary.

Features The following are features used within the OC4J servlet container:

■ Full WAR file-based Deployment—Servlets are packaged and deployed to J2EE

containers using a standard format called a Web Application aRchive (WAR)

file. OC4J offers:

■ A WAR file deployment tool that deploys the resulting WAR file to one or more

OC4J instances. The WAR deployment tool supports cluster deployment, which

enables an archive to be simultaneously deployed to all the OC4J instances

defined within a “cluster”.

■ Auto-Compile, Auto-Deployment of Servlets—OC4J provides automatic

compilation of servlets and automatic deployment where the server receives a

WAR archive. OC4J automatically decompresses the WAR archive and installs

the application. This shortens the develop, compile, deploy cycle of building

J2EE applications.

■ Stateful Failover and Cluster Deployment of Servlets—A cluster is a group of

OC4J servers that coordinate their actions to provide scalable, highly-available

services in a transparent manner. Servlets make use of the HTTP session object

to save their state between method requests, such as the contents of a Web

shopping cart or travel itinerary. OC4J supports an IP-multicast based

clustering mechanism that allows servlets to transparently—that is, without any
1-4 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
programmatic API changes—replicate servlet session state specifically HTTP

session objects to other OC4J instances.

■ Integration with Single Sign-On through mod_osso and JAAS support.

■ Integration with JAAS using either the Oracle Internet Directory or the XML

UserManager .

■ Integration with Oracle HTTP Server and mod_opmn, which provides

high-availability through instance restart and failover in the event of a JVM

failure.

See the Oracle9iAS Containers for J2EE Servlet Developer’s Guide for more information

on using and configuring servlets in OC4J.

JavaServer Pages
JavaServer Pages (JSP) are a text-based, presentation-centric way to develop servlets.

JSPs allow Web developers and designers to rapidly develop and easily maintain

information-rich, dynamic Web pages that leverage existing business systems. JSPs

enable a clean separation and assembly of presentation and content generation,

enabling Web designers to change the overall page layout without altering the

underlying dynamic content. JSPs use XML-like tags and scriptlets, written in the

Java programming language, to encapsulate the logic that generates the content for

the page. Additionally, the application logic can reside in server-based resources,

such as JavaBeans, that the page accesses with these tags and scriptlets. All

formatting (HTML or XML) tags are passed directly back to the response page. By

separating the page logic from its design and display, and supporting a reusable

component-based design, JSP technology is faster and easier when building

Web-based applications. A JSP page looks like a standard HTML or XML page with

additional elements that the JSP engine processes and strips out. Typically, the JSP

generates dynamic content, such as XML, HTML, and WML.

An application developer uses JavaServer Pages as follows:

1. JSP pages with embedded Java scriptlets and directives.

2. JSP pages with JavaBean classes to define Web templates for building a Web site

made up of pages with a similar look and feel. The JavaBean class renders the

data, which eliminates the need for Java code in your template. Ultimately, your

template can be maintained by an HTML editor.

3. JSP pages used by simple Web-based applications. Bind content to the

application logic using custom tags or scriptlets instead of a JavaBeans class.
J2EE Overview 1-5

Overview of J2EE APIs and OC4J Support
Features OC4J provides a JSP 1.1 compliant translator and runtime engine.

■ Full Support for JSP 1.1: The OC4J JSP Translator and runtime offers full

support for JSP 1.1, including support for all JSP Directives and all

core/standard JSP Tags.

■ Simple, Body, Parameterized, and Collaboration Tags: OC4J supports the

following:

– Simple JSP tags, where the body of the tag is evaluated only once.

– Body Tags, where the body of the tag may be evaluated multiple times (as

in an iterator loop).

– Parameterized Tags, where the Tag can accept and display parameters.

– Collaboration Tags, which are a special kind of Parameterized Tag, where

two tags are designed to collaborate on a task. For example, one Tag could

add a certain value to the page scope, and another Tag can then look for this

value for further processing.

■ JSP Caching Tags: Because JSPs are a dynamic Web page generation technology,

you can use caching to improve the performance and scalability of Web sites

that are built with JSPs. The Oracle JSP Translator provides standard syntax,

which allows a JSP developer to indicate whether a specific JSP tag is

cacheable—either in a shared Java cache (when additional XSL-T

transformations, for instance, may need to be applied) or in a Web cache (where

the final pages are cached for access from clients). By indicating at the tag level,

using standard JSP tag syntax, whether specific JSP tags are cacheable, OC4J

simplifies how caching can be used by application developers and also

improves the fine-granularity at which components of Web pages can be cached

(even if the entire page itself cannot be cached). Using the standard scripting

extensions, the cached JSP pages can not only be served from the Oracle9iAS

Web Cache, but also from Internet Content Delivery Networks, such as Akamai.

■ Mail, Search and other Tags: OC4J supplies some additional JSP Tag libraries to

send and receive e-mail, access files (including in the Oracle Internet File

System), embed XML result sets into JSP pages, and execute Web

searches/queries.

■ Full WAR file-based Deployment: OC4J also provides tools to perform the

following:

– Deploy WAR files, using a deployment tool, to one or more OC4J instances.

The WAR deployment tool also supports cluster deployment, enabling a
1-6 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
specific archive to be simultaneously deployed to all the OC4J instances

that are defined as a “cluster”.

– Support the use of SQLJ in JSPs. SQLJ provides a simple, more productive

means for embedding SQL code into Java than does the JDBC API.

See the Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference for more

information on using and configuring JSPs in OC4J.

Enterprise JavaBeans
Enterprise JavaBeans (EJB) are Java components that implement business logic. The

container interposes system services for the EJBs, so that the developer does not

have to worry about implementing such things as database access, transaction

support, security, caching, and concurrency. This functionality is the responsibility

of the EJB container.

An enterprise bean consists of interfaces and classes. Clients access enterprise bean

methods through the home and remote interfaces of the bean. The home interface

provides methods for creating, removing, and locating the enterprise bean, and the

remote interface provides the business methods. At deployment time, the container

creates classes from these interfaces that it uses to provide access to clients seeking

to create, remove, locate, and call business methods on the enterprise bean.

The types of enterprise beans are session beans, entity beans, and message driven

beans.

Session Beans
A session bean represents a transient conversation with a client and might execute

database reads and writes. A session bean might invoke JDBC calls, or it might use

an entity bean to make the call. In this case, the session bean is a client to the entity

bean. The fields of a session bean contain the state of the conversation and are

transient. If the server or client crashes, the session bean is lost. Session beans can be

stateful or stateless.

■ Stateless Session Beans: Stateless session beans do not have any state information

for a specific client. They typically provide server-side behavior that does not

maintain any particular state. Stateless session beans require fewer system

resources. A business object that provides a generic service is a good candidate

for a stateless session bean.

■ Stateful Session Beans: A stateful session bean contains conversational state on

behalf of the client. Therefore, there is one stateful session bean instance for

each client. The conversational state is the instance field values of the session
J2EE Overview 1-7

Overview of J2EE APIs and OC4J Support
bean, plus all objects reachable from the session bean's fields. Stateful session

beans do not represent data in a persistent data store, but they can access and

update data on behalf of the client.

Entity Beans
An entity bean is a business entity that represents data in a database, and the

methods to act on that data. Entity beans are transactional and long-lived: as long as

the data remains in the database, the entity bean exists. Entity beans can support

either Container-Managed or Bean-Managed Persistence.

■ Container Managed Persistence (CMP): With CMP, an application developer does

not need to programmatically map the entity bean to the persistent store,

because the EJB container transparently maps and manages the interaction with

the persistent store. As a result, an entity bean using CMP does not require the

developer to use JDBC 2.0 APIs for database access. Thus, CMP is simpler and

easier to use; however, it limits the application developer’s control of the

interaction between the application and the database.

■ Bean Managed Persistence (BMP): In contrast, BMP is used by developers who

want to control the way an enterprise bean stores and reads state from the

persistent store. BMP is more complex than CMP, because the application

developer implements the persistence methods. It uses the JDBC 2.0 API code

to handle loading and storing data and maintaining consistency between the

runtime and persistent database storage. You should use BMP when you want

control over how the persistent data is stored and when the data is backed up to

the persistence store. In addition, a BMP bean is easier to deploy as it does not

require any Object-Relational (O-R) mapping in the deployment descriptor.

Message-Driven Beans
OC4J supports Message-Driven Beans (MDB) that are a part of the EJB 2.0

specification. An MDB models a long-running process, invoked asynchronously.

The client posts a message to a JMS queue or topic. The message is captured by the

EJB container and routed to the intended MDB. At this point, the MDB can execute

the request or forward the request to another EJB.

OC4J EJB Support
OC4J provides an EJB container that provides the following:

■ Support for EJB 1.1 and 2.0: The OC4J EJB Container provides full support for

session beans, entity beans, and message-driven beans. In addition, it supports
1-8 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
Bean Managed Persistence (BMP), Container Managed Persistence (CMP), and

O-R mapping.

■ Container Managed Persistence (CMP) and Bean Managed Persistence (BMP)

Implementations: OC4J provides CMP and BMP for entity beans supporting

object-relational mapping (O-R). OC4J supports one-to-one and one-to-many

object-relational mappings. OC4J contains the following features:

■ Simple O-R Mapping: A facility to automatically map fields of an entity bean

to a corresponding database table. Additionally, users can specify O-R

mappings between EJBs. These mappings are only for simple, primitive,

and serializable objects.

■ Complex O-R Mappings: A common problem is the difficulty of mapping

anything, except for a simple bean with simple fields, to a database table

without writing custom code to do the mapping. OC4J includes an O-R

mapping system that allows complex object models to be mapped to

database tables. It allows practical object models to use CMP. Specifically, it

allows the following types of fields to be mapped within entity beans:

* simple objects and primitives—INT or CHAR

* objects—compound objects

* serializable objects—compound objects that can be serialized and

stored in BLOBs and CLOBs

* entity references—references to another entity bean

* collections

Further, it provides an isolation layer that captures the SQL that is

automatically code-generated, allowing the CMP facilities to target Oracle

and non-Oracle databases.

■ Toplink certification for CMP O-R mapping.

■ Dynamic EJB Stub Generation: An application developer does not need to

pre-compile EJB stubs using ejbc , rmic , or other such facilities into the client

application. Rather, the OC4J EJB container generates EJB stubs on demand as it

needs them. This makes application and system maintenance significantly

simpler than competitor products.

■ Full EAR File-Based Deployment: OC4J provides tools to do the following:

– Deploy the EAR file, using a deployment tool, to one or more OC4J

instances. This tool supports cluster deployment.
J2EE Overview 1-9

Overview of J2EE APIs and OC4J Support
■ Simplified and Automatic Deployment of EJB Applications: In J2EE

applications, there are two kinds of deployment descriptors, or

module-configuration files: the generic J2EE deployment files that all

application servers support and vendor-specific ones.

OC4J supports Application Server-specific deployment information in the

following ways:

■ Auto-Deployment: The Oracle-specific deployment information is

automatically generated when the EAR file is deployed on the server.

■ Simplified Configuration Customizing: Any Oracle-specific configuration

information can be customized by manually editing a set of XML

configuration files, which capture Application Server-specific deployment

and configuration information. These include settings for auto-create and

auto-delete tables for CMP, security role mappings, JNDI namespace access,

session persistence and time-out settings, transaction-retry settings, CMP

and O-R mappings, buffering, character sets, locales, virtual directories,

cluster configuration, session-tracking, and development and debugging

mode settings.

■ Hot Deployment: When an application developer changes an EJB module

that has already been deployed, the developer does not need to redeploy

the EJB or restart the server. The user edits the server.xml configuration

file. Afterward, the server reads the file and automatically picks up the

changes.

See the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference for more information on using and configuring EJBs in OC4J.

Java Database Connectivity Services
JDBC is essentially a portable bridge to relational databases. It is modeled on ODBC

(Open Database Connectivity) specification and is fairly simple and well

understood. It decouples the database from the program code through the use of

drivers. With Oracle9iAS, Oracle provides connectivity to both Oracle and

non-Oracle databases.

Specifically, it provides enhanced JDBC drivers to access Oracle8.0, Oracle8i, and

Oracle9i databases. Oracle has licensed the DataDirect Connect JDBC drivers to

access non-Oracle databases—specifically IBM DB/2 UDB, Microsoft SQL Server,

Informix, and Sybase databases. These drivers are available for download on:

http://otn.oracle.com .
1-10 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
See the Oracle9iAS Containers for J2EE Services Guide for more information on using

and configuring data sources in OC4J.

Oracle Database Access Through JDBC
Oracle9iAS offers two JDBC drivers to access Oracle databases from Java. These two

JDBC drivers are as follows:

■ Oracle Thin JDBC Driver: The Oracle Thin JDBC driver is a 2 MB pure Java (Type

4) JDBC driver that is implemented completely in Java and communicates with

the Oracle database using the Oracle Net Services protocol, which is also

implemented in Java. The Thin JDBC driver can be used during development

and testing. The pure Java call stack facilitates end-to-end debugging. The

driver can be downloaded with Java applets that are communicating directly

with an Oracle database. It is 100 percent compatible with the Oracle JDBC-OCI

driver; the only change necessary is the definition of the connect strings that are

used to connect to the Oracle database.

■ Oracle JDBC-OCI Driver: JDBC-OCI is a Type 2 JDBC driver, which

communicates with the Oracle database using the Oracle OCI library. This is the

default JDBC driver used to communicate from J2EE applications executing in

the Oracle9iAS middle-tier to the Oracle database. It does require installation of

the Oracle client libraries in the middle-tier.

Full JDBC 2.0 Support
The JDBC drivers comply fully with JDBC 2.0, including the following:

■ DataSource Support

■ JTA and XA Connection Support

■ Complete Data Type Support: Support for advanced data types, such as BLOBs;

CLOBs; character streams; abstract data types; collections; and, with the

Oracle9i Database Release 1, support for abstract data types with inheritance.

■ JDBC 2.0 Connection Pooling: Full support for the JDBC 2.0 Connection Pooling

facilities.

■ Advanced Features: Advanced features, such as support for Transparent

Application Failover (that allows the mid-tier to redirect connections to a

“failed-over” node when an Oracle database fails), scrollable result sets, batch

updates, Unicode support, and several other advanced capabilities.

■ Oracle Version Support: OC4J JDBC drivers are certified with Oracle8i and

Oracle9i Databases.
J2EE Overview 1-11

Overview of J2EE APIs and OC4J Support
Data Direct Connect JDBC Drivers
To access non-Oracle databases from the Oracle J2EE Container, Oracle certifies

Type 4 JDBC drivers from Data Direct Technologies, which is an Oracle Partner.

Data Direct Technologies provides JDBC drivers to access Informix, Sybase,

Microsoft SQL-Server, and IBM DB/2 Databases from Oracle9iAS.

SQLJ Support
OC4J also supports the SQLJ language for directly embedding SQL statements in

Java code. This is a simpler, more productive way of accessing the database from

Java than using JDBC.

Java Naming and Directory Interface
Java Naming and Directory Interface (JNDI) is the standard interface to naming and

directory services. J2EE applications use JNDI to find other distributed objects. The

JNDI Interface has two parts: an application-level interface that is used by

application programs to access naming and directory services, and a service

provider interface to attach a provider of naming and directory services.

OC4J provides a complete JNDI 1.2 implementation. Servlets and Enterprise

JavaBeans in OC4J access names using the standard JNDI programming interfaces.

The JNDI service provider in OC4J is implemented in an XML-based file system.

See the Oracle9iAS Containers for J2EE Services Guide for more information on using

JNDI in OC4J.

Java Transaction API
The JTA transaction model enables an application developer to specify—at

deployment time—relationships among methods that compose a single transaction.

All methods in one transaction are treated as a single unit. A transaction is a series of

steps that must all be either complete or backed out. For example, you might have a

series of methods in an enterprise bean that moves money from one account to

another—by debiting the first account and crediting the second account. The entire

operation should be treated as one unit—so that if there is a failure after the debit

and before the credit, the debit is rolled back.

You can specify transaction attributes for an application component during

assembly. This groups methods into transactions across application components.

You can easily change application components within a J2EE application and

re-assign the transaction attributes without changing code and recompiling.
1-12 Oracle9iAS Containers for J2EE User’s Guide

Overview of J2EE APIs and OC4J Support
The Java Transaction API (JTA) specification provides transactional support in J2EE

for EJB and JDBC 2.0. OC4J provides a complete implementation of the JTA 1.0.1

specification.

JTA allows programmatic transaction demarcation. This enables work that is

performed by distributed components to be bound by a global transaction. It is a

way of demarcating groups of operations as a single global transaction.

Additionally, you can allow the container to demarcate your transaction. You

specify how the container demarcates the transaction through the deployment

descriptors.

See the Oracle9iAS Containers for J2EE Services Guide for more information on using

JTA in OC4J.

Java Messaging Service
Java Messaging Service (JMS) is the J2EE mechanism to support the exchange of

messages between Java programs. This is how Java supports asynchronous

communication—where the sender and receiver do not need to be aware of each

other. Thus, each can operate independently. JMS supports two messaging models:

■ Point-to-Point: A message producer sends a message to a queue. A message

consumer can attach itself to a queue to listen for messages. When a message

arrives on the queue, the consumer removes it from the queue and responds to

it. Messages can be sent to just one queue and will be processed by just one

consumer. Consumers have the option to filter messages to specify the exact

message types they want.

■ Publish-and-Subscribe: Producers send messages to a topic, and all the

registered consumers for that topic retrieve those messages. In this case, many

consumers can receive the same message.

OC4J provides a complete implementation of the JMS 1.0 specification. OC4J

certifies other messaging systems. See the Oracle9iAS Containers for J2EE Services
Guide for more information on using JMS in OC4J.

JAAS Provider
You can configure application behavior, such as security and transaction

management, at deployment time on Web and enterprise bean components. This

feature decouples application logic from configuration settings that might vary with

assembly. The J2EE security model enables you to configure a Web or enterprise

bean component so that system resources are accessed only by authorized users.

For example, you can configure a Web component to prompt for a user name and
J2EE Overview 1-13

Tunneling, Load Balancing, and Clustering Services Provided by OC4J
password. An EJB component can be configured so that only persons in specific

groups can invoke certain methods. Alternatively, you might configure a servlet

component to have some of its methods accessible to everyone and a few methods

accessible to only certain privileged persons in an organization. You can configure

the same servlet component for another environment to have all methods available

to everyone, or all methods available to only a select few.

OC4J has a powerful Access Control List (ACL) mechanism that allows for

fine-grained control of the usage of components running on the server. You can

define what can or cannot be executed by which user or group of users right down

to the Java method level. This ACL mechanism covers anything that runs on OC4J

except EJBs. EJBs have their own access control mechanism defined in the EJB

specification.

Security realms allow the administrator to import information from existing

authorization or authentication systems into the ACL. You can import information

from the NT security system, from an LDAP system, from the UNIX password file,

or from the database. Oracle9iAS includes all the classes for the following:

■ Secure Sockets Layer (SSL) version 3

■ RSA Encryption

■ X.509 certificate support, version 3

■ JAAS

OC4J supports firewall tunneling, which is the ability to go through firewalls and

proxies using HTTP and HTTPS tunneling. See the Oracle9iAS Containers for J2EE
Services Guide for more information on security in OC4J.

Tunneling, Load Balancing, and Clustering Services Provided by OC4J
The other advantages, beyond J2EE support, that OC4J provides are the following:

■ RMI Tunneling Over HTTP

■ Load Balancing and Clustering

See the Oracle9iAS Containers for J2EE Services Guide for more information on RMI

and HTTP tunneling in OC4J. For more information on load balancing and

clustering in OC4J, see Chapter 9, "Oracle9iAS Clustering".
1-14 Oracle9iAS Containers for J2EE User’s Guide

Tunneling, Load Balancing, and Clustering Services Provided by OC4J
RMI Tunneling Over HTTP
Deployed J2EE applications are typically divided into the following tiers:

■ the Web server tier, where the HTTP listeners are deployed

■ the Web presentation tier, where the JSPs and servlets are deployed

■ the EJB tier, where the business logic, defined as EJBs, is deployed

Smaller Web sites combine these tiers into one physical middle-tier; larger Web sites

divide these tiers into two or three separate physical tiers for security, scalability,

and load balancing purposes. OC4J takes these architectural issues into

consideration and is designed to meet the following needs:

■ Oracle HTTP Server to JSP/Servlet Container Connectivity

■ JSP/Servlet-to-EJB and EJB-to-EJB Connectivity

■ HTTP and HTTP-S Tunneling

Oracle HTTP Server to JSP/Servlet Container Connectivity
The Oracle HTTP Server can use either the Apache JServ Protocol (AJP) or HTTP to

direct requests to the JSP/servlet container. As a result, you can place the Oracle

HTTP Server outside a firewall and direct requests to the OC4J servlet container

that exists behind the firewall.

JSP/Servlet-to-EJB and EJB-to-EJB Connectivity
Communication from the presentation tier to the business tier and between EJBs is

performed using standard RMI, which gives any client or Web tier program that is

accessing an EJB, direct access to the services in the EJB tier. These services include

JNDI for looking up and referencing EJBs, Java Messaging Service (JMS) for sending

and receiving asynchronous messages, and JDBC for relational database access.

HTTP and HTTP-S Tunneling
OC4J supports the ability to tunnel RMI over HTTP and HTTP-S protocols. You can

use RMI over HTTP/HTTP-S tunneling for Java-based clients when they must

communicate with OC4J over the HTTP protocol. Typically, HTTP tunneling

simulates a stateful socket connection between a Java client and OC4J and "tunnels"

this socket connection through an HTTP port in a security firewall. HTTP is a

stateless protocol, but OC4J provides tunneling functionality to make the

connection appear to be a stateful RMI connection. Under the HTTP protocol, a

client can make a request and accept a reply from a server. The server cannot
J2EE Overview 1-15

Tunneling, Load Balancing, and Clustering Services Provided by OC4J
voluntarily communicate with the client, and the protocol is stateless. This means

that a continuous two-way connection is not possible. The OC4J HTTP tunneling

simulates an RMI connection over the HTTP protocol, overcoming these limitations.

As a result, the different J2EE components in OC4J can be either deployed on a

single physical tier (typically to optimize performance) or on separate physical tiers

(for redundancy, such as connection rerouting for high availability).

Load Balancing and Clustering
OC4J supports clusters, which can be customized to the specific needs of the user.

The purpose of a cluster is to replicate the configuration and state of the individual

node to all nodes in the cluster. Thus, in case of a failover, the server state is

preserved. The state information is not saved to any persistent storage, but is saved

in memory.

OC4J supports load balancing. The purpose of load balancing is to manage

incoming calls among several OC4J servers.

You can receive failover for Java applications when there is a failure connecting to

one server.

■ Fault Tolerance: The ability of the server to redirect a client to another working

instance of the server in the event of a failure.

■ Load Balancing: A server can handle more load than its own ability by

distributing the request workload among multiple servers.

For more information on clusters, see Chapter 9, "Oracle9iAS Clustering".
1-16 Oracle9iAS Containers for J2EE User’s Guide

Java Plug-In Partners and Third Party Tools Support
Java Plug-In Partners and Third Party Tools Support
Many popular Java development tools and applications support OC4J either

through plug-ins or through built-in support. They are certified to work with OC4J

Check http://otn.oracle.com/products/ias/9iaspartners.html for

the latest updates. The products are as follows:

Actional Control Broker
Actional joins with Oracle to extend Oracle9iAS InterConnect beyond the Oracle

environment. It provides connectivity to disparate applications and

technologies—including SAP, PeopleSoft, FTP, CICS, JDE, and Siebel. The Actional

Control Broker was recently selected by eAI Journal as the 2001 Integration Product

of the Year. More information about Actional can be found at

http://www.actional.com .

Blaze Advisor
Blaze Advisor from HNC offers support for Oracle9iAS with QuickDeployer

wizards that generate and package up all the necessary files to deploy a

sophisticated rule service in a given environment. By integrating with Oracle9iAS,

HNC allows Advisor developers to deploy easily and quickly to this

high-performance, feature-rich environment. For more information, visit

http://www.blazesoft.com/ .

■ Actional Control Broker ■ Blaze Advisor

■ Borland JBuilder ■ Cacheon Business Service Center

■ Computer Associates Cool:Joe ■ Compuware OptimalJ

■ Documentum WDK ■ Empirix BeanTest

■ FatWire UpdateEngine ■ ILOG JRules

■ Macromedia UltraDev ■ Mercury Interactive LoadRunner

■ Neuvis NeuArchitect ■ Pramati Studio

■ Rational Rose ■ Sitraka JProbe

■ Sonic Software SonicMQ ■ Sun Forte

■ TogetherSoft ControlCenter ■ VMGear Optimizeit

■ WebGain Visual Cafe
J2EE Overview 1-17

Java Plug-In Partners and Third Party Tools Support
Borland JBuilder
Oracle9iAS Plug-in for Borland JBuilder allows Borland JBuilder developers to

create and distribute their applications with OC4J. For information and

documentation about both the Oracle9iAS Plug-in for Borland JBuilder and OC4J,

visit the Oracle Technology Network Web site at

http://otn.oracle.com/index.html . For product information and

documentation about Borland JBuilder, visit the Borland JBuilder Web site at

http://borland.com/jbuilder/ .

Cacheon Business Service Center
The Cacheon BSC Console provides Oracle9iAS implementations with command

and control capability for any production or development environment across

disparate application servers. With Oracle9iAS and the BSC console, systems

integrators can manage new customer applications from assembly, to integration, to

testing, to customization and execution. Go to http://www.cacheon.com/ for

more information.

Computer Associates Cool:Joe
Computer Associates has many products that support Oracle9iAS. These products

include Cool:Joe and Unicenter Management for Oracle9iAS. For more information

on products from CA that support Oracle, visit http://www.ca.com/ . To

download the Cool:Joe plug-in for Oracle9iAS, visit

http://esupport.ca.com/public/COOL/joe/downloads/joe-plugins.
asp .

Compuware OptimalJ
OptimalJ is an advanced development environment enabling the rapid design,

development, and deployment of J2EE applications to Oracle9iAS and other

application servers. OptimalJ generates complete, working applications directly

from a visual model, using sophisticated patterns to implement accepted best

practices for coding to the J2EE specs. Visit

http://www.compuware.com/products/optimalj/ for more information.

Documentum WDK
Documentum currently offers its Web Development Kit (WDK) version 4.2 on the

Oracle9iAS platform, running on OC4J. The WDK is included with each

Documentum Developer Studio license, which itself is included with each
1-18 Oracle9iAS Containers for J2EE User’s Guide

Java Plug-In Partners and Third Party Tools Support
Documentum 4i eBusiness Platform Edition. Documentum plans to offer a seamless

integration of the 4i eBusiness Platform with the Oracle9iAS platform, enabling

access to both the Documentum repository and WebCache. This integration enables

the development of applications that reliably support ever-increasing volumes of

personalized interactions, allowing customer Web sites to serve up dynamic,

trusted content that is relevant to each user. Documentum plans to offer a tight

integration of its eContent Services for Portals with the Oracle9iAS Portal. To learn

more about the Documentum content management solution, visit their web site at

http://www.documentum.com .

Empirix BeanTest
The Empirix portfolio of Web test and monitoring solutions provides organizations

with best-in-class products and services for testing business-critical Web

applications. For more information, visit http://www.empirix.com/ .

FatWire UpdateEngine
FatWire UpdateEngine runs as a servlet on Oracle9iAS, leveraging the power of the

application server for enterprise performance, personalization, and dynamic

delivery. As a database-centric content management system, UpdateEngine

provides a critical link between the database and the application server as a store

for enterprise content management and delivery. Because of its 100 percent Java

design, integration of this content into Web pages, applications, and other databases

is easy. For more information, visit http://www.fatwire.com/ .

ILOG JRules
ILOG JRules enables OC4J customers to embed advanced business rules through a

dynamic Java rules engine. This allows users to implement business rules using the

definition of the syntax and vocabulary of the business language. For more

information on how ILOG JRules work, visit the ILOG Web site at

http://www.ilog.com/products/rules/engines/jrules31 .

Macromedia UltraDev
Macromedia UltraDev is a development environment for building Web

applications. It supports Web page layout design and dynamic content generation.

Developers can create dynamic Web pages with JSP as the standard J2EE

mechanism for building those pages. In addition, developers can extend

Macromedia UltraDev to take advantage of server-specific features and behavior,
J2EE Overview 1-19

Java Plug-In Partners and Third Party Tools Support
and to create customized menus and commands. One example of server-specific

behavior is to support using the Oracle JSP tag libraries. Oracle9iAS Extensions for

Macromedia UltraDev is a tag library extension generator. This extension generator

uses standard tag library descriptor files as input to generate Macromedia UltraDev

ServerBehavior extension files. Macromedia Extension Manager packages and

installs these ServerBehavior extension files to enable support for Oracle-specific tag

libraries.

Mercury Interactive LoadRunner
Mercury Interactive LoadRunner is a load testing tool used by many organizations

to predict the system behavior and performance of their applications. LoadRunner

has specific performance monitors for monitoring applications running on

Oracle9iAS. These monitors interface with Oracle9iAS DMS (Dynamic Monitoring

Service) to provide accurate and comprehensive metrics, with little or no additional

overhead. For more information about Mercury Interactive LoadRunner, visit

http://www-svca.mercuryinteractive.com/products/loadrunner/ .

Neuvis NeuArchitect
NeuArchitect is an integrated visual modeling and automated construction system

that enables organizations to rapidly design and construct all aspects of an

enterprise-class e-business application with exceptional speed, quality, and

flexibility. NeuArchitect-based applications are highly portable across the leading

deployment technologies, including Oracle9iAS, providing customers with

unparalleled protection against technology obsolescence. To know more about

NeuArchitect, go to http://www.neuvis.com/ .

Pramati Studio
Pramati Studio is an IDE that provides full life cycle support for developing

applications for any J2EE deployment platform. Pramati Studio is packed with

features that are offered only on Enterprise versions of most IDEs. Integration with

Oracle9iAS is built in to Pramati Studio. A migration tool enables the re-use of

codebase across multiple application servers. For more information, please visit

http://www.pramati.com/ .

Rational Rose
Rational Rose is an integrated software modeling and development environment.

Rational Rose uses the Unified Modeling Language (UML) and visual models to
1-20 Oracle9iAS Containers for J2EE User’s Guide

Java Plug-In Partners and Third Party Tools Support
represent structures and relationships for software systems and business processes,

and to represent programming logic for software designs. Oracle9iAS Plug-in for

Rational Rose enables developers to create and distribute their applications with

OC4J. Using this plug-in, developers can create applications with Rational Rose and

then deploy those applications to OC4J servers. For more information, see OTN and

http://www.rational.com/rose .

Sitraka JProbe
Integrated with OC4J, JProbe offers superior server-side tuning capabilities. JProbe

3.0 allows developers to profile servlets, JSPs, and EJBs running within OC4J for

problem detection. OC4J with the Sitraka integrated suite of JProbe

products—including JProbe Profiler and Memory Debugger, JProbe Threadalyzer,

and JProbe Coverage—ensures the most efficient and reliable Java applications for

mission critical environments. Performance, scalability, and reliability are a

necessity for enterprise applications. For support information on JProbe on OC4J,

please see the JProbe Integration Portal for J2EE at

http://www.sitraka.com/software/support/jprobe/j2ee/oracle.html .

Sonic Software SonicMQ
SonicMQ is one of the leading messaging servers in the market. In addition to the

Oracle JMS transports of Oracle9iAS, both volatile and non-volatile, applications

developed on Oracle9iAS can also choose to use SonicMQ as the transport for JMS

messaging. For more information on SonicMQ, visit the Sonic Software Web site at

http://www.sonicsoftware.com/products/product_line.htm .

Sun Forte
Oracle9iAS Plug-in for Sun Forte for Java allows Forte developers to create and

deploy their J2EE applications on OC4J. For the latest update on the Oracle9iAS

Plug-in for Sun Forte for Java, visit the Oracle Technology Network Web site at

http://otn.oracle.com/index.html . For product information and

documentation about Sun Forte for Java, visit the Sun web site at

http://www.sun.com/forte/ .

TogetherSoft ControlCenter
TogetherSoft ControlCenter enables teams of business analysts, software architects

and developers to deliver high quality Oracle9iAS applications in shorter

timeframes. ControlCenter's integrated development platform contains J2EE
J2EE Overview 1-21

Java Plug-In Partners and Third Party Tools Support
patterns from Sun Microsystems and LiveSource from TogetherSoft to automate the

deployment of EARs to OC4J. Therefore, companies can combine the performance

of their Java applications running on OC4J with the faster time to deployment of

ControlCenter. Successful companies and developers can be sure of deployment

and performance of any J2EE application with the certified combination of

Oracle9iAS and TogetherSoft ControlCenter. To download the latest Together

ControlCenter Plug-in, visit the Oracle Technology Network Web site at

http://otn.oracle.com/index.html . To learn more about ControlCenter, go

to the TogetherSoft Web site at http://www.togethersoft.com/ .

VMGear Optimizeit
The Optimizeit tools enable you to pinpoint performance and reliability issues early

in the development process, while keeping your code base developed on

Oracle9iAS fast and reliable each step of the way. For more information, go to

http://www.vmgear.com/ .

WebGain Visual Cafe
Oracle9iAS Plug-in for WebGain Visual Cafe allows WebGain Visual Cafe

developers to create and distribute their applications with OC4J. OC4J contains its

own Web server. For information and documentation about both the Oracle9iAS

Plug-in for WebGain Visual Cafe and OC4J, visit the Oracle Technology Network

Web site at http://otn.oracle.com/index.html . For product information

and documentation about WebGain Visual Cafe, visit the WebGain Web site at

http://webgain.com/products/visual_cafe/ .
1-22 Oracle9iAS Containers for J2EE User’s Guide

Configuration and Deploy
2

Configuration and Deployment

This chapter demonstrates how to configure and execute OC4J as simply and

quickly as possible. You installed OC4J with the Oracle9iAS installation.

Within OC4J, you can execute servlets, JSP pages, EJBs, and SQLJ. As an example of

deploying an application to OC4J, this chapter describes how to configure the

familiar Pet Store demo.

This chapter includes the following topics:

■ OC4J Installation

■ Using OC4J in an Enterprise or Standalone Environment

■ OC4J Communication

■ Starting and Stopping the Oracle Enterprise Manager Web Site

■ Creating or Deleting an OC4J Instance

■ OC4J Home Page

■ Starting and Stopping OC4J

■ Creating the Development Directory

■ Configuring the Pet Store Web Application Demo

■ Deploying Applications

■ Undeploying Web Applications
ment 2-1

OC4J Installation
OC4J Installation
OC4J is a lightweight container that is J2EE-compliant. It is configured with

powerful and practical defaults and is ready to execute after installation. OC4J is

installed with Oracle9iAS; therefore, see the Oracle9i Application Server Installation
Guide for details on OC4J installation.

Using OC4J in an Enterprise or Standalone Environment
OC4J is installed within Oracle9iAS with the goal of managing J2EE enterprise

systems. Oracle9iAS can manage multiple clustered OC4J processes. Oracle9iAS,

which includes OC4J, is managed and configured through the Oracle Enterprise

Manager, which can manage and configure your OC4J processes across multiple

application server instances and hosts. Thus, you cannot locally manage your OC4J

process using the admin.jar tool or by hand editing a single OC4J process’

configuration files. This undermines the enterprise management provided by the

Enterprise Manager.

You can still execute OC4J as you have in the past. For those who want a single

OC4J instance for development environments or simple business needs, you can

download OC4J in standalone mode—complete with documentation.

This following sections discusses both management options in the following

sections:

■ Managing Multiple OC4J Instances in an Enterprise Environment

■ Managing a Single OC4J Instance

Also, the following section describes how to understand the OC4J documentation

set:

■ OC4J Documentation Set Assumptions
2-2 Oracle9iAS Containers for J2EE User’s Guide

Using OC4J in an Enterprise or Standalone Environment
Managing Multiple OC4J Instances in an Enterprise Environment
You manage Oracle9iAS, including OC4J, using Enterprise Manager within an

enterprise system. This includes clustering, high availability, load balancing, and

failover.

You configure each OC4J instance and its properties—within the context of an

application server instance—using Enterprise Manager. After configuration, you

start, manage, and control all OC4J instances through Enterprise Manager. You can

group several OC4J processes in a cluster. You must use either the Enterprise

Manager management tool or its command-line tools for starting, stopping,

restarting, configuring, and deploying applications.

This book discusses how to start, stop, manage, and configure OC4J in an enterprise

environment.

Managing a Single OC4J Instance
You can still use a single OC4J—outside of the Oracle9iAS environment. After

downloading OC4J in oc4j_extended.zip from OTN, you can start, manage,

and control all OC4J instances through oc4j.jar and the admin.jar
command-line tool. You configure either through the admin.jar command or by

modifying the XML files by hand.

Note: You cannot use the OC4J standalone

tool—admin.jar —for managing OC4J instances created in an

application server instance.

You can modify the XML files locally. If you do so, you must notify

Enterprise Manager that these files have been hand edited through

the Distributed Configuration Managment (DCM) component

tool—dcmctl . The following is the command that you execute

after hand editing an XML file:

dcmctl updateconfig -ct oc4j

DCM controls and manages configuration for Oracle9iAS instances

and its Oracle HTTP Server and OC4J components. For more

information on DCM, see Appendix A, "DCM Command-Line

Utility (dcmctl)".
Configuration and Deployment 2-3

Using OC4J in an Enterprise or Standalone Environment
Any standalone OC4J process is not managed by Enterprise Manager and cannot be

used within an Oracle9iAS enterprise environment. Typically, you would use

standalone for development or for a simple single OC4J instance Web solution.

Download the OC4J Standalone User’s Guide for information on how to start, stop,

configure, and manage your standalone process.

OC4J Documentation Set Assumptions
Aside from this book, the rest of the OC4J documentation set was written with a

standalone mindset. These other books may refer to modifying XML files by hand

and to using admin.jar for managing the instance. This book provides a good

overview and familiarization of the Enterprise Manager configuration pages. It also

guides you to understand the relationship of each Enterprise Manager page to its

XML counterpart. Use the familiarity of the Enterprise Manager when reading the

other OC4J books. You should be able to look at an XML representation and match

it to the relevant Enterprise Manager field names.

Also, the Distributed Configuration Management (DCM) utility, dcmctl, provides

a command-line alternative to using Enterprise Manager for some management

tasks. The dcmctl tool uses the same distributed architecture and synchronization

features as Enterprise Manager, thereby providing identical functionality in a

format that is ideal for scripting and automation.

The following functions can be managed through DCM:

■ administration

■ managing application server instances

■ managing components

■ managing clusters

■ deploying applications

For other DCM commands that relate to OC4J, see Appendix A, "DCM

Command-Line Utility (dcmctl)".
2-4 Oracle9iAS Containers for J2EE User’s Guide

OC4J Communication
OC4J Communication
For HTTP applications, OC4J is preconfigured to execute behind the Oracle HTTP

Server (OHS). You use the Oracle HTTP Server as a front-end listener and OC4J as

the back-end J2EE application server.

However, for RMI-based applications—such as EJB and JMS—clients should send

their requests directly to OC4J. See "Understanding and Configuring OC4J

Listeners" on page 3-28 for directions.

HTTP Communication
For all incoming HTTP communication within the application server environment,

you use the OHS as a front-end listener and OC4J as the back-end J2EE application

server. Figure 2–1 illustrates this as follows:

1. A browser accesses the OHS listener for all HTTP requests. The Oracle HTTP

Server is an Apache server. The default port number is 7777.

2. OHS, through the mod_oc4j module, passes the request to the OC4J server.

The connection between the OHS and OC4J uses the Apache JServ Protocol

(AJP) on a port number negotiated during OC4J startup. AJP is faster than

HTTP, through the use of binary formats and efficient processing of message

headers.

Figure 2–1 HTTP Application Listener

The mod_oc4j module is preconfigured to direct all incoming HTTP requests

under the j2ee/ Web context to OC4J. This is to separate incoming requests for

JServ from those directed to OC4J. Thus, if you want to use the default routing, you

can deploy your Web application into a servlet context that includes as its prefix

j2ee/ . However, any URL mapping you provide in the deployment wizard is

automatically added to the mod_oc4j module. See "Configuring Oracle HTTP

Server With Another Web Context" on page 3-29 for information on what is added

to mod_oc4j for you during deployment. For additional information on the

mod_oc4j module, see the Oracle HTTP Server Administration Guide.

Web OC4JHTTP AJP 1.3

or HTTPS J2EE applications

Oracle HTTP
Server

mod_oc4j
browser
Configuration and Deployment 2-5

Starting and Stopping the Oracle Enterprise Manager Web Site
Requirements
For optimum performance, run OC4J with the JDK that is installed with Oracle9iAS

Release 2, which is JDK 1.3.x.

It is not necessary to add anything to your CLASSPATH to run OC4J, because it

loads the Java JAR and class files directly from the installation directory, from the

lib / subdirectory, and from the deployed application EAR files.

Starting and Stopping the Oracle Enterprise Manager Web Site
To use the Oracle Enterprise Manager Home Pages, you must start the Oracle

Enterprise Manager Web site. The Web site is automatically started after you install

the application server. You must start it manually after each system reboot, or create

a script to automatically start it during system boot.

If you need to start or stop the Management Server, use the commands shown in

Table 2–1.

The emctl command is available in the ORACLE_HOME/bin directory after you

install Oracle9iAS.

Notes: In Oracle9iAS version 1.0.2.2, the default OC4J Web site

did not use the Oracle HTTP Server as a front-end, and it listened

using the HTTP protocol on port 8888.

Table 2–1 Starting and Stopping Enterprise Manager

If you want to... Enter the command...

Start the Enterprise Manager Web Site emctl start

Stop the Enterprise Manager Web Site emctl stop

Verify the status of the Enterprise Manager Web Site emctl status

Note: If you have more than one Oracle home installed on your

host computer, the Oracle home you installed first contains the

active Oracle Enterprise Manager. The emctl command associated

with the first Oracle home starts and stops the Web site on this host.

To locate the active Oracle Enterprise Manager, view the contents of

the file /var/opt/oracle/emtab .
2-6 Oracle9iAS Containers for J2EE User’s Guide

Creating or Deleting an OC4J Instance
You can also verify the Enterprise Manager Web Site is started by pointing your

browser to the Web site URL. For example:

http://hostname:1810

Creating or Deleting an OC4J Instance
A default OC4J instance is installed with the name of OC4J_home. You can create

additional instances, each with a unique name within this application server

instance.

To create a new OC4J instance, do the following:

1. Navigate to the application server instance where you want the new OC4J

instance to reside.

2. Click Create OC4J Instance. This brings up a page that requests a name for the

new instance. Provide a name in the field.

3. Click Create.

A new OC4J instance is created with the name you provided. This OC4J instance

shows up on the application server instance page in the Component section.

To delete an OC4J instance, select the radio button next to the OC4J instance you

wish to delete, then click Delete.
Configuration and Deployment 2-7

OC4J Home Page
OC4J Home Page
Most of the configuration and management of your OC4J instance occurs off its

OC4J Home Page. When you create an OC4J instance off of the Oracle9iAS Instance

Home Page, it creates an OC4J Home Page for configuration and management of

your OC4J instance. Each OC4J instance has its own OC4J Home Page.

To navigate to an OC4J Home Page, do the following:

1. Navigate to the application server instance where the OC4J instance resides.

2. Select the OC4J instance by clicking on its name. This brings up the OC4J Home

Page for that OC4J instance.

The OC4J Home Page consists of the following three sections:

■ General and Status

■ Deployed Applications

■ Administration

To navigate to the OC4J instance home page, start Enterprise Manager and navigate

to the application server instance page. From this page, select any configured OC4J

instance or create a new instance.

General and Status
Figure 2–2 shows the General and Status sections of the OC4J Home Page. In this

section, you can view metrics on your OC4J instance and its applications. In

addition, you can start, stop, and restart all OC4J processes configured to this

instance.
2-8 Oracle9iAS Containers for J2EE User’s Guide

OC4J Home Page
Figure 2–2 OC4J General Information

Deployed Applications
Figure 2–3 shows the Deployed Applications section. In this section, you can deploy

applications using the Deploy EAR file or Deploy WAR file buttons. After

deployment, you can modify configuration for each application. See "Configuring

the Pet Store Web Application Demo" on page 2-14 or "Deploying Applications" on

page 2-20 for more information.
Configuration and Deployment 2-9

OC4J Home Page
Figure 2–3 Deployed Applications

Administration
Figure 2–4 shows the Administration section. This section enables you to modify

the global configuration values. This includes configuration of OC4J services, such

as RMI, JMS, and Web sites. In addition, you can configure data sources and

security values that can be used by all deployed applications in this OC4J instance.
2-10 Oracle9iAS Containers for J2EE User’s Guide

Starting and Stopping OC4J
Figure 2–4 Administration Section

Starting and Stopping OC4J
OC4J is installed with a default configuration that includes a default Web site and a

default application. Therefore, you can start OC4J immediately without any

additional configuration.

From the Oracle Enterprise Manager Web site, you can start, stop, and restart OC4J

on one of two pages:

■ Drill down to the Oracle9iAS Instance Home Page, start the entire Oracle9iAS

instance, which includes any configured OC4J instances, by clicking the Start
All button in the General section. In addition, Stop All and Restart All buttons

are included for these purposes.

■ Drill down to the Oracle9iAS Instance Home Page, start a specific OC4J instance

by selecting the radio button next to the OC4J instance. Click the Start button.

Click Stop, Restart, or Delete to stop, restart, or delete the specified OC4J

instance.

■ From the Oracle9iAS Instance Home Page, drill down to the OC4J Home Page.

Click the Start button in the General Information section on this page. In

addition, Stop and Restart buttons are included for these purposes. Figure 2–2

displays the General Information section of the OC4J Home Page.

OC4J automatically detects changes made to deployed applications and reloads

these applications automatically. Therefore, you do not need to restart the server

when redeploying an application. However, you may have to restart OC4J if you

modify fields in the RMI, data sources, or security configuration.
Configuration and Deployment 2-11

Starting and Stopping OC4J
You can also start, stop, and restart using the DCM control command. See

Appendix A, "DCM Command-Line Utility (dcmctl)" for directions.

Testing the Default Configuration
Start OC4J with the defaults through Enterprise Manager as follows:

1. From the Oracle9iAS Instance Page, start either the whole Oracle9iAS instance

or—at least—the Oracle HTTP Server and OC4J components. To start, click the

Start All button for the Oracle9iAS instance or select the components and click

the Start button.

2. Test OC4J by specifying the following from a Web browser:

http://<ohs_host>:7777/j2ee

Substitute the name of the host where the OHS is installed for <ohs_host> .

This command displays index.html .

3. Test a servlet deployed in OC4J during installation by specifying the following

in a Web browser:

http://<ohs_host>:7777/j2ee/servlet/HelloWorldServlet

This command returns a "Hello World " page. The HelloWorldServlet is

automatically deployed with the OC4J installation.

Note: The examples and URLs in this guide use port 7777, which

is the default port for the OHS Web listener. If you change the

default port number of the OHS, then specify the new port number

after the hostname, as follows:

http://<ohs_host>:<ohs_port>/j2ee/
2-12 Oracle9iAS Containers for J2EE User’s Guide

Creating the Development Directory
Creating the Development Directory
When developing your application, Oracle recommends that you use consistent and

meaningful naming conventions. As an example, you could develop your

application as modules within a directory named after your application. All the

subdirectories under this directory could be consistent with the structure for

creating JAR, WAR, and EAR archives. Thus, when you have to archive the source,

it is already in the required archive format. Figure 2–5 demonstrates this structure.

Figure 2–5 Development Application Directory Structure

Consider the following points regarding Figure 2–5:

■ You cannot change the following directory names and XML filenames:

META-INF, WEB-INF, application.xml , ejb-jar.xml , web.xml , and

application-client.xml .

■ Separate directories clearly distinguish modules of the enterprise Java

application from each other. The application.xml file, which acts as the

manifest file, defines these modules.

<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

Configuration and Deployment 2-13

Configuring the Pet Store Web Application Demo
■ The directories containing the separate modules (<ejb_module> ,

<web_module> , and <client_module>) can have arbitrary names. However,

these names must match the values in the manifest file—the local

application.xml file.

■ The top of the module represents the start of a search path for classes. As a

result, classes belonging to packages are expected to be located in a nested

directory structure beneath this point. For example, a reference to an EJB

package class ’myapp.ejb.Demo’ is expected to be located in

<appname>/<ejb_module>/myapp/ejb/Demo.class .

Configuring the Pet Store Web Application Demo
This section describes how to configure and deploy Pet Store, which is a J2EE demo

application from Sun Microsystems. All OC4J server configuration and

modifications to the Pet Store application configuration have been performed for

you. You can execute the Pet Store demo with minimal effort to see how OC4J

works.

Downloading An OC4J-Ready Pet Store Demo
Download the Pet Store application from OTN at

http://otn.oracle.com/sample_code/tech/java/oc4j/content.html in the

jps112.zip file, which downloads version 1.1.2 of the Pet Store demo. This ZIP

file contains an annotated version of this application, along with preconfigured

OC4J XML files.

You must have a working Oracle database and an OC4J installation. You should use

this installation for demonstration purposes only and not in a production

environment. In this simplified version, we have pre-built the Pet Store demo using

the Oracle database (instead of the default Cloudscape) and edited the

configuration files to make the setup easy.

1. Download the Pet Store application in jps112.zip from OTN at

http://otn.oracle.com/sample_code/tech/java/oc4j/content.html . This

ZIP file contains an annotated version of this application, along with

preconfigured OC4J XML files.

2. Unzip the jps112.zip file, which contains the following:

Note: Displays of the screens for each step of the deployment

wizard are shown in "Deploying Applications" on page 2-20.
2-14 Oracle9iAS Containers for J2EE User’s Guide

Configuring the Pet Store Web Application Demo
a. steps.html —Steps on how to deploy the Pet store demo in standalone

mode. This HTML file does not contain directions on how to deploy using

the Oracle Enterprise Manager. The steps in this manual instruct you on

how to deploy using Enterprise Manager.

b. petstore.ear —The Pet Store demo is contained in petstore.ear .

c. config.zip —OC4J server XML configuration files are provided for you

in config.zip file.

3. Unzip the config.zip file to retrieve the server.xml ,

default-web-site.xml , and data-sources.xml files.

4. Edit the data-sources.xml to point to your database by replacing the host,

port, and sid in the url attribute for the database in this file, as follows:

url="jdbc:oracle:thin:@<host>:<port>:<sid>"

5. Create in your database the user estoreuser , and grant this user privileges to

connect as SYSDBA to your database. You can create the user and grant

privileges through the following command:

SQL> grant connect, resource to estoreuser identified by estore;

6. Navigate to the OC4J Home Page on the Oracle Enterprise Manager Web site.

7. Select default under the Default Application section. The default application is

the automatic parent of each application and it holds global configuration for all

deployed applications, such as the data sources used. You are going to add the

data sources that Petstore uses in the default application.

8. Add data sources. On the default application screen, scroll down to the

Administration section and select Advanced Properties from the Properties

column.

Since the data sources are provided in a data-sources.xml file, add these

data sources using the XML editor within Enterprise Manager. Select

data-sources.xml in the filename column. This brings up a screen with

XML in a text window. Merge in the data sources from the

data-sources.xml that was provided within the config.zip of the

Petstore download into this window. Do not overwrite other data sources

already configured in this file. When finished, click the Apply button.
Configuration and Deployment 2-15

Configuring the Pet Store Web Application Demo
9. Return to the OC4J Home Page and scroll to the Applications section. Click on

the Deploy EAR File button. This starts the application deployment wizard.

10. Read the Introduction to the deployment wizard. Click the Next button.

11. Provide the EAR file and the name of your application in the Select Application

page. Click the Browse button to find the petstore.ear file that you

downloaded to your system. Type "petstore " in the application name field.

Click the Next button.

12. Provide the URL mappings for the servlet context on all Web modules in the

Petstore application. The Petstore demo contains a single Web module, which

should be mapped to the /estore servlet context. Type "/estore " in the URL

mapping field and click the Next button.

13. At this point, the Petstore demo does not need any additional configuration

through the wizard. You can jump to the Summary page by clicking Finish.

14. Read the summary of the Petstore application deployment. Click the Deploy
button to complete the application deployment.

15. On the OC4J Home Page, select "petstore " in the Name column of the

Applications section. This shows the configuration and all deployed modules of

the Petstore demo application. If the OC4J server is started, the application is

automatically started.

16. Execute the Pet Store application in your browser by accessing the OHS, where

the default port is 7777.

http://<ohs_host>:<ohs_port>/estore

The Pet Store splash screen appears. Follow the instructions provided by the Pet

Store application to load the Java Pet Store database tables.

Note: Because you were provided the data-sources.xml file,

you can add/modify this file directly through Advanced

Properties. If you do not have the XML file, you can add the

configuration details through the Data Sources option under the

Resources column.
2-16 Oracle9iAS Containers for J2EE User’s Guide

Configuring the Pet Store Web Application Demo
Explanation of the Changes to the Pet Store Demo
You may be curious as to what is the difference between the 1.1.2 Pet Store demo

available off of the Sun Microsystems site and the modified one we have provided.

This section will discuss the modifications we made.

Although the development of J2EE applications is standardized and portable, the

XML configuration files are not. You may have to configure multiple XML files

before deploying any application to OC4J. The configuration necessary depends on

the services that your application uses. For example, if your application uses a

database, you must configure its DataSource object.

For basic applications, such as Pet Store, you normally deploy the application using

the wizard and configure any DataSource necessary for this application. Before

deployment, you must create a manifest for the application within the

application.xml file. This can be included in addition to or in replacement of a

MANIFEST.MF file. This file must be properly configured and included within the

J2EE EAR file that is to be deployed.

Simple applications—including the Pet Store application—require the following

basic steps:

 Basic Step Pet Store Step Description Pet Store
 Step(s)

1. Create or obtain the
application.

Create the J2EE application or obtain it
from another party.

 1

2. Make any necessary server
environment changes.

Set the JAVA_HOME variable. 2

3. Modify any application XML
configuration files.

The Pet Store application should have
the appropriate header in the web.xml
configuration file.

 4

4. Update the application
manifest file.

Place the application.xml file in the
appropriate directory.

 5

5. Build an EAR file including the
application—if one does not
already exist.

Use ANT to build an EAR file. 6

6. Deploy application EAR file. On the OC4J Home Page of Enterprise
Manager, clicking the Deploy EAR File
button starts a deployment wizard.

 7

7. Configure the database used. Add the data source to either the global
 or local data source configuration.

 8
Configuration and Deployment 2-17

Configuring the Pet Store Web Application Demo
The following steps describe what modifications to make to deploy the Pet Store

application into OC4J.

1. We asked you to download the Pet Store demo from the Oracle OTN site. You

could download it from the Sun Microsystems site and make these

modifications yourself.

2. Make any necessary server environment changes. You must set the JAVA_HOME
variable to the base directory of the Java 2 SDK.

3. Modify the errorpage.jsp to import the appropriate IO package. Add <%@
page import ="java.io.*" isErrorPage="true" %> to the

jps 1.1.2 /src/petstore/src/docroot/errorpage.jsp file.

This command prevents the Pet Store error page from throwing a

"PrintWriter class not found exception" .

4. Modify any deployment descriptors in the application as necessary.

a. Modify the web.xml configuration file to contain the correct header. In

jps1.1.2/src/petstore/src/docroot/WEB-INF/web.xml , replace

"Java 2 Enterprise Edition Reference Implementation" with

"Oracle9iAS Containers for J2EE ".

This step, which is optional, updates the application server type of OC4J.

b. Change the database type in the EJB deployment descriptor provided with

the Pet Store application. This step enables data-access objects to work with

an Oracle database instead of a Cloudscape database, which is the

configured database type in the Pet Store application.

In jps1.1.2/src/components/customer/src/customer_ejb.xml ,

replace OrderDAOCS with OrderDAOOracle .

5. Update the application manifest file. For the Pet Store application, you must

create an application.xml to act as the manifest file for the Pet Store demo

and place it into the jps1.1.2/src/petstore/src/ directory. OC4J uses

the application.xml file as the manifest file. See the application.xml file

that was downloaded in the jps112.zip from OTN.

6. Build an EAR file including the application. After modifying the key XML files

within this application, rebuild the Pet Store application to integrate these

configuration changes.

a. Modify the contents of /src/petstore/src/build.xml to build the

EAR file with the OC4J modifications.

b. Execute jps1.1.2/src/petstore/src/build.bat in a DOS shell.
2-18 Oracle9iAS Containers for J2EE User’s Guide

Configuring the Pet Store Web Application Demo
You can also double-click on the build.bat file in Windows Explorer to

execute this file. The build.bat file uses ANT. To learn more about the

ANT file, go to the following Jakarta site:

http://jakarta.apache.org/ant/

7. Configure an Oracle database in the OC4J DataSource definition.

a. Copy the data source object definition from the data-sources.xml
file contained in the config.zip into the Enterprise Manager data

source configuration.

b. Connect as SYS in SQL*Plus to add the estoreuser and grant it privileges

by executing the following SQL command:

grant connect, resource, create session to estoreuser
identified by estore

8. Deploy the application using the deployment wizard off the OC4J Home Page.

9. Start both the OHS and the OC4J server.

For instructions on configuring and starting the OHS, see the Oracle HTTP
Server Administration Guide.

10. Open your Web browser and then specify the following URL:

http://<ohs_host>:<ohs_port>/estore

The Pet Store splash screen appears. Follow the instructions provided by the Pet

Store application to load the Java Pet Store database tables.
Configuration and Deployment 2-19

Deploying Applications
Deploying Applications
This section describes how to deploy a J2EE application to the OC4J server. When

you deploy an application using the deployment wizard, the application is

deployed to the OC4J instance and any Web application is bound to a URL context

so that you can access the application from OC4J.

To deploy your application, drill down to the OC4J Home Page and scroll to the

Deployed Applications section. Figure 2–3 shows this section.

Basic Deployment
Your J2EE application can contain the following modules:

■ Web applications

The Web applications module (WAR files) includes servlets and JSP pages.

■ EJB applications

The EJB applications module (EJB JAR files) includes Enterprise JavaBeans

(EJBs).

■ Client application contained within a JAR file

Archive the JAR and WAR files that belong to an enterprise Java application into an

EAR file for deployment to OC4J. The J2EE specifications define the layout for an

EAR file.

The internal layout of an EAR file should be as follows:

Figure 2–6 Archive Directory Format

Note: You can also deploy simple applications with the dcmctl
command. See Appendix A, "DCM Command-Line Utility

(dcmctl)" for directions.

<appname>/

META-INF/
application.xml

EJB JAR file

WEB WAR file

Client JAR file
2-20 Oracle9iAS Containers for J2EE User’s Guide

Deploying Applications
Archive these files using the JAR command in the <appname> directory, as follows:

% jar cvfM <appname>.EAR .

Note that the application.xml file acts as a manifest file.

■ To deploy a J2EE application packaged within an EAR file, click the Deploy Ear
File button in the Applications section of the OC4J Home Page.

■ To deploy a J2EE Web application packaged within a WAR file, click the Deploy
WAR File button in the Applications section of the OC4J Home Page.

Both of these buttons start an eight-step application deployment wizard, which

guides you through deploying an application. In the case of the WAR file, the

application.xml file is created for the Web application. Whereas, you must

create the application.xml file within the EAR file. Thus, deploying a WAR file

is an easier method for deploying a Web application.

Figure 2–7 shows the eight steps required for application deployment:

Figure 2–7 Deployment Wizard Steps

Introduction
The first page is an introduction to these steps. It reminds you to provide an EAR

file with any OC4J-specific XML configuration files, if necessary. It also outlines

some of the other steps in the deployment process.

Click the Next button to go to the next step in the wizard deployment process.

Note: You must still provide configuration for J2EE services, such

as data source and security configuration.
Configuration and Deployment 2-21

Deploying Applications
Select Application
Figure 2–8 shows the second page, which enables you to browse your system for

the EAR file to be deployed. In addition, provide a name to be identified with this

application. The application name is user-created and will be the identifier for the

application in the OC4J Home page.

Figure 2–8 Designate EAR File

When the application is deployed, the information in this step enables the

following:

1. Copies the EAR file to the /applications directory.

2. Creates a new entry in server.xml for the application, as follows:

<application name=<app_name> path=<path_EARfile> auto-start="true"
/>

where

■ The name variable is the name of the application you provided.

■ The path indicates the directory and filename where the EAR file is

deployed.

■ The auto-start variable indicates if this application should be

automatically restarted each time OC4J is restarted.

For a description of the elements in server.xml , see "Elements in the

server.xml File" on page B-7.

Click the Next button to go to the next step in the wizard deployment process.
2-22 Oracle9iAS Containers for J2EE User’s Guide

Deploying Applications
Provide The URL Mappings For All Web Modules
Map any Web modules in your application to a specific URL for its servlet context.

All OC4J servlet contexts must be prefixed with a slash "/ ". When you try to access

any Web applications, you provide the host, port, and Web context.

For all Web modules, your URL mapping for this module includes the URL you

bind in this screen. Thus, for the URL http://<host>:<port>/url_name ,

provide /url_name in the URL mapping screen of the wizard.

Click the Next button to go to the next step in the wizard deployment process.

put the third step here... with petstore in fields?
Configuration and Deployment 2-23

Deploying Applications
Provide Any Resource Reference Mappings
Map any references resources in your application, such as data sources or mail

queues, to physical entities currently present on the OC4J container. Note that if you

need a specific resource, you must have already added this to the OC4J container

before you deploy your application in order for you to match them in this step.

For most applications, the resource reference you must designate is the data source

JNDI name. This screen does not configure the data source information, it only

designates an already configured data source or a data source that you will be

configuring later. Designate the JNDI location name of the data source that the

application will be using.

Click the Next button to go to the next step in the wizard deployment process.

put the third step here... with petstore in fields?
2-24 Oracle9iAS Containers for J2EE User’s Guide

Deploying Applications
Specify Any User Manager
You can specify what User Manager to use for security. For complete security, we

recommend that you choose the JAZN XML User Manager.

Figure 2–9 User Manager Choices

As Figure 2–9 demonstrates, you must already have your User Manager set up and

configured. Most of the entries requires an XML file that designates the security

roles, users, and groups for your security mappings.

■ JAZN XML User Manager—This is the recommended User Manager. It requires

a default realm and a jazn-data.xml file.
Configuration and Deployment 2-25

Deploying Applications
■ XML User Manager—This is not the most secure option. It requires a

principal.xml file.

■ JAZN LDAP User Manager—This requires a default realm and an LDAP

location.

■ Custom User Manager—This User Manager must be programmed; provide the

class name in this field.

For more information on security and User Managers, see both the Chapter 8,

"Security" and the Security chapters in the Oracle9iAS Containers for J2EE Services
Guide.

Provide Any Security Role Mappings
Map any security roles defined in your application to existing users and groups. If

you have defined a security role within your application, you can map this role to a

security group or role. You do not define security groups and users in this screen.

Users and groups are obtained from your user manager.

Click the Next button to go to the next step in the wizard deployment process.

For more information on security roles, see both the Chapter 8, "Security", the

Security chapters in the Oracle9iAS Containers for J2EE Services Guide and the

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and Reference.

put the third step here... with petstore in fields?
2-26 Oracle9iAS Containers for J2EE User’s Guide

Deploying Applications
Publish Web Services
Publish any Web services defined in your application. This feature requires the

UDDI registry. Web services are not installed with a core install.

If you have defined any Web services, they are shown in the following screen:

If you want to publish these Web services, then click on the Publish button. This

leads you through the process of publishing your Web services. When finished, it

brings you back to this screen.

Click the Next button to go to the next step in the wizard deployment process.

Summary of Deployment
At this point, you will receive a summary of your application deployment modules

and configuration, as follows:

put the third step here... with petstore in fields?
Configuration and Deployment 2-27

Deploying Applications
In order to deploy this application, click on the Deploy button. A message will be

displayed that tells you that your application deployed. It may also mention if you

did or did not publish any Web services.

Post-Deployment Application Modifications
You can modify any fields and add additional configuration by returning to the

OC4J Home page, select the application name in the Applications section. This

brings you to a screen with the details of the deployed application.

From within this screen, you can view the Web and EJB modules. In addition, you

can add and modify application-specific properties, resources, and security options

in the Administration section. It is in this Administration section, that you can add

application-specific data sources or security groups or users mentioned in the

deployment wizard.

the deployed application screen
2-28 Oracle9iAS Containers for J2EE User’s Guide

Undeploying Web Applications
Recovering From Deployment Errors
If the deployment process is interrupted for any reason, you may need to clean up

the temp directory, which by default is /var/tmp , on your system. The deployment

wizard uses 20 MB in swap space of the temp directory for storing information

during the deployment process. At completion, the deployment wizard cleans up

the temp directory of its additional files. However, if the wizard is interrupted, it

may not have the time or opportunity to clean up the temp directory. Thus, you

must clean up any additional deployment files from this directory yourself. If you

do not, this directory may fill up, which will disable any further deployment. If you

receive an Out of Memory error, check for space available in the temp directory.

To change the temp directory, set the command-line option for the OC4J process to

java.io.tmpdir=<new_tmp_dir> . You can set this command-line option in the

Server Properties page. Drill down to the OC4J Home Page. Scroll down to the

Administration Section. Select the Server Properties page. On this page, Scroll down

to the Command Line Options section and add the java.io.tmpdir variable

definition to the OC4J Options line. All new OC4J processes will start with this

property.

Undeploying Web Applications
You can remove a J2EE Web application from the OC4J Web server by selecting the

application in the Applications section of the OC4J Home Page (see Figure 2–3) and

clicking the Undeploy button. This command removes the deployed J2EE

application and results in the following:

■ The application is removed from the OC4J runtime.

■ All bindings for the Web modules are removed from all the Web sites to which

the Web modules were bound.

■ The application files are removed from both the applications/ and

application-deployments/ directories.

Note: You can also undeploy applications with the DCM

command. See Appendix A, "DCM Command-Line Utility

(dcmctl)" for directions.
Configuration and Deployment 2-29

Undeploying Web Applications
2-30 Oracle9iAS Containers for J2EE User’s Guide

Advanced Configuration, Development, and D
3

Advanced Configuration,

Development, and Deployment

Chapter 2, "Configuration and Deployment", discusses basic configuration,

development, and deployment of a J2EE application. This chapter discusses both

global J2EE service configuration and advanced J2EE application configuration.

In the original OC4J product, all configuration was stored in XML files. With this

release, OC4J is integrated with Enterprise Manager. This causes the entire

configuration to be split into two segments:

■ All OC4J server configuration should be managed through Enterprise Manager.

■ J2EE application deployment descriptors and the application.xml file must

still be constructed by hand within XML files.

This chapter discusses the following topics:

■ Configuring OC4J Using Enterprise Manager

■ Overview of OC4J and J2EE XML Files

■ What Happens When You Deploy?

■ Understanding and Configuring OC4J Listeners

■ Configuring Oracle HTTP Server With Another Web Context

■ Building and Deploying Within a Directory
eployment 3-1

Configuring OC4J Using Enterprise Manager
Configuring OC4J Using Enterprise Manager
You can configure J2EE services, J2EE applications, and Oracle9iAS clusters with

Enterprise Manager. Some aspects are configured at the OC4J instance level; thus,

they provide a global configuration for all deployed applications in the instance.

Other aspects are configured at the application level; thus, this type of configuration

is local and applicable only to the application.

The following sections provide you with an overview of advanced configuration

within Enterprise Manager for OC4J:

■ OC4J Instance Level Configuration

■ Application Level Configuration

OC4J Instance Level Configuration
There exists one OC4J Home Page for each OC4J instance configured. Generally, on

the OC4J Home Page, you configure global services and deploy applications to this

instance.

Specifically, from the OC4J Home Page, you can do the following:

■ Deploy Applications

■ Configure Web Site

■ Configure Global JSP Container Parameters

■ Configure Global Web Application Parameters

■ Configure RMI and JMS

■ Configure Data Sources

■ Configure Security

■ Configure UDDI Registry

■ Manipulating XML Files

Deploy Applications
You can deploy, redeploy, or undeploy a J2EE application that exists in an EAR or

WAR file archival format. To deploy an application, click the Deploy EAR File or

Deploy WAR File buttons to deploy in the Deployed Applications section on the

OC4J Home Page.
3-2 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
This starts the deployment wizard that is covered in "Deploying Applications" on

page 2-20. If you deploy an EAR file, it must contain an application.xml that

describes the application modules; if you deploy a WAR file, the application.xml
file is created for you automatically.

To undeploy, click the Select radio button for the application and then click the

Undeploy button.

To redeploy, click the Select radio button for the application and then click the

Redeploy button.

Configuring Server Properties
To configure OC4J properties, scroll down to the Administration section of the OC4J

Home Page. Select Server Properties in the Instance Properties column. The General

section of this page contains the following fields:

Note: You can also deploy, undeploy, or redeploy simple

applications with the DCM command. See Appendix A, "DCM

Command-Line Utility (dcmctl)" for directions.

put server properties page here.
Advanced Configuration, Development, and Deployment 3-3

Configuring OC4J Using Enterprise Manager
In this section, you can modify OC4J server defaults. These are listed below:

■ Default application—The default application is what most deployed

applications used as its parent. Thus, these deployed applications can see the

classes within the default application.

■ Default application path—There exists a file named application.xml , which is

separate from the application.xml included with each EAR file. This

application.xml file is known as the global application.xml file. It defines

properties that are used across all deployed applications within this OC4J

instance. Some of the properties exist in the rest of this page. If you want to

change the name and the content of this global application.xml file, modify

this field to contain the new XML filename. However, this file must conform to

the DTD that Oracle specifies. The directory is relative to j2ee/home/config .

■ Default Web module properties—These are specified in an XML file called

global-web-application.xml . If you want it to refer to another XML file, you

can change the pointer to this file here. However, this file must conform to the

DTD that Oracle specifies. The directory is relative to j2ee/home/config .

If you want to actually modify elements contained within this file, update

entries in either the Web Site Properties or Advanced Properties section. These

are discussed more in "Configure Web Site" on page 3-6 and "Manipulating

XML Files" on page 3-15.

■ Application and deployment directories—The default directory to place the

"master" EAR file of the deployed application is the /applications directory.

The default directory is where OC4J places modified module deployment

descriptors with added defaults. Currently, this location is in the

/application-deployments directory. You can change the locations of the

default directories in these fields. The directory is relative to j2ee/home/config .

See "What Happens When You Deploy?" on page 3-26 for more information on

the usage of these directories.

The next section, Multiple VM Configuration, is dedicated as part of the cluster

configuration. The following details what each field means; however, the context of

how to configure clusters using this section is discussed fully in Chapter 9,

"Oracle9iAS Clustering".
3-4 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
■ Islands—Designate the number of islands within the cluster. Each island is

created when you click on the Add Another Row button. You can supply a

name for each island within the Island ID field. You can designate how many

OC4J processes should be started within each island by the number configured

in the Number of Processes field.

■ Ports—This section enables you to configure what the port ranges should be for

RMI, JMS, and AJP.

■ Command Line Options—This section enables you to configure the following:

– the Java executable command that should be used, such as javac

– any OC4J options to include when starting a new OC4J process

– any Java options to include when executing ’java ’
Advanced Configuration, Development, and Deployment 3-5

Configuring OC4J Using Enterprise Manager
Configure Web Site
To configure your Web site, scroll down to the Administration section of the OC4J

Home Page. Select Website Properties in the Instance Properties column.

The Web site page has two sections. In the first section, you can see what is the

default Web application and its parent. In the second section—URL Mappings for

Web Modules—you can specify whether each Web application is to be loaded upon

startup. These parameters are discussed in more detail in the Oracle9iAS Containers
for J2EE Servlet Developer’s Guide and are stored in the default-web-site.xml file.

Configure Global JSP Container Parameters
You can configure global JSP Container parameters. These apply to all JSPs

deployed in this OC4J instance. To configure JSP Container parameters, scroll down

to the Administration section of the OC4J Home Page. Select JSP Container

Properties in the Instance Properties column. This brings you to the following page:

put web site properties page here.
3-6 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
Most of the properties indicated here are described in Chapter 3 of the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference. These properties can be

included within the global-web-application.xml file within the <servlet>
element.

Configure Global Web Application Parameters
To configure Web parameters that apply to all deployed Web applications, scroll

down to the Administration section of the OC4J Home Page. Select Global Web

Module in the Application Defaults column. This brings you to the following page:

put JSP Container properties page here.
Advanced Configuration, Development, and Deployment 3-7

Configuring OC4J Using Enterprise Manager
The type of parameters that you can define for Web modules concern mappings,

filtering, chaining, environment, security, and client access. Drill down into each of

the provided links under the Properties and Security columns to modify these

parameters. Each of these parameters are discussed in detail in the Oracle9iAS
Containers for J2EE Servlet Developer’s Guide. These parameters are stored in the

global-web-application.xml and orion-web.xml files. This guide discusses the

elements in these files.

Configure RMI and JMS
RMI and JMS can only be defined within an XML definition. To edit the XML files

for either of these services, scroll down to the Advanced Properties section under

the Instance Properties column on the OC4J Home Page. In this section, you can

choose rmi.xml or jms.xml to modify the straight XML files for these services. See

the Oracle9iAS Containers for J2EE Services Guide on how to modify these XML files.

put global web module page here.
3-8 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
Configure Data Sources
You can configure global or local data sources. A global data source is available to

all deployed applications in this OC4J instance. A local data source is configured

within the deployed application and can only be used by that application.

See Oracle9iAS Containers for J2EE Services Guide for a full explanation of how to

configure a data source and the elements within the data-sources.xml file.

To configure global data sources, select one of the following off of the OC4J Home

Page:

■ Data Sources under the Application Defaults column—This page allows you to

add data source definitions one field at a time. See "Data Source Field Page" on

page 3-9 for a description of this page.

■ Advanced Properties under the Instance Properties column—Select

data-sources.xml on this page. This allows you to add data sources using the

XML definitions. This is useful if you have been provided the XML. You can just

copy in the already configured data sources.

To configure local data sources, you perform the same selection off of the

application page. You must drill down to the particular application that this data

source will be local to. On the application page, choose Data Source under the

Resources column. It displays the same data source field page that is discussed in

"Data Source Field Page" on page 3-9.

Data Source Field Page When you choose Data Source under the Application Defaults

column, you see the Data Sources that are currently configured.

To configure a new Data Source, click Add Data Source. This brings you to a page

where you can enter all configuration details about the data source. This page is

divided up into four sections.

Figure 3–1 shows the General section.
Advanced Configuration, Development, and Deployment 3-9

Configuring OC4J Using Enterprise Manager
Figure 3–1 General Section of Data Source Definition

The General section enables you to define the following aspects about a data source:

■ Name—A user-defined name to identify the data source.

■ Description—A user-defined description of the data source.

■ Data Source Class—This is the class, such as

com.evermind.sql.ConnectionDataSource , that the data source is instantiated

as.

■ Schema—This is an optional parameter. Input the file name that contains the

Java to database mappings for a particular database.

■ Username/Password—The username and password used to authenticate to the

database that this data source represents.

■ JDBC URL—The URL to the database represented by this data source. For

example, if using an Oracle Thin driver, the URL could be the following:

jdbc:oracle:thin:@my-lap:1521:SID .

■ JDBC Driver—The JDBC driver to use. One example of a JDBC driver is

oracle.jdbc.driver.OracleDriver .

Figure 3–2 shows the JNDI Locations section.
3-10 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
Figure 3–2 JNDI Locations

The JNDI Locations section enables you to define the JNDI location string that the

data source is bound with. The JNDI location is used within JNDI lookup for

retrieving this data source.

Figure 3–3 shows the Connection Attributes section.

Figure 3–3 Connection Attributes
Advanced Configuration, Development, and Deployment 3-11

Configuring OC4J Using Enterprise Manager
This section enables you to modify connection tuning parameters, including the

retry interval, pooling parameters, timeout parameters, and maximum attempt

parameter.

Figure 3–4 shows the Properties section for the data source.

Figure 3–4 Properties

If your data source is a third party data source, you may need to set certain

properties. These properties would be defined in the third-party documentation. In

addition, properties must be set for JTA transactions for the two-phase commit

coordinator.
3-12 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
Configure Security
The type of security you use is designated by the User Manager configured. The

default User Manager for all applications is the JAZN User Manager. Within the

User Manager type, you configure groups, users, and roles.

Each application can be assigned its own User Manager if you do not want to use

the default JAZN User Manager. You chose the User Manager that you will use for

the application on the deployment wizard. See Chapter 8, "Security" for more

information on User Managers.

To configure groups, users, or roles in the default JAZN User Manager, do the

following:

1. On the OC4J Home Page, scroll down to the Administration section.

2. Choose Security under the Application Defaults column, as shown in

Figure 3–5.

Figure 3–5 OC4J Home Page Administration Properties

Choosing Security allows you to manage groups, users, and roles for the default

JAZN User Manager, as shown in Figure 3–6. These groups, users, and roles can be

used in all applications deployed in this OC4J instance.
Advanced Configuration, Development, and Deployment 3-13

Configuring OC4J Using Enterprise Manager
Figure 3–6 Security Page
3-14 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
The default User Manager is the JAZN User Manager. However, you can also assign

a separate User Manager for each application.

See Chapter 8, "Security" and Oracle9iAS Containers for J2EE Services Guide for a

discussion of how to configure your security.

Configure UDDI Registry
To configure the UDDI Registry, scroll down to the Administration section of the

OC4J Home Page. Select the UDDI Registry in the Related Links column.

Manipulating XML Files
In OC4J version 1.0.2.2, you configured the OC4J server and all deployed

application parameters through XML files. Since the OC4J server existed on a single

node and did not need high availability and clustering management, this worked

well. However, with the integration of OC4J with Oracle9iAS, increased enterprise

management abilities with clustering and high availability options, all configuration

must be accomplished through Enterprise Manager.

For those developers who are used to working with the OC4J XML files and wish to

continue to do so, the Advanced Properties section allows you to continue this

ability.

There are four groups of XML files located within Enterprise Manager:

■ OC4J Server XML files: These include the XML files that configure the server

and its services. The files that are in this group are server.xml ,

global-web-application.xml , rmi.xml , jms.xml , http-web-site.xml , and

default-web-site.xml . Modify any of these XML files in the Advanced

Properties page off of the OC4J Home Page.

■ Global application XML files: These include XML files that apply to all

applications deployed in the OC4J instance. These include the global

application.xml , data-sources.xml , jazn-data.xml and

oc4j-connectors.xml . To modify these XML files, choose default under Default

Application on the OC4J Home Page. On the default application page, scroll

down to the Administration section and choose Advanced Properties.

■ Local application XML files. You can modify XML files that configure the

overall application. These include local data sources, local security, and

OC4J-specific application configuration. These XML files include

data-sources.xml , jazn-data.xml , and orion-application.xml . To modify

these files, drill down to the specific application. On the application screen,

scroll down to the Administration section and choose Advanced Properties.
Advanced Configuration, Development, and Deployment 3-15

Configuring OC4J Using Enterprise Manager
■ Application module XML files: When the EAR or WAR file is deployed, you

provided module deployment descriptors, such as web.xml , orion-web.xml ,

ejb-jar.xml , and orion-ejb-jar.xml . You can modify parameters only in the

OC4J-specific (orion-xxx.xml) XML files. You cannot modify the J2EE XML

files, such as web.xml or ejb-jar.xml . For more information on modifying these

XML files, see "Modifying XML Files Included in the Deployed Application

EAR File" on page 3-18.

As an example, the server.xml page is shown. Notice that you can hand edit the

XML elements.

If you do not understand the OC4J XML files, see "Overview of OC4J and J2EE XML

Files" on page 3-19 for a discussion of these files and their relation to each other.

Other books in the OC4J documentation set describe the elements within each of

these files.

put server.xml page here.
3-16 Oracle9iAS Containers for J2EE User’s Guide

Configuring OC4J Using Enterprise Manager
Application Level Configuration
Once you have deployed your application, you can modify most of the parameters

for this application. To configure application-specific parameters, do the following:

1. On the OC4J Home Page, scroll down to the Application section.

2. Select the application where you want to change the configuration using one of

the following methods:

a. Click the Select radio button for the application and click the Edit button.

b. Select the application name in the Name column in the applications box.

This page is the initiating point for changing general application configuration as

well as configuration specific to a certain part of your deployed application, such as

a WAR file.

The following sections provide a brief overview of these configuration options:

■ Configuring Application General Parameters

■ Configuring Local J2EE Services

■ Modifying XML Files Included in the Deployed Application EAR File

Configuring Application General Parameters
If you scroll down to the Administration section and select the General link, you

can configure a multitude of application details, as follows:

■ persistence path

■ data sources path

■ library paths

■ EJB properties

– automatically create database tables for CMP beans

– automatically delete old database tables for CMP beans

■ default data source (JNDI name)

■ User Manager configuration
Advanced Configuration, Development, and Deployment 3-17

Configuring OC4J Using Enterprise Manager
Configuring Local J2EE Services
As described in "Configure Data Sources" on page 3-9 and "Configure Security" on

page 3-13, you can configure data sources and security either for all deployed

applications (global) or only for a specific application (local). See these sections for

directions on how to configure your J2EE services for your application.

Modifying XML Files Included in the Deployed Application EAR File
You can modify only the OC4J-specific XML files of your application after

deployment. This includes orion-ejb-jar.xml , orion-web.xml , and

orion-application-client.xml . You cannot modify the J2EE XML files, such as

web.xml , ejb-jar.xml , and application-client.xml .

In order to modify the OC4J-specific XML files, do the following:

1. From the application screen, select the JAR or WAR file whose configuration

you are interested in modifying. The application screen is shown.

2. You can modify parameters for the application in one of the following manners:

■ Follow links in the Administration section for modifying parameters.

■ Select the bean or servlet in the section that details the beans, servlets, or

JSPs deployed. This drills down to another level of configuration.

■ The Administration section contains either a Properties or Advanced

Properties section that allows you to modify XML directly for the

OC4J-specific deployment descriptors—orion-ejb-jar.xml ,

orion-web.xml , and orion-application-client.xml .
3-18 Oracle9iAS Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Overview of OC4J and J2EE XML Files
This section contains the following topics:

■ XML Configuration File Overview

■ XML File Interrelationships

XML Configuration File Overview
Each XML file within OC4J exists to satisfy a certain role; thus, if you have need of

that role, you will understand which XML file to modify and maintain.

Figure 3–7 illustrates all the OC4J XML files and their respective roles.

■ OC4J server: All XML files within this box are used to set up this instance of the

OC4J server. These files configure things such as listening ports, administration

passwords, security, and other basic J2EE services.

These files configure the OC4J server and point to other key configuration files.

The settings in the OC4J configuration files are not related to the deployed J2EE

applications directly, but to the server itself.

■ Oracle HTTP Server: These files are configuration files within the Oracle HTTP

Server. However, they are included in this diagram because you may need to

modify these to change how requests are handed off to the OC4J server.

■ Web site: These XML files configure listening ports, protocols, and Web contexts

for the OC4J Web site.

■ Application XML files: Each J2EE application type (EJB, servlet, JSP, connector)

requires its own configuration (deployment) files. Each application type has one

J2EE deployment descriptor and one OC4J-specific deployment descriptor,

which is denoted with an "orion- " prefix. In addition, the following are global

configuration files for all components in the application:

– The application.xml as the global application configuration file that

contains common settings for all applications in this OC4J instance.

– The orion-application.xml file contains OC4J-specific global application

information for all applications in this OC4J instance.

– The global-web-application.xml file contains OC4J-specific global Web

application configuration information that contains common settings for all

Web modules in this OC4J instance.
Advanced Configuration, Development, and Deployment 3-19

Overview of OC4J and J2EE XML Files
– The oc4j-connectors.xml file contains global connector configuration

information.

Figure 3–7 OC4J and J2EE Application Files

Note: Each deployed application uses an application.xml as its

manifest file. That XML file is local to the application and separate

from the global application.xml , which configures options that

are applied to all applications deployed in this OC4J server

instance.

Oracle HTTPOC4J Server XML Files

J2EE Application Deployment XML Files

OC4J Server Configuration Files

Application XML Files

EJB Web

Client

ejb-jar.xml
orion-ejb-jar.xml

web.xml
orion-web.xml

application-client.xml
orion-application-client.xml

mod_oc4j.conf

Web site
Server XML Files

Connector

ra.xml
oc4j-ra.xml

Global Configuration
application.xml
orion-application.xml

oc4j-connectors.xml
global-web-application.xml

server.xml
jazn.xml

data-sources.xml
rmi.xml
jms.xml

Server Configuration

default
-web-site.xmljazn-data.xml
3-20 Oracle9iAS Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Table 3–1 describes the role and function for each XML file that was displayed in the

preceding figure.

Table 3–1 OC4J Features and Components

XML Configuration File Features/Components

server.xml OC4J overall server configuration. Configures the
server and points to the XML files that add to this

file, such as jms.xml for JMS support. The listing
of other XML files enables the services to be

configured in separate files, but the server.xml
file denotes that they be used for the OC4J
configuration.

jazn.xml

jazn-data.xml

OC4J security configuration for JAZN security
required for accessing the server.

data-sources.xml OC4J data source configuration for all databases
used by applications within OC4J.

rmi.xml OC4J RMI port configuration and RMI tunneling
over HTTP.

jms.xml OC4J JMS configuration for Destination topics
and queues that are used by JMS and MDBs in
OC4J.

default-web-site.xml OC4J Web site definition.

mod_oc4j.conf The mod_oc4j module is an Oracle HTTP Server
module that forwards OC4J requests. This file
configures the mount point that denotes what
contexts to be directed to OC4J.
Advanced Configuration, Development, and Deployment 3-21

Overview of OC4J and J2EE XML Files
application.xml
orion-application.xml

J2EE application manifest file and configuration
files.

■ The global application.xml file exists in the

j2ee/home/config directory and contains
common settings for all applications in this
OC4J instance. This file defines the location of
the security XML definition

file—jazn-data.xml and the datasource XML

definition file—data-sources.xml. This is a
different XML file than the local

application.xml files.

■ The local application.xml file defines the
J2EE EAR file, which contains the J2EE
application modules. This file exists within the
J2EE application EAR file.

■ The orion-application.xml file is the
OC4J-specific definitions for all applications.

global-web-application.xml
web.xml
orion-web.xml

J2EE Web application configuration files.

■ global-web-application.xml is an
OC4J-specific file for configuring servlets that
are bound to all Web sites.

■ web.xml and orion-web.xml for each Web
application.

The web.xml files are used to define the Web
application deployment parameters and are
included in the WAR file. In addition, you can
specify the URL pattern for servlets and JSPs in this
file. For example, servlet is defined in the

<servlet> element, and its URL pattern is defined

in the <servlet-mapping> element.

ejb-jar.xml
orion-ejb-jar.xml

J2EE EJB application configuration files. The

ejb-jar.xml files are used to define the EJB
deployment descriptors and are included in the EJB
JAR file.

application-client.xml
orion-application-client.xml

J2EE client application configuration files.

Table 3–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components
3-22 Oracle9iAS Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
XML File Interrelationships
Some of these XML files are interrelated. That is, some of these XML files reference

other XML files—both OC4J configuration and J2EE application (see Figure 3–9).

Here are the interrelated files:

■ server.xml —contains references to the following:

– All web-site.xml files for each Web site for this OC4J server

– The location of each of the other OC4J server configuration files, except

jazn-data.xml and data-sources.xml which are defined in the global

application.xml , shown in Figure 3–7

– The location of each application.xml file for each J2EE application that has

been deployed in OC4J

■ web-site.xml —references applications by name, as defined in the server.xml
file. And this file references an application-specific EAR file.

■ application.xml —contains references to the jazn-data.xml and

data-sources.xml files.

The server.xml file is the keystone that contains references to most of the files used

within the OC4J server. Figure 3–8 shows the XML files that can be referenced in the

server.xml file:

oc4j-connectors.xml
ra.xml
oc4j-ra.xml

Connector configuration files.

■ The oc4j-connectors.xml file contains
global OC4J-specific configuration for
connectors.

■ The ra.xml file contains J2EE configuration.

■ The oc4j-ra.xml file contains OC4J-specific
configuration.

Table 3–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components
Advanced Configuration, Development, and Deployment 3-23

Overview of OC4J and J2EE XML Files
Figure 3–8 XML Files Referenced Within server.xml

Figure 3–9 demonstrates how the server.xml points to other XML configuration

files. For each XML file, the location can be the full path or a path relative to the

location of where the server.xml file exists. In addition, the name of the XML file

can be any name, as long as the contents of the file conform to the appropriate DTD.

■ The <rmi-config> tag denotes the name and location of the rmi.xml file.

■ The <jms-config> tag denotes the name and location of the jms.xml file.

■ The <global-application> tag denotes the name and location of the global

application.xml file.

■ The <global-web-app-config> tag denotes the name and location of the

global-web-application.xml file.

■ The <web-site> tag denotes the name and location of one *-web-site.xml file.

Since you can have multiple Web sites, you can have multiple <web-site>
entries.

In addition to pointing to the OC4J server configuration files, the server.xml file

describes the applications that have been deployed to this OC4J server. Each

deployed application is denoted by the <application> tag.

...j2ee/home/config/server.xml

rmi.xml
jms.xml
application.xml

data-sources.xml
jazn-data.xml

global-web-application.xml
default-web-site.xml
3-24 Oracle9iAS Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Figure 3–9 Server.xml File and Related XML Files

Other tags for server.xml are described in "Elements in the server.xml File" on

page 3-19.

Note: If you understand the OC4J XML files from previous

releases of OC4J, you can simply change most of the OC4J server

XML configuration files by drilling to the OC4J Home Page, scroll

down to Administration, and click on Advanced Properties. From

here, you can modify the XML files using an Enterprise Manager

editor.

server.xml

<rmi ...> rmi.xml

jms.xml

application.xml

global-web-application.xml

default-web-site.xml

bank_application

inventory_application

<jms ...>

<global-application .. path="application.xml"/>

<global-web-app-config

<web-site path="./default-web-site.xml"/>

<application name="bank_application".../>

<application name="inventory_application ../>

path="global-web-application.xml"/>
Advanced Configuration, Development, and Deployment 3-25

What Happens When You Deploy?
What Happens When You Deploy?
When you become more proficient with OC4J and deploying applications, you

should acquaint yourself with what OC4J does for you. The following sections help

you understand these tasks:

■ OC4J Tasks During Deployment

■ Configuration Verification of J2EE Applications

OC4J Tasks During Deployment
When you deploy your application, the following occurs:

OC4J opens the EAR file and reads the descriptors.

1. OC4J opens, parses the application.xml that exists in the EAR file. The

application.xml file lists all of the modules contained within the EAR file.

OC4J notes these modules and initializes the EAR environment.

2. OC4J reads the module deployment descriptors for each module type: Web

module, EJB module, connector module, or client module. The J2EE descriptors

are read into memory. If OC4J-specific descriptors are included, these are also

read into memory. The JAR and WAR file environments are initialized.

3. OC4J notes any unconfigured items that have defaults and writes these defaults

in the appropriate OC4J-specific deployment descriptor. Thus, if you did not

provide an OC4J-specific deployment descriptor, you will notice that OC4J

provides one written with certain defaults. If you did provide an OC4J-specific

deployment descriptor, you may notice that OC4J added elements.

4. OC4J reacts to the configuration details contained in both the J2EE deployment

descriptors and any OC4J-specific deployment descriptors. OC4J notes any J2EE

component configurations that require action on OC4J’s part, such as wrapping

beans with their interfaces.

5. After defaults have been added and necessary actions have been taken, OC4J

writes out the new module deployment descriptors to the

application-deployments/ directory. These are the descriptors that OC4J uses

when starting and restarting your application. But do not modify these

descriptors. Always change your deployment descriptors in the "master"

location.

6. OC4J copies the EAR file to the "master" directory. This defaults to the

applications/ directory. You can change the "master" directory in the Server

Properties page off of the OC4J Home Page. In the General section, modify the
3-26 Oracle9iAS Containers for J2EE User’s Guide

What Happens When You Deploy?
Application Directory field to the new location of the "master" directory. The

location of the directory is relative to /j2ee/home/config .

7. Finally, OC4J updates the server.xml file with the notation that this application

has been deployed.

Configuration Verification of J2EE Applications
After deployment, you can see your application configuration in the server.xml
and web-site.xml files, as follows:

■ In server.xml , each existing application contains a line with an

<application name=... path=... auto-start="true" /> entry. The

auto-start attribute designates that you want this application automatically

started when OC4J starts.

■ In web-site.xml , a <web-app...> entry exists for each Web application that is

bound to the Web site upon OC4J startup. Because the name attribute is the

WAR filename (without the .WAR extension), there is one line for each WAR file

included in your J2EE application.

For each Web application binding included in a WAR file, the following line has

been added:

<web-app application="myapp" name="/private/myapp-web" root="/myapp"
/>

■ The application attribute is the name provided in the server.xml as the

application name.

■ The name attribute is the name of the WAR file, without the .WAR extension.

■ The root attribute defines the root context for the application off of the Web

site. For example, if you defined your Web site as

"http://<ohs_host>:7777/j2ee" , then to initiate the application, point

your browser at "http://<ohs_host>:7777/j2ee/myapp" .

Note: Each time you deploy this EAR file without removing the

EAR file from the applications/ directory, the new deployment

renames the EAR file prepended with an underscore. It does not

copy over the EAR file. Instead, you can copy over the EAR file.

OC4J notices the change in the timestamp and redeploys.
Advanced Configuration, Development, and Deployment 3-27

Understanding and Configuring OC4J Listeners
Understanding and Configuring OC4J Listeners
Incoming client requests use one of three protocols: AJP, HTTP, or RMI. AJP and

HTTP are used for HTTP requests. AJP is used between the OHS and OC4J

components. HTTP is used for HTTP requests directed past OHS to OC4J. RMI is

used for incoming EJB requests.

HTTP Requests
All HTTP requests, whether through OHS or directly to OC4J, must have a listener

configured in an OC4J Web site. You can have two Web sites for each OC4J instance:

one for each protocol type. That is, one Web site is only for AJP requests and the

other is for HTTP requests. You cannot have one Web site listen for both types of

protocols. Thus, OC4J provides two Web site configuration files:

■ default-web-site.xml —This is the AJP protocol listener and the default for

most HTTP requests that use Oracle9iAS. After installation, the Oracle HTTP

Server front-end forwards incoming HTTP requests over the AJP port. The

OC4J Web server configuration file (default-web-site.xml) indicates the AJP

listener port. The default-web-site.xml file defines the default AJP port as

zero. This enables OC4J and the Oracle HTTP Server to negotiate a port upon

startup. The range of port values that the AJP port can be is configured in the

OPMN configuration. See the High Availability chapter in the Oracle9i
Application Server Administrator’s Guide for more information on OPMN.

The following shows the entry in the default-web-site.xml for the default AJP

listener:

<web-site host="oc4j_host" port="0" protocol="ajp13"
 display-name="Default OC4J WebSite">

You can configure the AJP default Web site protocol in two places: Website

Properties or Advanced Properties off of the OC4J Home Page.

■ http-web-site.xml —This is the HTTP protocol listener. If you want to bypass

OHS and go directly to OC4J, you use the port number defined in this file.

However, you must be careful. The AJP port is chosen at random every time

OC4J is started. If it chooses the same port number that is hard-coded in this

Note: Wait for automatic startup to complete before trying to

access the client. The client fails on lookup if it tries to access before

the completion of these processes.
3-28 Oracle9iAS Containers for J2EE User’s Guide

Configuring Oracle HTTP Server With Another Web Context
XML file, there will be a conflict. If you use this method for incoming requests,

verify that the port number you choose is outside of the range for AJP port

numbers, which is defined in the OPMN configuration.

The default HTTP port is 7777. The following shows the entry in the

http-web-site.xml for an HTTP listener with a port number of 7777:

<web-site host="oc4j_host" port="7777" protocol="http"
 display-name="HTTP OC4J WebSite">

You access the http-web-site.xml file only in the Advanced Properties on the

OC4J Home Page.

RMI Requests
RMI protocol listener is set up in the RMI configuration—rmi.xml . It is separate

from the Web site configuration. EJB clients and the OC4J tools access the OC4J

server through a configured RMI port. The default RMI port is 23791. The following

shows the default RMI port number configured in the rmi.xml file:

<rmi-server port="23791" >

You can modify the rmi.xml file only in the Advanced Properties on the OC4J

Home Page.

Configuring Oracle HTTP Server With Another Web Context
The mod_oc4j module in the Oracle HTTP Server is configured at install time to

direct all j2ee / context bound applications to the OC4J server. If you want to use a

different context, such as pubs /, you can add another mount for this context in the

mod_oc4j.conf configuration file.

To modify this file, drill down to the Oracle HTTP Server Page and select

mod_oc4j.conf . The file is presented for edits in the right-hand frame.

1. Find the Oc4jMount directive for the j2ee / directory. Copy it to another line.

The mount directive is as follows:

Oc4jMount /j2ee/* OC4Jworker

Note: In a UNIX environment, the port number should be greater

than 1024, unless the process has administrative privileges.
Advanced Configuration, Development, and Deployment 3-29

Building and Deploying Within a Directory
2. Modify the j2ee / context to your desired context. In our example, you would

have another line with a pubs / mount configuration. Assuming that the OC4J

worker name is OC4Jworker , then both lines would be as follows:

Oc4jMount /j2ee/* OC4Jworker
Oc4jMount /pubs/* OC4Jworker

3. Restart the Oracle HTTP Server to pick up the new mount point.

Then all incoming requests for the pubs/ context will be directed to the OC4J

server. Note that when you deploy an application using the deployment wizard, the

wizard automatically adds a mount point as described here for your URL mapping.

See the Oracle HTTP Server Administration Guide for complete details on the

mod_oc4j module configuration.

Building and Deploying Within a Directory
When developing applications, you want to quickly modify, compile, and execute

your classes. OC4J can automatically deploy your applications as you are

developing them within an expanded directory format. OC4J automatically deploys

applications if the timestamp of the top directory, noted by <appname> in

Figure 3–10, changes. This is the directory that server.xml knows as the "master"

location. Normally, you develop under the j2ee/home/applications directory.

The application must be placed in the "master" directory in the same hierarchical

format as necessary for JAR, WAR, and EAR files. For example, if <appname> is the

directory where your J2EE application resides, Figure 3–10 displays the necessary

directory structure.

Note: The OC4Jworker is defined further down in the

mod_oc4j.conf file to be the OC4J instance.
3-30 Oracle9iAS Containers for J2EE User’s Guide

Building and Deploying Within a Directory
Figure 3–10 Development Application Directory Structure

To deploy EJB or complex J2EE applications in an expanded directory format,

complete the following steps:

1. Place the files in any directory. Figure 3–10 demonstrates an application placed

into j2ee/home/applications/<appname>/ . The directory structure below

<appname> is similar to that used within an EAR file, as follows:

a. Replace the EJB JAR file name, Web application WAR file name, client JAR

file name, and Resource Adapter Archive (RAR) file name with a directory

name of your choosing to represent the separate modules. Figure 3–10

demonstrates these directory names by <ejb_module>/ , <web_module>/ ,

<client_module>/ , and <connector_module>/ .

applications/<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

 (my.Servlet to /my/Servlet)

<connector-module>
META-INF/

ra.xml

resource adaptor JAR files
native libraries
Advanced Configuration, Development, and Deployment 3-31

Building and Deploying Within a Directory
b. Place the classes for each module within the appropriate directory structure

that maps to their package structure.

2. Modify the server.xml , applications.xml , and *-web-site.xml files as

follows:

■ In server.xml , add a new or modify the existing <application name=...
path=... auto-start="true" /> element for each J2EE application. The

path points to the "master" application directory. In Figure 3–10, this is

j2ee/home/applications/<appname>/ .

You can specify the path in one of two manners:

* Specifying the full path from root to the parent directory.

In the example in Figure 3–10, if <appname> is "myapp" , then the

fully-qualified path is as follows:

<application_name="myapp"
 path="/private/j2ee/home/applications/myapp"
 auto-start="true" />

* Specifying the relative path. The path is relative to where the

server.xml file exists to where the parent directory lives.

 In the example in Figure 3–10, if <appname> is "myapp" , then the rela-

tive path is as follows:

<application_name="myapp" path="../myapp" auto-start="true"
/>

■ In application.xml , modify the <module> elements to contain the directory

names for each module—not JAR or WAR files. You must modify the

<web-uri> , the <ejb> , and the <client> elements in the application.xml
file to designate the directories where these modules exist. The path

included in these elements should be relative to the "master" directory and

the parent of the WEB-INF or META-INF directories in each of these

application types.

For example, if the <web_module>/ directory in Figure 3–10 was

"myapp-web/ ", then the following example designates this as the Web

module directory within the <web-uri> element as follows:

<module>
 <web>
 <web-uri>myapp-web</web-uri>
3-32 Oracle9iAS Containers for J2EE User’s Guide

Building and Deploying Within a Directory
 </web>
</module>

■ In the *-web-site.xml file, add a <web-app...> element for each Web

application. This is important, because it binds the Web application within

the Web site. The application attribute value should be the same value as

that provided in the server.xml file. The name attribute should be the

directory for the Web application. Note that the directory path given in the

name element follows the same rules as for the path in the <web-uri>
element in the application.xml file.

To bind the"myapp" Web application, add the following:

<web-app application="myapp" name="myapp/myapp-web" root="/myapp"
/>

Note: You achieve better performance if you are deploying with a

JAR file. During execution, the entire JAR file is loaded into

memory and indexed. This is faster than reading in each class from

the development directory when necessary.
Advanced Configuration, Development, and Deployment 3-33

Building and Deploying Within a Directory
3-34 Oracle9iAS Containers for J2EE User’s Guide

Data Sources P
4

Data Sources Primer

This chapter describes how to use the pre-installed default data source in your OC4J

application. A data source, which is the instantiation of an object that implements

the javax.sql.DataSource interface, enables you to retrieve a connection to a

database server.

 This chapter covers the following topics:

■ Introduction

■ Definition of Data Sources

■ Retrieving a Connection From a Data Source

For more information on data sources, see the Data Source chapter in the Oracle9iAS
Containers for J2EE Services Guide.
rimer 4-1

Introduction
Introduction
A data source is a Java object that has the properties and methods specified by the

javax.sql.DataSource interface. Data sources offer a portable,

vendor-independent method for creating JDBC connections. Data sources are

factories that return JDBC connections to a database. J2EE applications use JNDI to

look up DataSource objects. Each JDBC 2.0 driver provides its own

implementation of a DataSource object, which can be bound into the JNDI

namespace. Once bound, you can retrieve this data source object through a JNDI

lookup.

Because they are vendor-independent, we recommend that J2EE applications

retrieve connections to data servers using data sources.

Definition of Data Sources
OC4J data sources are stored in an XML file known as data-sources.xml .

Defining Data Sources
The data-sources.xml file is pre-installed with a default data source named

OracleDS . For most uses, this default is all you will need. However, you can also

add your own customized data source definitions. Enterprise Manager displays all

data sources in the global Data Sources page. From the OC4J Home Page, scroll

down to the Administration section and choose Data Source from the Application

Defaults column. The following graphic shows the Data Source page.
4-2 Oracle9iAS Containers for J2EE User’s Guide

Definition of Data Sources
These data sources are able to be used by all applications deployed in this OC4J

instance. To create data sources that are local to a particular application, drill down

to the application page and then choose Data Source in the Administration section.

The OracleDS default data source is an emulated data source. That is, it is a

wrapper around Oracle data source objects. You can use this data source for

applications that access and update only a single data server. If you need to update

more than one database and want these updates to be included in a JTA transaction,

you must use a non-emulated data source. See the Data Sources chapter in the

Oracle9iAS Containers for J2EE Services Guide for more information on non-emulated

data sources.

The default emulated data source is extremely fast and efficient, because it does not

enable two-phase commit operations. This would be necessary if you were to

manage more than a single database.

The following shows the XML configuration for the default data source definition

that you can use for most applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

■ The class attribute defines the type of data source you want to use.

■ The location , xa-location , and ejb-location attributes are JNDI names

that this data source is bound to within the JNDI namespace. While you must

specify all three, we recommend that you use only the ejb-location JNDI

name in the JNDI lookup for retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect

to be returned to you from the data source.

■ The URL, username, and password identify the database, its username, and

password.
Data Sources Primer 4-3

Definition of Data Sources
These fields can be modified in either the global Data Sources page or in the global

data-sources.xml modification page. To navigate to the data-sources.xml
modification page, select the default application from the OC4J Home page. Scroll

down to the Administration section and choose Advanced Properties.

The Data Sources chapter in the Oracle9iAS Containers for J2EE Services Guide fully

describes all elements for configuring any type of data source.

Configuring A New Data Source
You can configure global or local data sources. A global data source is available to

all deployed applications in this OC4J instance. A local data source is configured

within the deployed application and can only be used by that application.

See Oracle9iAS Containers for J2EE Services Guide for a full explanation of how to

configure a data source and the elements within the data-sources.xml file.

To configure global data sources, select one of the following off of the OC4J Home

Page:

■ Data Sources under the Application Defaults column—This page allows you to

add data source definitions one field at a time. See "Data Source Field Page" on

page 4-4 for a description of this page.

■ Advanced Properties in the default application—On the OC4J Home Page,

select the default application. Scroll down to the Administration section and

select Advanced Properties. Select data-sources.xml on this page. This allows

you to add data sources using the XML definitions. This is useful if you have

been provided the XML. You can just copy in the data source XML.

To configure local data sources, you perform the same selection off of the

application page. You must drill down to the particular application that this data

source will be local to. On the application page, choose Data Source under the

Resources column. It displays the same data source field page that is discussed in

"Data Source Field Page" on page 4-4.

Data Source Field Page When you choose Data Source under the Application Defaults

column, you can enter all configuration details about the data source into fields

provided. This page is divided up into four sections.

Figure 4–1 shows the General section.
4-4 Oracle9iAS Containers for J2EE User’s Guide

Definition of Data Sources
Figure 4–1 General Section of Data Source Definition

The General section enables you to define the following aspects about a data source:

■ Name—A user-defined name to identify the data source.

■ Description—A user-defined description of the data source.

■ Data Source Class—This is the class, such as

com.evermind.sql.ConnectionDataSource , that the data source is instantiated

as.

■ Schema—This is an optional parameter. Input the file name that contains the

Java to database mappings for a particular database.

■ Username/Password—The username and password used to authenticate to the

database that this data source represents.

■ JDBC URL—The URL to the database represented by this data source. For

example, if using an Oracle Thin driver, the URL could be the following:

jdbc:oracle:thin:@my-lap:1521:SID .

■ JDBC Driver—The JDBC driver to use. One example of a JDBC driver is

oracle.jdbc.driver.OracleDriver .
Data Sources Primer 4-5

Definition of Data Sources
Figure 4–2 shows the JNDI Locations section.

Figure 4–2 JNDI Locations

The JNDI Locations section enables you to define the JNDI location string that the

data source is bound with. This JNDI location is used within JNDI lookup for

retrieving this data source. For emulated, you must provide all locations, even

though only the EJB Aware Version Location is used. That is, you should only refer

to the EJB Aware Version Location in your application.

Figure 4–3 shows the Connection Attributes section.

Figure 4–3 Connection Attributes
4-6 Oracle9iAS Containers for J2EE User’s Guide

Definition of Data Sources
This section enables you to modify connection tuning parameters, including the

retry interval, pooling parameters, timeout parameters, and maximum attempt

parameter.

Figure 4–4 shows the Properties section for the data source.

Figure 4–4 Properties

If your data source is a third party data source, you may need to set certain

properties. These properties would be defined in the third-party documentation. In

addition, properties must be set for JTA transactions for the two-phase commit

coordinator.

Defining the Location of the DataSource XML Configuration File
The elements you add or modify are stored by Enterprise Manager in an XML file.

This file defaults to the name of data-sources.xml and is located in

/j2ee/home/config . If you want to change the name or the location of this file,

you can do this in the General Properties page off of the default application screen.

On the OC4J Home Page, scroll down to Default Application. Choose default. This

brings you to the default application screen. Scroll down to the Administration

section and choose General from the Properties column. Within the General

Properties screen, shown below, you can modify the name and location of the data

sources XML configuration file. Any location that you configure in the data sources

path field must be relative to the /j2ee/home/config directory.
Data Sources Primer 4-7

Retrieving a Connection From a Data Source
When applied, the data sources XML filename and path are stored in the global

application.xml file. In the application.xml file, the <data-sources> element

contains both the name and path of the data sources XML file.

The following shows the default configuration:

<data-sources
 path = "data-sources.xml"
/>

The path attribute of the <data-sources> tag contains both path and name of

the data-sources.xml file. The path can be fixed, or it can be relative to where

the application.xml is located.

Retrieving a Connection From a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use

JDBC or SQLJ statements. We recommend that you use data source objects in your

JDBC operations.

Do the following to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source

definition.

The lookup is performed on the logical name of the default data source, which

is an emulated data source that is defined in the ejb-location element.

put default general properties here.
4-8 Oracle9iAS Containers for J2EE User’s Guide

Retrieving a Connection From a Data Source
You must always cast or narrow the object that JNDI returns to the

DataSource , because the JNDI lookup() method returns a Java object .

2. Create a connection to the database represented by the DataSource object.

Once you have the connection, you can construct and execute JDBC statements

against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Use the following methods of the DataSource object in your application code to

retrieve the connection to your database:

■ getConnection();

The username and password are those defined in the data source definition.

■ getConnection(String username, String password);

This username and password overrides the username and password defined in

the data source definition.

You can cast the connection object returned on the getConnection method to

oracle.jdbc.OracleConnection and use all the Oracle extensions. This is

shown below:

oracle.jdbc.OracleConnection conn =
(oracle.jdbc.OracleConnection) ds.getConnection();

Once retrieved, you can execute SQL statements against the database either through

SQLJ or JDBC.

For more information, see the Data Sources chapter in the Oracle9iAS Containers for
J2EE Services Guide.
Data Sources Primer 4-9

Retrieving a Connection From a Data Source
4-10 Oracle9iAS Containers for J2EE User’s Guide

 Servlet Prim
5

Servlet Primer

This chapter introduces Java servlets and the Oracle9iAS Containers for J2EE

(OC4J). Read this chapter if you are not familiar with servlets or if you want to

refresh your knowledge of servlets. For more extensive information about servlets,

see the Oracle9iAS Containers for J2EE Servlet Developer’s Guide.

This chapter covers the following topics:

■ What Is a Servlet?

■ Two Servlet Examples

■ Session Tracking

■ Servlet Filters

■ Learning More About Servlets
er 5-1

What Is a Servlet?
What Is a Servlet?
A servlet is a Java program that runs in a J2EE application server, such as OC4J, and

receives and responds to HTTP requests from clients. Think of a servlet as the

server-side counterpart to a Java applet. A servlet is one of the four application

component types of a J2EE application. Others are applets and application client

programs on the client side, and EJBs on the server side. Servlets are managed by

the OC4J servlet container; EJBs are managed by the OC4J EJB container. These

containers, together with the JavaServer Pages container, form the core of OC4J.

JavaServer Pages (JSP) is another server-side component type. JSP pages also

involve the servlet container, because the JSP container itself is a servlet and is

therefore executed by the servlet container. The JSP container translates JSP pages

into page implementation classes, which are executed by the JSP container but

function similarly to servlets. See Chapter 6, "JSP Primer" and the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference for more information about

JSP pages.

Most servlets generate HTML text, which is then sent back to the client for display

by the Web browser, or sent on to other components in the application. Servlets can

also generate XML, to encapsulate data and send the data to the client or to other

components.

The Servlet Container
A servlet differs from a Java application client in that is has no static main()
method. Therefore, a servlet must execute under the control of a servlet container,

because it is the container that calls the methods of the servlet and provides services

that the servlet might need when executing.

The servlet itself overrides the access methods (implemented in the GenericServlet
or the HttpServlet classes) that it needs to process the request and return the

response. For example, most servlets override the doGet() and doPost() methods

(or both) of the HttpServlet to process HTTP GET and POST requests.

The servlet container provides the servlet easy access to properties of the HTTP

request, such as its headers and parameters. In addition, a servlet can use other Java

APIs such as JDBC to access a database, RMI to call remote objects, or JMS to

perform asynchronous messaging, plus many other Java and J2EE services.
5-2 Oracle9iAS Containers for J2EE User’s Guide

Two Servlet Examples
Servlet Performance
Because servlets are written in the Java programming language, they are supported

on any platform that has a Java virtual machine and a Web server that supports

servlets. You can use servlets on different platforms without recompiling and you

can package servlets together with associated files such as graphics, sounds, and

other data to make a complete Web application. This greatly simplifies application

development.

It also means that your servlet-based application that was developed to run on

another application server can be ported to OC4J with little effort. If your

application was developed for an application server that complies with J2EE, then

the porting effort is minimal.

Servlets outperform earlier ways of generating dynamic HTML, such as server-side

includes or CGI scripts. Once a servlet is loaded into memory, it can run on a single

lightweight thread; CGI scripts must be loaded in a different process for every

request.

A servlet, along with optional servlet filters, relates to the servlet container and a

client, such as a Web browser. When the Web listener is the Oracle HTTP Server,

then the connection to the OC4J servlet container is through the mod_oc4j module.

See the Oracle HTTP Server Administration Guide for details.

Two Servlet Examples
A good way to learn about servlets and how to code them is to view some simple

servlet examples. This section displays the code for two servlets and annotates the

code with comments. For simplicity, numbered callouts are located beside sections

of code and the corresponding descriptions for each number section appears below

the code example.
 Servlet Primer 5-3

Two Servlet Examples
The Hello World Servlet
Here is another "Hello World" demo. But it does serve to show the basic framework

you use to write a servlet. This servlet just prints "Hi There!" back to the client.

import java.io.*; // 1. (first comment)
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet { // 2.

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException { // 3.
 resp.setContentType("text/html"); // 4.

 ServletOutputStream out = resp.getOutputStream(); // 5.
 out.println("<html>"); // 6.
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hi There!</h1>");
 out.println("</body></html>"); // 7.
 }
}

Comments on HelloWorldServlet
1. You must import at least these packages for any servlet you write. Other

packages are needed for SQL operations or to support Oracle JDBC drivers.

2. Your servlet class extends the HttpServlet class, which implements the

methods that a servlet uses. You override the methods you need for your

particular servlet implementation.

3. The doGet() method here overrides the one in the HttpServlet class, which

services HTTP GET requests. Like almost all HttpServlet methods, doGet()
takes request and response objects as parameters. In this example, no methods

are called on the request object (req), because this example requires no input

(that is, request) data.

4. Call the setContentType() method on the response object to set the response

content MIME type in the header. Here, it is text/html , because that is what

this servlet generates.

5. You use the response object (resp) to get a writer that sends the output of the

server back to the client. You could also get a PrintWriter from the response

object.
5-4 Oracle9iAS Containers for J2EE User’s Guide

Two Servlet Examples
6. The remainder of the code generates the HTML that the client Web browser will

print when it gets the response. This is the identical HTML that you would code

to write a simple Web page to display "Hi There!" in a heading one (<h1>)

format.

7. Do not forget to close off the page you are generating by closing the body and

html tags.

Save this servlet in a file called HelloWorldServlet.java . Compile the servlet,

using a Java 1.3.x compliant compiler:

% javac HelloWorldServlet.java

If you would like to try out this servlet in OC4J, just configure a web.xml and

archive these in a WAR file. Deploy the WAR file using the Deploy WAR File
button on the OC4J Home Page. In the wizard, provide the URL servlet context as

/j2ee/hello . Thus, the WAR is deployed into the /j2ee/hello servlet context.

Having made sure that OC4J is up and running, you can invoke this servlet and see

its output from a Web browser. Just enter the URL:

http://< apache_host >:< port >/j2ee/hello/servlet/HelloWorldServlet

The /servlet part of the URI is an OC4J feature that starts up any servlet

indicated, which in this case is the HelloWorldServlet . Alternatively, you could

have configured a context for the servlet in the application web.xml . For example,

the HelloWorldServlet could be mapped to a URL, such as "world ", as follows:

<servlet-mapping>
 <servlet-name>HelloWorldServlet</servlet-name>
 <url-pattern>/world</url-pattern>
</servlet-mapping>

Thus, you would invoke the servlet as follows:

http://< apache_host >:< port >/j2ee/hello/world

The <apache_host > represents the name of the host that the OC4J server is

running on. By default in Oracle9iAS, specify port 7777 for access through the

Oracle HTTP Server with Oracle9iAS Web Cache enabled.

If your servlet exists within a package (or packages), you would include the

packages in the <servlet-name> definition. The following shows the

<servlet-name> definition for the HelloWorldServlet that is included in the

"my" package. If this servlet is included in a nested group of packages, they are

separated by a period.
 Servlet Primer 5-5

Two Servlet Examples
<servlet-mapping>
 <servlet-name>my.HelloWorldServlet</servlet-name>
 <url-pattern>/world</url-pattern>
</servlet-mapping>

Request and Response Objects
The HttpServlet methods, such as doGet() and doPost() , take two parameters: an

HttpServletRequest object and an HttpServletResponse object. The servlet

container passes these objects to the servlet and receives the response to pass on to

the client, to the next servlet in a filter chain, or to another server object such as an

EJB.

The request and response objects support methods that enable you to write efficient

servlet code. In the preceding example, you saw that you can get a stream writer

object from the response and use it to write statements to the response stream.

The GetEmpInfo Servlet
The HelloWorldServlet example shows a minimal servlet—it really does not do

very much. But the power of servlets comes from their ability to retrieve data from a

database. A servlet can generate dynamic HTML: the servlet can get information

from a database and send it back to the client.

Of course, a servlet can also update a database, based upon information passed to it

in the HTTP request.

In the next example, a servlet gets some information from the client (the Web

browser) and queries a database to get information based on the request data.

Although there are many ways that a servlet can get information from its client, this

example uses a very common method: reading a query string from the HTTP

request.

Note: This example works only if the HR schema has been

installed in the Oracle database. This schema is part of the example

Common Schemas set.
5-6 Oracle9iAS Containers for J2EE User’s Guide

Two Servlet Examples
The HTML Form
The Web browser accesses a form in a page that is served through the OC4J Web

listener. First, enter the following text into a file. Next, name the file EmpInfo.html .

<html>

<head>
<title>Query the Employees Table</title>
</head>

<body>
<form method=GET ACTION="/servlet/GetEmpInfo">
The query is

SELECT LAST_NAME, EMPLOYEE_ID FROM EMPLOYEES WHERE LAST NAME LIKE ?.<p>

Enter the WHERE clause ? parameter (use % for wildcards).

Example: 'S%':

<input type=text name="queryVal">
<p>
<input type=submit>
</form>

</body>
</html>

The Servlet
The servlet that the preceding HTML page calls takes the input from a query string.

The input is the completion of the WHERE clause in the SELECT statement. The

servlet then appends this input to complete the database query. Most of the

complexity of this servlet comes from the JDBC code required to connect to the data

server and retrieve the query rows. If you are not familiar with JDBC, see the

Oracle9i JDBC Developer’s Guide and Reference.

Here is the code for the servlet:

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; //1. (see comments below)
import javax.sql.*; // 2.
import oracle.jdbc.*;

public class GetEmpInfo extends HttpServlet {
 Servlet Primer 5-7

Two Servlet Examples
 DataSource ds = null;
 Connection conn = null;

 public void init() throws ServletException { // 3.
 try {
 InitialContext ic = new InitialContext(); // 4.
 ds = (DataSource) ic.lookup("java:comp/env/jdbc/OracleDS"); // 5.
 conn = ds.getConnection(); // 6.
 }
 catch (SQLException se) { // 7.
 throw new ServletException(se);
 }
 catch (NamingException ne) { // 8.
 throw new ServletException(ne);
 }
 }

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 String queryVal = req.getParameter("queryVal"); // 9.
 String query = //10.
 "select last_name, employee_id from employees " +
 "where last_name like " + queryVal;

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>");
 out.println("<head><title>GetEmpInfo</title></head>");
 out.println("<body>");

 try {
 Statement stmt = conn.createStatement(); //11.
 ResultSet rs = stmt.executeQuery(query); //12.

 for (int count = 0; ; count++) { //13.
 if (rs.next()) {
 out.println(rs.getString(1) + " " +
 rs.getInt(2) + "
");
 }
 else {
 out.println("<h3>" + count + " rows retrieved</h3>");
 break;
 }
5-8 Oracle9iAS Containers for J2EE User’s Guide

Two Servlet Examples
 }
 rs.close(); //14.
 stmt.close();
}
 catch (SQLException se) { //15.
 se.printStackTrace(out);
 }

 out.println("</body></html>");
 }

 public void destroy() { //16.
 try {
 conn.close();
 }
 catch (SWLException ignored) {
 }
 }

}

Comments on GetEmpInfo
1. Import these packages to support the JNDI API.

2. These packages support SQL and the Oracle JDBC drivers.

3. This example overrides the HttpServlet init() method to look up a data

source and get a database connection using the data source.

4. Get an initial JNDI context. For more information about using JNDI with the

OC4J server, see the Oracle9iAS Containers for J2EE Services Guide.

5. Look up a data source with the JNDI name OracleDS . This assumes it has been

configured in Enterprise Manager using the following element definitions:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
 Servlet Primer 5-9

Two Servlet Examples
/>

You can configure this data source either using the Advanced Properties or the

Data Source links in the Administration section of either the OC4J Home Page

or the application page.

In Oracle9iAS 9.0.2, it is advisable to use only the ejb-location JNDI name

in the JNDI lookup for a data source. See the Oracle9iAS Containers for J2EE
Services Guide for more information about data sources.

6. Use the data source to get a connection to the database.

7. These look up and SQL operations are performed in a try...catch sequence,

to catch JNDI naming or SQL errors.

8. Catch a JNDI naming exception, and throw it as a ServletException .

9. Get the parameter passed in the request header from the HTML form.

10. Construct a SQL query using the parameter in the WHERE clause.

11. Open a statement object.

12. Open a JDBC ResultSet object. This causes the statement to execute the query,

and returns a result set, which may be empty, or else contains all the rows that

satisfy the query.

13. Loop through the rows of the result set. The for loop exits after the last row

retrieved, at the break statement. Print the results, using the getString() and

getInt() methods of the result set instance. See the Oracle9i JDBC Developer’s
Guide and Reference for more information about the result set’s getXXX()
methods.

14. Close the result set, the statement, and the connection.

15. Catch any SQL exceptions, such as connection errors or table-not-found errors.

16. The destroy() method closes the database connection.
5-10 Oracle9iAS Containers for J2EE User’s Guide

Two Servlet Examples
How GetEmpInfo Runs
When your browser invokes EmpInfo.html , you should see a browser window that

looks something like this:

Entering ’S%’ in the form, and pressing Submit Query calls the GetEmpInfo servlet,

and the results look like this:

Better Output The output from the GetEmpInfo servlet is not very well formatted. But

since the servlet generates HTML, there’s no reason why you can’t make the output

a bit prettier. Just add an HTML table statement before the Java for statement, and

replace the out.println() code in the for with some out.println() calls that

generate HTML table rows. Here is one way to do this:

out.println("<table border=1 width=50%>");
out.println("<tr><th width=75%>Last Name</th><th width=25%>Employee " +
 ID</th></tr>");
 Servlet Primer 5-11

Two Servlet Examples
for (int count = 0; ; count++) {
 if (rs.next()) {
 out.println
 ("<tr><td>" + rs.getString(1) + "</td><td>" +
 rs.getInt(2) + "</td></tr>");
 }
 else {
 out.println("</table><h3>" + count + " rows retrieved.</h3>");
 break;
 }
}

This simple modification generates better-looking output in a browser window, as

shown here:
5-12 Oracle9iAS Containers for J2EE User’s Guide

Session Tracking
Session Tracking
Servlets, and their JSP relatives, have come into widespread use for applications like

shopping carts. For example, clients search for an item on a web site, then go to a

page that describes the item more fully, and then might decide to buy the item,

putting in their shopping basket. Finally, they check out, giving credit card details

and a shipping address. To implement such a site, the server must be able to track

the identity of clients as they migrate from page to page of the Web site.

Several mechanisms have been developed to do this, but the most widely-used is

undoubtedly the cookie. A cookie is just a small piece of information, that includes

the server session ID, that the server sends back to the client. The client (the Web

browser, for example) then returns the cookie to the server on each new HTTP

request. So a cookie provides a means to let a client synchronize with a server

session to maintain stateful information while still using the stateless HTTP

protocol.

In addition to cookies, for client to server communication, the OC4J servlet

container supports the HttpSession object, as described in the servlet specifications.

An HTTP session object is scoped over the Web application only. This means that

you cannot use session objects to share data between applications, or between

different clients. To do these things, you should persist the data in a database or

some other location.

Session Tracking Example
The SessionServlet code below implements a servlet that establishes an

HttpSession object, and uses that object to maintain a counter that records the

number of times the session has been accessed. The servlet also prints a lot of

information obtained both from the request and the session objects, to illustrate

some of the capabilities of the HttpServletRequest and the HttpSession classes.

import java.io.*;
import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Date;

public class SessionServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 Servlet Primer 5-13

Session Tracking
 HttpSession session = req.getSession(true); // 1.

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 out.println("<head><title> " + "SessionServlet Output " +
 "</title></head><body>");
 out.println("<h1> SessionServlet Output </h1>");
 Integer ival =
 (Integer) session.getAttribute("sessionservlet.counter"); // 2.
 if (ival==null) {
 ival = new Integer(1);
 }
 else {
 ival = new Integer(ival.intValue() + 1);
 }

 session.setAttribute("sessionservlet.counter", ival); // 3.

 out.println(" You have hit this page " +
 ival + " times.<p>"); // 4.
 out.println("Click <a href=" +
 res.encodeURL(HttpUtils.getRequestURL(req).toString()) +
 ">here"); // 5.
 out.println(" to ensure that session tracking is working even " +
 "if cookies aren't supported.
");
 out.println("Note that by default URL rewriting is not enabled" +
 " due to its large overhead.");

 out.println("<h3>Request and Session Data</h3>"); // 6.
 out.println("Session ID in Request: " +
 req.getRequestedSessionId());
 out.println("
Session ID in Request is from a Cookie: " +
 req.isRequestedSessionIdFromCookie());
 out.println("
Session ID in Request is from the URL: " +
 req.isRequestedSessionIdFromURL());
 out.println("
Valid Session ID: " +
 req.isRequestedSessionIdValid());

 out.println("<h3>Session Data</h3>"); // 7.
 out.println("New Session: " + session.isNew());
 out.println("
 Session ID: " + session.getId());
 out.println("
 Creation Time: " + new Date(session.getCreationTime()));
 out.println("
Last Accessed Time: " +
 new Date(session.getLastAccessedTime()));
5-14 Oracle9iAS Containers for J2EE User’s Guide

Session Tracking
 out.println("</body>");
 out.close();
 }

 public String getServletInfo() { //8.
 return "A simple session servlet";
 }
}

SessionServlet Comments
1. This line gets the session object. The getSession(true) method creates a new

session if one hasn’t already been created.

2. The number of hits is retrieved from the session object. Note that this counter

must be an object—it cannot be a primitive int value. The name

sessionservlet.counter is an arbitrary key name for the attribute that is

assigned by this servlet.

3. Set the new, incremented hit count.

4. Print the result.

5. The place to go to have the servlet do URL rewriting.

6. Get information from the request headers, and print it.

7. Get and print some data about the session.

8. getServletInfo() is a method that the container can call when it needs to

supply information about what the servlet does. A servlet can override this

GenericServlet method to provide meaningful information for the container.

When you invoke the SessionServlet from a web browser, you will see something

like the following:
 Servlet Primer 5-15

Servlet Filters
Servlet Filters
You can use filters to process the requests that servlets receive, process the

responses, or do both. For example, an application might need to provide special

logging of certain kinds of requests for one or more servlets, or might need to

encrypt the output (response objects) of a whole class of servlets.

Unlike servlets, filters do not generally create a response. You use filters to modify

the requests or responses, or to perform some other action based on the requests or

responses. These actions could include:

■ examining a request before calling a servlet

■ modifying the request or response headers or data (or both) by providing a

custom version of the object that wraps the real request or response objects
5-16 Oracle9iAS Containers for J2EE User’s Guide

Servlet Filters
■ performing some action before the servlet is invoked, or after it completes, or

both (for example, logging)

■ intercept a servlet after the servlet is called

■ block a servlet from being called at all

The javax.servlet.Filter interface was added to the Servlet 2.3 specification to

allow an application to perform these kinds of tasks. Several filters can be chained

together to perform a series of tasks on requests or responses.

A Logging Filter
This example implements a simple filter that logs the amount of time (in

milliseconds) required to process a servlet request. In this example, the filter is

deployed to the default Web application, and a time log of each servlet or JSP

invocation is written to the global-application.log file in the j2ee/home/log
directory. To see the results of the filter, just examine this file in a separate window

as servlet requests are being processed. On a UNIX-type system, you can use the

command:

% tail -f j2ee/home/log/global-application.log

LogFilter Code
The log filter implementation is commented, just like the previous examples.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public
class LogFilter implements Filter { //1.
 FilterConfig config;
 ServletContext context;

 public
 void init(FilterConfig config) { //2.
 this.config = config;
 context = config.getServletContext(); //3.
 }

 public
 void destroy() { //4.
 Servlet Primer 5-17

Servlet Filters
 context.log("Log Filter terminating.");
 }

 public //5.
 void doFilter(ServletRequest req,
 ServletResponse res,
 FilterChain chain) throws IOException, ServletException {
 long bef = System.currentTimeMillis();
 chain.doFilter(req, res); //6.
 long aft = System.currentTimeMillis();
 HttpServletRequest nreq = (HttpServletRequest) req;
 context.log("Request from " + nreq.getRequestURI() + ": " + (aft-bef));
 }
}

Comments on the LogFilter Example
1. This filter implements the three methods specified in the

javax.servlet.Filter interface: doFilter() , init() , and destroy() .

2. A filter saves its configuration parameters when the container calls the init()
method at startup.

3. This example gets a ServletContext object from the configuration, to use

writing the to the log file.

4. The destroy() method must be implemented. The container calls destroy()
before terminating the filter, so put any clean-up code, such as closing file

handles, here.

5. doFilter() takes request and response objects as parameters, and a

FilterChain object that lets the filter pass on the request and response objects

(perhaps wrapped) to the next filter in the chain, or at the end of the chain, to

the servlet or back to the container. The container calls filters before and after

processing the target servlet.

6. The servlet’s context is obtained from the filter config object.

This filter is solitary (there is no chain), so the FilterChain parameter is not used in

the doFilter() invocation.

After the servlet has finished, the filter computes the time required to process the

servlet (in milliseconds), and writes the value out to the log file, along with the URI

that invoked the servlet for which the filter applies.
5-18 Oracle9iAS Containers for J2EE User’s Guide

Servlet Filters
Configuring Filters
Filters are configured in the deployment descriptor of a web application. Create a

<filter> tag in the web.xml file, indicating a name for the filter and the name of the

class that implements the filter. The filter in this example is intended to monitor all

servlet requests for the application, so there must be a mapping to indicate that and

to have it filter all requests: ’/*’ .

Therefore, to deploy this filter in the default Web application, enter the following

lines in web.xml :

<web-app>
 ...
 <filter>
 <filter-name>log</filter-name>
 <filter-class>LogFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>log</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 ...
</web-app>

Example Output
This sample shows the output that this filter generates. The PrimeSearcher servlet

was initialized by the container, and called a few times, then the server was shut

down, but first the container called the filter destroy() method. The lines that begin

"Request from..." are the filter output.

8/1/01 8:50 AM defaultWebApp: 1.0.2.2 Stopped
8/1/01 8:50 AM defaultWebApp: PrimeSearcher: init
8/1/01 8:50 AM defaultWebApp: 1.0.2.2 Started
8/1/01 8:50 AM defaultWebApp: PrimeSearcher: init
8/1/01 8:50 AM defaultWebApp: Request from /servlet/PrimeSearcher: 1
8/1/01 10:10 AM defaultWebApp: Request from /servlet/PrimeSearcher: 1
8/2/01 5:56 AM defaultWebApp: Request from /servlet/PrimeSearcher: 2
8/2/01 2:12 PM defaultWebApp: Log Filter done.
8/2/01 2:12 PM defaultWebApp: 1.0.2.2 Stopped
8/2/01 2:12 PM Stopped (Shutdown executed by admin from 130.35.172.234
(dlsun1497))

For more information about filters, filter chains, and filter deployment, see the

Oracle9iAS Containers for J2EE Servlet Developer’s Guide.
 Servlet Primer 5-19

Learning More About Servlets
Learning More About Servlets
Your first step in learning more about servlets should be to read the Oracle9iAS
Containers for J2EE Servlet Developer’s Guide. This guide tells you what you need to

know to develop servlets and web-tier applications in the OC4J environment.

To get complete documentation on the servlet APIs, visit the Sun Microsystems Web

site at:

http://java.sun.com/j2ee/docs.html

You can also find a great deal of tutorial information on servlets as well as other

aspects of J2EE application development at this site.

Finally, there are several trade press books that will teach you how to develop

servlets, and deploy them in J2EE-compatible applications. In particular, the books

from O’Reilly & Associates (http://www.oreilly.com) and Wrox

(http://www.wrox.com) are very useful.
5-20 Oracle9iAS Containers for J2EE User’s Guide

6

JSP Primer

This chapter covers the basics of running JavaServer Pages (JSP) applications in the

Oracle9iAS Containers for J2EE (OC4J) environment. It is assumed that you have

installed OC4J and that you have a basic understanding of Java programming and

Web application technology. Although this chapter includes a brief overview, you

should already be familiar with JSP technology. This chapter also introduces Oracle

value-added features for JSP support.

For detailed information about the Oracle JSP implementation, as well as an

overview of standard syntax and key features, please refer to the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference.

This chapter includes the following topics:

■ A Brief Overview of JavaServer Pages Technology

■ Running a Simple JSP Page

■ Running a JSP Page That Invokes a JavaBean

■ Running a JSP Page That Uses Custom Tags

■ Overview of Oracle Value-Added Features for JSP Pages

For a complete description on Web application deployment, see "Deploying

Applications" on page 2-20.
JSP Primer 6-1

A Brief Overview of JavaServer Pages Technology
A Brief Overview of JavaServer Pages Technology
This section provides a quick overview of the following:

■ What Is JavaServer Pages Technology?

■ JSP Translation and Runtime Flow

■ Key JSP Advantages

■ JSP in Application Architecture

What Is JavaServer Pages Technology?
JSP, a part of the J2EE platform, is a technology that is specified by Sun

Microsystems as a convenient way to generate dynamic content in pages that are

output by a Web application. This technology, which is closely coupled with Java

servlet technology, allows you to include Java code snippets and calls to external

Java components within the HTML code, or other markup code such as XML, of

your Web pages. JSP technology works nicely as a front-end for business logic and

dynamic functionality encapsulated in JavaBeans and Enterprise JavaBeans (EJBs).

JSP syntax within HTML or other code is designated by being enclosed within

<%...%> syntax. There are variations on this: <%=...%> to designate expressions

or <%!...%> to designate declarations, for example.

A JSP page is translated into a Java servlet before being executed, and it processes

HTTP requests and generates responses similarly to any other servlet. JSP

technology offers a more convenient way to code the servlet. Translation usually

occurs "on demand"—that is, as the application is run. The JSP translator is typically

triggered by the .jsp file name extension in a URL. Additionally, as an Oracle

feature, the .sqljsp file name extension, used for SQLJ JSP pages, will also trigger

the JSP translator, as well as the SQLJ translator.

JSP pages are fully interoperable with servlets—a JSP can include output from a

servlet or forward to a servlet, and a servlet can include output from a JSP or

forward to a JSP.

Here is the code for a simple JSP, welcomeuser.jsp :

<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a fabulous day! :-)</P>
Enter name:
6-2 Oracle9iAS Containers for J2EE User’s Guide

A Brief Overview of JavaServer Pages Technology
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This JSP page will produce something like the following output if the user inputs

the name "Amy":

Welcome Amy!

Today is Wed Jun 21 13:42:23 PDT 2000. Have a fabulous day! :-)

JSP Translation and Runtime Flow
Figure 6–1 shows the flow of execution when a user runs a JSP page, specifying its

URL in the browser.

Because of the .jsp file name extension, the following steps occur automatically:

1. The JSP translator is invoked, translating Hello.jsp and producing the file

Hello.java . (For a .sqljsp file, it would produce Hello.sqlj and the

SQLJ translator would be invoked to perform SQLJ translation and produce

Hello.java .)

2. The Java compiler is invoked, creating Hello.class .

3. Hello.class is executed as a servlet, using the JSP runtime library.

4. The Hello class accesses the database through JDBC or SQLJ, as appropriate,

and sends its output to the browser.
JSP Primer 6-3

A Brief Overview of JavaServer Pages Technology
Figure 6–1 JSP Translation and Runtime Flow

Key JSP Advantages
For most situations, there are at least two general advantages to using JSP pages

instead of servlets:

■ Coding convenience—JSP syntax provides a shortcut for coding dynamic Web

pages, typically requiring much less code than equivalent servlet code. The JSP

translator also automatically handles some servlet coding overhead for you,

such as implementing standard JSP/servlet interfaces and creating HTTP

sessions.

■ Separation of static content and dynamic content—JSP technology lets you

separate the development efforts between the HTML code that determines

static page presentation and the Java code that processes business logic and

presents dynamic content. This makes it easier to split maintenance

responsibilities between presentation and layout specialists who may be

proficient in HTML but not Java, and code specialists who may be proficient in
6-4 Oracle9iAS Containers for J2EE User’s Guide

A Brief Overview of JavaServer Pages Technology
Java but not HTML. In a typical JSP, most Java code and business logic will not

be within snippets embedded in the JSP page; instead, they will be in JavaBeans

or Enterprise JavaBeans that are invoked from the JSP page.

JSP in Application Architecture
JSP pages fit well into common application architectures such as

Model-View-Controller. In this architecture, a "controller" servlet or JSP page acts as

the front-end handler of the HTTP request, while JavaBeans or Enterprise JavaBeans

provide the back-end data "model", taking care of business logic. The presentation

from a JSP—perhaps, but not necessarily, the same page that acts as the

controller—provides the final "view" of the data. Figure 6–2 shows this architecture.

Figure 6–2 JSP in the Model-View-Controller Architecture
JSP Primer 6-5

Running a Simple JSP Page
Running a Simple JSP Page
This section shows you how to run the JSP example from "What Is JavaServer Pages

Technology?" on page 6-2, and assumes the following:

■ You have a working JDK (1.3.x).

■ You have installed the OC4J software.

■ You have started the OC4J Web server.

Create and Deploy the JSP
Copy or type the sample code from "What Is JavaServer Pages Technology?" on

page 6-2 into a file, and save it as welcomeuser.jsp . Then, archive

welcomeuser.jsp into a WAR file with an appropriate web.xml and deploy it

using the Enterprise Manager deployment wizard, mapping it to the /wuser
servlet context in the URL Mapping screen.

Run welcomeuser.jsp
When specifying a URL to execute an application in Oracle9iAS, note the following:

■ By default in OC4J, use port 7777 to go through the Oracle HTTP Server, with

Oracle9iAS Web Cache enabled.

■ The URL path maps to the directory path beneath the default Web application

directory (or other Web application directory, as applicable).

For example, if you mapped the WAR file containing welcomeuser.jsp to the

/wuser servlet context, you can run the page through the Oracle HTTP Server a

URL such as the following:

http://< apache_host >:< port >/wuser/welcomeuser.jsp

This uses <apache_host > to represent the name of the system where OC4J and

the application are installed. Typically, use 7777 for the port.

If the JSP is not at the top level in the WAR file, but is contained within a

subdirectory below the top level, then this directory must be included in the HTTP

URL separated by a backslash. For example, if the welcomeuser.jsp is located in

the mydir directory in the WAR file, then you would invoke it as follows:

http://< apache_host >:< port >/wuser/mydir/welcomeuser.jsp

When you first run the page, you will see something like the following output:
6-6 Oracle9iAS Containers for J2EE User’s Guide

Running a JSP Page That Invokes a JavaBean
Submitting a name, such as Amy, updates the page, as shown in the next screen.

Running a JSP Page That Invokes a JavaBean
As mentioned earlier, JSP technology works nicely as a front-end for business logic

and dynamic functionality encapsulated in JavaBeans. In fact, most well-designed

JSP applications have relatively little Java code in the JSP page; instead, the Java

logic and business logic are contained in other components, such as JavaBeans, that

are invoked from the page. This section contains the code for a JavaBean and a JSP

page that calls it, and also shows where to place the files appropriately in OC4J, and

how to run the application.

This section documents the following steps:

■ Create the JSP—usebean.jsp

■ Create the JavaBean—NameBean.java

■ Run usebean.jsp
JSP Primer 6-7

Running a JSP Page That Invokes a JavaBean
Create the JSP—usebean.jsp
This section lists the source for a JSP page that uses a standard JSP useBean tag to

invoke a JavaBean. To run the code, you can copy or type it into a file called

usebean.jsp . For additional information, see the notes following the code.

<%@ page import="beans.NameBean" %>

<jsp:useBean id="pageBean" class="beans.NameBean" scope="page" />
<jsp:setProperty name="pageBean" property="*" />

<HTML>
<HEAD> <TITLE> The Use Bean JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<H3> Welcome to the Use Bean JSP </H3>

<% if (pageBean.getNewName().equals("")) { %>
 I don't know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %> !
<% } %>

<P>May we have your name?
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>
<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Code Notes

■ The first line of code is a JSP construct called a page directive that imports the

JavaBean class.

■ The standard useBean tag instantiates the JavaBean, specifying the package

and class name and the instance name.

■ A scope setting of page specifies that the JavaBean instance is accessible only

from the JSP page where it was created.

■ The standard setProperty tag sets the values of one or more properties for

the specified bean instance. A property setting of * results in iteration over the

HTTP request parameters, matching bean property names with request
6-8 Oracle9iAS Containers for J2EE User’s Guide

Running a JSP Page That Invokes a JavaBean
parameter names and setting bean property values according to the

corresponding request parameter values. In this case, the only bean property is

newName. This corresponds to the newName HTTP request parameter, specified

in the HTML forms code in the page.

Create the JavaBean—NameBean.java
Here is the code for the JavaBean class, NameBean. The package name specified

here must be consistent with the page directive and the useBean tag of the JSP

page. To run the JSP page, you can copy or type this code into a file,

NameBean.java , and then compile it. This file must be in a beans subdirectory,

according to the package name.

package beans;

public class NameBean {

 String newName="";

 public void NameBean() { }

 public String getNewName() {
 return newName;
 }
 public void setNewName(String newName) {
 this.newName = newName;
 }
}

Notes:

■ There are many other uses for page directives, and many other

kinds of directives.

■ Other possible scopes are request , session , and

application .

■ In addition to the setProperty tag for use with the useBean
tag, there is a standard getProperty tag.

For general information about any of these topics, see the

Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference.
This manual also has an expanded usebean example that uses

session scope as well as page scope.
JSP Primer 6-9

Running a JSP Page That Invokes a JavaBean
Run usebean.jsp
Deploy the WAR file that contains the usebean.jsp to the /usebean servlet

context. You specify the servlet context in the URL Mapping screen within the

deployment wizard.

This example, as before, uses <apache_host > as the name of the system where

OC4J and the application are installed. Then, execute the JSP, as follows:

http://< apache_host >:< port >/usebean/usebean.jsp

This assumes that the OC4J Web server is still running. Typically use port 7777.

When you run this page, you will initially see the following output:

Once you submit a name, such as Ike, the page is updated, as follows. The prompt

is in case you want to enter another name.
6-10 Oracle9iAS Containers for J2EE User’s Guide

Running a JSP Page That Uses Custom Tags
Running a JSP Page That Uses Custom Tags
The Sun Microsystems JavaServer Pages specification includes standard tags to use

in JSP pages to perform various tasks. An example is the useBean tag employed in

"Running a JSP Page That Invokes a JavaBean" on page 6-7. The JSP 1.1 specification

also outlines a standard framework that allows vendors to offer their own custom

tag libraries in a portable way.

OC4J supplies portable tag libraries with functionality in several areas, including

database access, XML/XSL processing, e-mail, file uploading and downloading,

and programming convenience. These libraries are described in the Oracle9iAS
Containers for J2EE JSP Tag Libraries and Utilities Reference.

This section shows an example that uses tags from the Oracle SQL tag library to

access and query a database and output the results to the browser.

Here are the steps in using a JSP tag library:

■ Each tag library has a tag library description (TLD) file.

■ Each tag requires support classes, at least a tag handler class with the code to

execute tag semantics, and possibly a tag-extra-info class with additional

processing logic. (These classes implement standard tag interfaces, according to

the JSP specification.) Make these classes available to your Web application.

■ Put a standard taglib directive in your JSP code that specifies the location and

name of the TLD file as well as the tag prefix to use in your code.

This section documents the following steps:

■ Create the JSP Page—sqltagquery.jsp

■ Set Up Files for Tag Library Support

■ Run sqltagquery.jsp

For information about the standard tag library framework, including TLD files, tag

handler classes, and tag-extra-info classes, please refer to the Oracle9iAS Containers
for J2EE Support for JavaServer Pages Reference.

Create the JSP Page—sqltagquery.jsp
This section provides the source for a JSP page that uses SQL tags that are supplied

with OC4J to open a database connection, run a simple query, output the results as

an HTML table, and close the connection. To run the code, you can copy or type it

into a file called sqltagquery.jsp . For additional information, see the notes

following the code.
JSP Primer 6-11

Running a JSP Page That Uses Custom Tags
<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
<HTML>
 <HEAD>
 <TITLE>The SQL Tag Query JSP</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <HR>
 <sql:dbOpen URL="jdbc:oracle:thin:@dbasehost:5521:orcl"
 user="scott" password="tiger" connId="con1">
 </sql:dbOpen>
 <sql:dbQuery connId="con1">
 select * from EMP
 </sql:dbQuery>
 <sql:dbClose connId="con1" />
 <HR>
 </BODY>
</HTML>

Code Notes

■ The first line of code is a standard taglib directive to specify the name and

location of the TLD file for the SQL tag library; this must indicate where you

placed the file. Alternatively, you can use a shortcut URI that you designate

through taglib-uri and taglib-location specifications in the web.xml
file.

■ This page uses the Oracle JDBC Thin driver to connect as scott with password

tiger to a database with SID orcl through port 5521 of the system

dbasehost . Update the code to substitute an appropriate user name,

password, and URL if you want to run the page.

For more information about the standard JSP tag library framework and features,

please refer to the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference. For more information about the SQL tag library that is supplied with

Oracle9iAS, refer to the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Set Up Files for Tag Library Support
Put sqltaglib.tld into the /WEB-INF directory of the WAR file for the

application.

Your Web application uses the following JAR files that are installed with OC4J:

ojsp.jar , ojsputil.jar , xmlparserv2.jar , and xsu12.jar . Typically, these
6-12 Oracle9iAS Containers for J2EE User’s Guide

Running a JSP Page That Uses Custom Tags
are installed into the j2ee/home/lib directory, which is included in the

CLASSPATH. The tag handler and tag-extra-info class files are in ojsputil.jar .

Run sqltagquery.jsp
As with earlier examples in this chapter, you will use a similar URL to run the page

from a browser. Deploy the WAR file that contains the sqltagquery.jsp to the

/sqltag servlet context. You specify the servlet context in the URL Mapping

screen within the deployment wizard.

This example, as before, uses <apache_host > as the name of the system where

OC4J and the application are installed. Then, execute the JSP, as follows:

http://< apache_host >:< port >/sqltag/sqltagquery.jsp

This assumes that the OC4J Web server is still running. Typically use port 7777.

This page produces output such as the following screen.

Notes:

■ Placing ojsputil.jar into the j2ee/home/lib directory

also gives you access to data-access JavaBeans and other Java

utility classes that come with OC4J. These classes are described

in the Oracle9iAS Containers for J2EE JSP Tag Libraries and
Utilities Reference.

■ If you choose to run the demos in the ojspdemos.ear file, the

TLD files are automatically placed in the WEB-INF directory of

the ojspdemos application. (The demos as a whole have their

own application root.)
JSP Primer 6-13

Running a JSP Page That Uses Custom Tags
Important: The Oracle JDBC driver classes are supplied with the

OC4J download, in the j2ee/home/lib directory, but you must

ensure that they are compatible with your JDK and your database

version. The classes111.zip or .jar library is for JDK 1.1.x; the

classes12.zip or .jar library is for JDK 1.2.x or higher. Also,

the driver release number, such as 8.1.7 or 9.0.1, must be compatible

with your database release number.
6-14 Oracle9iAS Containers for J2EE User’s Guide

Overview of Oracle Value-Added Features for JSP Pages
Overview of Oracle Value-Added Features for JSP Pages
OC4J JSP provides the following extended functionality through custom tag

libraries and custom JavaBeans and classes that are generally portable to other JSP

environments. These features are documented in the Oracle9iAS Containers for J2EE
JSP Tag Libraries and Utilities Reference.

■ extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event handling

■ integration with XML and XSL through custom tags

■ data-access JavaBeans

■ the Oracle JSP Markup Language (JML) custom tag library, which reduces the

level of Java proficiency required for JSP development

■ a custom tag library for SQL functionality (used in "Running a JSP Page That

Uses Custom Tags" on page 6-11)

■ additional utility tags for functionality such as uploading or downloading files

or sending e-mail

In addition, the OC4J JSP container offers integration with caching technologies,

documented in the Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities
Reference:

■ JESI tags for Edge Side Includes

■ Web Object Cache tags and API

The OC4J JSP container also supports the following Oracle-specific programming

extensions, documented in the Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference.

■ support for SQLJ, a standard syntax for embedding SQL statements directly

into Java code

The SQLJ distribution documents and supplies a demo of a SQLJ-specific

connection bean to support simplified connection management for SQLJ code in

JSP pages.

■ extended globalization support
JSP Primer 6-15

Overview of Oracle Value-Added Features for JSP Pages
6-16 Oracle9iAS Containers for J2EE User’s Guide

E

7

EJB Primer

After you have installed OC4J and configured the base server and default Web site,

you can start developing J2EE applications. This chapter assumes that you have a

working familiarity with simple J2EE concepts and a basic understanding for EJB

development.

This chapter demonstrates simple EJB development with a basic OC4J-specific

configuration and deployment. Download the stateless session bean example

(stateless.jar) from the OC4J sample code page at

http://otn.oracle.com/sample_
code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html
on the OTN site.

Developing and deploying EJB applications with OC4J includes the following:

■ Developing EJBs—Developing and testing an EJB module within the standard

J2EE specification.

■ Preparing the EJB Application for Assembly—Before deploying, you must

modify an XML file that acts as a manifest file for the enterprise application.

■ Deploying the Enterprise Application to OC4J—Archive the enterprise Java

application into an Enterprise ARchive (EAR) file and deploy it to OC4J.

For more information on EJBs in OC4J, see Oracle9iAS Containers for J2EE Enterprise
JavaBeans Developer’s Guide and Reference.
JB Primer 7-1

Developing EJBs
Developing EJBs
The development of EJB components for the OC4J environment is identical to

development in any other standard J2EE environment. The steps for developing

EJBs are as follows:

1. Creating the Development Directory—Create a development directory for the

enterprise application (as shown in Figure 7–1).

2. Implementing the Enterprise JavaBeans—Develop your EJB with its home

interface, remote interface, and bean implementation.

3. Creating the Deployment Descriptor—Create the standard J2EE EJB

deployment descriptor for all beans in your EJB application.

4. Archiving the EJB Application—Archive your EJB files into a JAR file.

Creating the Development Directory
You can develop your application in any manner. It is best to use consistent naming

for locating your application easily. One method would be to implement your

enterprise Java application under a single parent directory structure, separating

each module of the application into their own sub-directories.

The employee example was developed using the directory structure described in

"Creating the Development Directory" on page 2-13. Notice in Figure 7–1 that the

EJB and Web modules exist under the employee application parent directory and

are developed separately in their own directory.
7-2 Oracle9iAS Containers for J2EE User’s Guide

Developing EJBs
Figure 7–1 Employee Directory Structure

Implementing the Enterprise JavaBeans
When you implement an EJB, create the following:

1. A home interface for the bean. The home interface extends

javax.ejb.EJBHome . It defines the create method for your bean. If the bean

is an entity bean, it also defines the finder method(s) for that bean.

2. A remote interface for the bean. The remote interface declares the methods that

a client can invoke. It extends javax.ejb.EJBObject .

3. The bean implementation that includes the following:

a. the implementation of the business methods that are declared in the remote

interface

Note: For EJB modules, the top of the module (<ejb_module>)

represents the start of a search path for classes. As a result, classes

belonging to packages are expected to be located in a nested

directory structure beneath this point. For example, a reference to a

package class ’myapp.Employee.class ’ is expected to be located

in "...employee/<ejb_module>/myapp/Employee.class ".

.../employee/

META-INF/
application.xml

<ejb_module>
EJB classes (Employee.class, ...)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

lib/
dependent libraries

/

 (EmployeeServlet.class)
EJB Primer 7-3

Developing EJBs
b. the container callback methods that are inherited from either the

javax.ejb.SessionBean or javax.ejb.EntityBean interfaces

c. the ejbCreate method with parameters matching those of the create
method as defined in the home interface

Creating the Home Interface
The home interface is used to create and destroy the bean instance; thus, it defines

the create method for your bean. Each type of EJB can define the create method

in the following ways:

For each create method, a corresponding ejbCreate method is defined in the

bean implementation. The client invokes the create method that is declared

within the home interface. The container turns around and calls the ejbCreate
method—with the appropriate parameter signature—within your bean

implementation. You can use the parameter arguments to initialize the state of the

new EJB object.

1. The home interface must extend the javax.ejb.EJBHome interface.

2. All create methods must throw the following exceptions:

■ javax.ejb.CreateException

■ either java.rmi.RemoteException or javax.ejb.EJBException

EJB Type Create Parameters

Stateless Session Bean Can have only a single create method, with no parameters.

Stateful Session Bean One or more create methods, each with its own defined
parameters.

Entity Bean Zero or more create methods, each with its own defined
parameters. All entity beans must define one or more finder
methods, where at least one is a findByPrimaryKey method.
7-4 Oracle9iAS Containers for J2EE User’s Guide

Developing EJBs
Example
The following code sample shows a home interface for a session bean called

EmployeeHome .

package employee;

import javax.ejb.*;
import java.rmi.*;

public interface EmployeeHome extends EJBHome
{
 public Employee create()
 throws CreateException, RemoteException;
}

Creating the Remote Interface
The remote interface defines the business methods of the bean that the client can

invoke.

1. The remote interface of the bean must extend the javax.ejb.EJBObject
interface and its methods must throw the java.rmi.RemoteException
exception.

2. You must declare the remote interface and its methods as public , because

clients that invoke these methods are remote.

3. The remote interface, all its method parameters, and return types must be

serializable. In general, any object that is passed between the client and the EJB

must be serializable, because RMI marshals and unmarshals the object on both

ends.

4. Any exception can be thrown to the client, as long as it is serializable. Runtime

exceptions, including EJBException and RemoteException , are transferred

back to the client as remote runtime exceptions.

Example
The following code sample shows a remote interface called Employee with its

defined methods, each of which will be implemented in the stateless session bean.

package employee;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;
EJB Primer 7-5

Developing EJBs
public interface Employee extends EJBObject
{
 public Collection getEmployees()
 throws RemoteException;

 public EmpRecord getEmployee(Integer empNo)
 throws RemoteException;

 public void setEmployee(Integer empNo, String empName, Float salary)
 throws RemoteException;

 public EmpRecord addEmployee(Integer empNo, String empName,
Float salary)

 throws RemoteException;

 public void removeEmployee(Integer empNo)
 throws RemoteException;
}

Implementing the Bean
The bean contains the business logic for your application. It implements the follow-

ing methods:

1. The bean methods defined in the remote interface. The signature for each of

these methods must match the signature in the remote interface.

The bean in the example application consists of one class, EmployeeBean , that

retrieves an employee’s information.

2. The methods defined in the home interface are inherited from the

SessionBean or EntityBean interface. The container uses these methods for

controlling the life cycle of the bean. These include the ejb<Action> methods,

such as ejbActivate , ejbPassivate , and so on.

3. The ejbCreate methods that correspond to the create method(s) that are

declared in the home interface. The container invokes the appropriate

ejbCreate method when the client invokes the corresponding create
method.

4. Any methods that are private to the bean or package used for facilitating the

business logic. This includes private methods that your public methods use for

completing the tasks requested of them.
7-6 Oracle9iAS Containers for J2EE User’s Guide

Developing EJBs
Accessing the Bean
All EJB clients—including standalone clients, servlets, JSPs, and

JavaBeans—perform the following steps to instantiate a bean, invoke its methods,

and destroy the bean:

1. Look up the bean home interface through a JNDI lookup, which is used for the

life cycle management. Follow JNDI conventions for retrieving the bean

reference, including setting up JNDI properties if the bean is remote to the

client.

2. Narrow the returned object from the JNDI lookup to the home interface through

the PortableRemoteObject.narrow method.

3. Create instances of the bean in the server through the home interface. Invoking

the create method on the home interface causes a new bean to be instantiated.

This returns a bean reference to the remote interface. Narrow the returned

object through the PortableRemoteObject.narrow method.

4. Invoke business methods that are defined in the remote interface.

5. After you are finished, invoke the remove method. This either will remove the

bean instance or return it to a pool. The container controls how to act on the

remove method.

Example The following example is executed from a servlet, which can also be

executed from a JSP or JavaBean, that is co-located in the same container with the

stateless session bean. Thus, the JNDI lookup does not require JNDI properties,

such as the factory, location, or security parameters.

Note: For entity beans that are already instantiated, you can

retrieve the bean reference through one of its finder methods.
EJB Primer 7-7

Developing EJBs
This code should be executed within a TRY block for catching errors, but the TRY

block was removed to show the logic clearly. See the downloadable example for the

full exception coverage.

public class EmployeeServlet extends HttpServlet
{
 EmployeeHome home;
 Employee empBean;

 public void init() throws ServletException
 {
 //Retrieve the initial context for JNDI
 Context context = new InitialContext();

 //Retrieve the home interface using a JNDI lookup using
 // the java:comp/env bean environment variable specified in web.xml
 Object homeObject =
 context.lookup("java:comp/env/EmployeeBean");

 //Narrow the returned object to be an EmployeeHome object
 home =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

 // Create the remote Employee bean instance and return a reference
 // to the remote interface to this bean.
 empBean =
 (Employee) PortableRemoteObject.narrow(home.create(), Employee.class);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)

Note: The JNDI name is specified in the <ejb-ref> element in

the EJB client XML configuration file—in this case, the servlet

web.xml file—as follows:

 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 </ejb-ref>
7-8 Oracle9iAS Containers for J2EE User’s Guide

Developing EJBs
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();

 //Invoke a method on the remote interface reference.
 Collection emps = empBean.getEmployees();

 out.println("<html>");
 out.println("<head><title>Employee Bean</title></head>");
 out.println("<body>");
 out.println("<table border='2'>");
 out.println("<tr><td>" + "EmployeeNo"
 + "</td><td>" + "EmployeeName"
 + "</td><td>" + "Salary"
 + "</td></tr>");

 Iterator iterator = emps.iterator();

 while(iterator.hasNext()) {
 EmpRecord emp = (EmpRecord)iterator.next();
 out.println("<tr><td>" + emp.getEmpNo()
 + "</td><td>" + emp.getEmpName()
 + "</td><td>" + emp.getSalary()
 + "</td></tr>");
 }

 out.println("</table>");
 out.println("</body>");
 out.println("</html>");
 out.close();
 }
}

Creating the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE

EJB deployment descriptor for all beans in the module. The XML deployment

descriptor (defined in the ejb-jar.xml file) describes the application components

and provides additional information to enable the container to manage the

application. The structure for this file is mandated in the DTD file.
EJB Primer 7-9

Developing EJBs
The following example shows the sections that are necessary for the Employee
example.

Example 7–1 XML Deployment Descriptor for Employee Bean

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Session Bean Employee Example</description>
 <ejb-name>EmployeeBean</ejb-name>
 <home>employee.EmployeeHome</home>
 <remote>employee.Employee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

Archiving the EJB Application
Once you have finalized your implementation and have created the deployment

descriptors, archive your EJB application into a JAR file. The JAR file should include

all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the

Employee example into a JAR file, perform the following in the

../employee/ejb_module directory:

% jar cvf Employee-ejb.jar .

Note: If you have included a Web application as part of this

enterprise Java application, follow the instructions for building the

Web application in "Building and Deploying Within a Directory" on

page 3-30. Then, modify the *-web-site.xml file, and archive all

Web application files into a WAR file.
7-10 Oracle9iAS Containers for J2EE User’s Guide

Preparing the EJB Application for Assembly
This archives all files contained within the ejb_module subdirectory within the

JAR file.

Preparing the EJB Application for Assembly
Before deploying, perform the following:

1. Modify the application.xml file with the modules of the enterprise Java

application.

2. Archive all elements of the application into an EAR file.

Modifying Application.XML
The application.xml file acts as the manifest file for the application and

contains a list of the modules that are included within your enterprise application.

You use each <module> element in the application.xml file to designate what

comprises your enterprise application. Each module describes one of three things:

EJB JAR, Web WAR, and any client files. Respectively, modify the <ejb> , the

<web>, and the <java> elements in separate <module> elements.

■ The <ejb> element specifies the EJB JAR filename.

■ The <web> element specifies the Web WAR filename in the <web-uri> element

and its context in the <context> element.

■ The <java> element specifies the client JAR filename, if any.

As indicated in Figure 7–2, the application.xml file is located under a

META-INF directory under the parent directory for the application. The JAR, WAR,

and client JAR files should be contained within this directory. Because of this

proximity, the application.xml file only refers to the JAR and WAR files by

name and relative path—and not by full directory path. If these files were located in

subdirectories under the parent directory, then these subdirectories must be

specified in addition to the filename.
EJB Primer 7-11

Preparing the EJB Application for Assembly
Figure 7–2 Archive Directory Format

For example, the following example modifies the <ejb> and <web> module

elements within application.xml for the Employee EJB application that also

contains a servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
 <module>
 <ejb>Employee-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>Employee-web.war</web-uri>
 <context-root>/employee</context-root>
 </web>
 </module>
</application>

Creating the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.

Note that the application.xml file serves as the EAR manifest file.

To create the Employee.EAR file, execute the following in the employee directory

that is shown in Figure 7–2:

% jar cvfM Employee.EAR .

This archives the application.xml , the Employee-ejb.jar , and the

Employee-web.war files into the Employee.ear file.

employee/

META-INF/
application.xml

Employee-ejb.jar

Employee-web.war
7-12 Oracle9iAS Containers for J2EE User’s Guide

Deploying the Enterprise Application to OC4J
Deploying the Enterprise Application to OC4J
As detailed in "Deploying Applications" on page 2-20, you can use the deployment

wizard to deploy the EAR file containing your EJB application. This adds a line to

the server.xml file of the following form:

<application name=... path=... auto-start="true" />

The path should be the full directory path and EAR filename. For our employee

example, add the following to the server.xml file:

<application name="employee"
path="/private/applications/Employee.EAR"
auto-start="true" />

If you included a Web application portion, The deployment wizard adds a

<web-app ...> entry to the default-web-site.xml file to bind the Web

application to the Web server. The Web application binding for the employee Web

application is as follows:

<web-app application="employee" name="Employee-web"
root="/employee" />

The <application> attribute should be the same value as provided in the

server.xml file. The <name> should be the WAR file, without the WAR extension,

for the Web application.
EJB Primer 7-13

Deploying the Enterprise Application to OC4J
7-14 Oracle9iAS Containers for J2EE User’s Guide

Se
8

Security

OC4J security employs a user manager to authenticate and authorize users and

groups that attempt to access a J2EE application. User managers differ in

performance and are employed based on the security you require. Confidentiality is

automatically provided by the Oracle HTTP Server.

This chapter describes the following topics:

■ Overview of Security Functions

■ Provider Types

■ Specifying Your User Manager

■ Specifying Users, Groups, and Roles

■ Authenticating HTTP Clients

■ Authenticating EJB Clients

■ Authorization In J2EE Applications

■ Creating Your Own User Manager

For more detail on OC4J security, see the security chapters in the Oracle9iAS
Containers for J2EE Services Guide. For a broader description of Oracle9iAS security

in middle-tier environments that connect to the Internet, see the Oracle9i Application
Server Security Guide.
curity 8-1

Overview of Security Functions
Overview of Security Functions
OC4J security is based on a two-step process. First, a user or group attempting to

access a J2EE application is authenticated, and then it is authorized. Authentication

and authorization, along with OC4J confidentiality, are introduced below:

■ Authentication: Verifies the identity and credentials of a user.

You define users and groups in a user repository. A user repository is used by a

user manager to verify the identity of a user or group attempting to access a J2EE

application. A user repository can be a file or a directory server, depending on

your environment. The Oracle Internet Directory is an example of a user

repository.

Although the J2EE application determines which user can use the application, it

is the user manager, employing the user name and password, that verifies the

user’s identity, based on information in the user repository.

OC4J supports two types of authentication providers: JAZN and XML. These

are described below in "Provider Types" on page 8-3.

■ Authorization: Permits or denies users and groups access to an application.

You specify authorization for users and groups (identities) in the J2EE and
OC4J-specific deployment descriptors. J2EE and OC4J-specific deployment

descriptors indicate what roles are needed to access the different parts of the

application. Roles are the identities that each application uses to indicate access

rights to its different objects. The OC4J-specific deployment descriptors provide

a mapping between the logical roles and the users and groups known by OC4J.

Authorization identities are defined in the XML deployment descriptors for

each application. The application refers to the users, groups, and roles of the

authentication provider (JAZN or XML). The application XML deployment

descriptor modifications are discussed in "Authorization In J2EE Applications"

on page 8-17.
8-2 Oracle9iAS Containers for J2EE User’s Guide

Provider Types
Provider Types
Authentication and authorization are implemented in a user manager class of the

com.evermind.security.UserManager interface. User manager classes

manage users, groups, and passwords with methods such as createUser() ,

getUser() , and getGroup() .

OC4J security supplies two types of security providers—JAZN and XML—which

are implemented in their own user manager classes—JAZNUserManager or

XMLUserManager . JAZN is the default security provider, because JAZN is more

secure than the XML provider.

Table 8–1 lists the user managers available in OC4J security.

See "Specifying Your User Manager" on page 8-6 for details for directions on how to

define the user manager type for all applications (globally) or for a specific

application using Enterprise Manager.

The following sections describe the JAZN and XML user managers:

■ Using the JAZNUserManager Class

■ Using the XMLUserManager Class

Note: You can also customize your own user manager. See

"Creating Your Own User Manager" on page 8-21.

Table 8–1 User Managers and Their User Repositories Available to OC4J

User Manager Class User Repository

oracle.security.jazn.oc4j. JAZNUserManager Two types:

■ using the XML-based provider type—
jazn-data.xml

■ using the LDAP-based provider type—Oracle
Internet Directory

com.evermind.server. XMLUserManager The principals.xml file

Custom user manager Customized user repository
Security 8-3

Provider Types
Using the JAZNUserManager Class
The JAZNUserManager class is the default user manager and offers the best

security. The primary purpose of the JAZNUserManager class is to leverage the

JAAS provider as the security infrastructure for OC4J. For a complete description of

the JAAS provider, see the Oracle9iAS Containers for J2EE Services Guide.

By integrating the JAAS provider with OC4J, the following benefits can be achieved:

■ Single Sign-on (SSO)/mod_osso integration

■ SSL/mod_ossl integration

■ Oracle Internet Directory integration (using the LDAP-based provider type)

■ Fine-grained access control using Java2 permissions

■ run-as identity support, delegation support (from servlet to EJB)

■ Secure file-based storage of passwords (using the XML-based provider type)

Use the JAZNUserManager class if you want OC4J security that has secure,

centralized storage, retrieval, and administration of JAAS provider data. This data

consists of realm (user and roles) and JAAS policy (permissions) information.

Figure 8–1 illustrates the architecture of OC4J security under the

JAZNUserManager class.

There are two types of JAZN supplied with OC4J security: XML-based or

Lightweight Directory Access Protocol (LDAP)-based.

■ JAZN-XML is a fast, light weight implementation of the JAAS provider API.

This provider type uses XML to store user names and encrypted passwords.

The user repository is file-based and stored in the jazn-data.xml file.

Select JAZN-XML as the user manager in the Enterprise Manager. Configure its

users, roles, and groups using either the Enterprise Manager or the JAZN

Admintool. You must have a preconfigured jazn-data.xml file before

configuring this user manager. Since this is the default, there is a default

jazn-data.xml file. For directions on the XML elements and how to modify

this file, see the appropriate security chapters in Oracle9iAS Containers for J2EE
Services Guide.

■ JAZN-LDAP is more scalable, secure, enterprise-ready, and integrated with

Single Sign-On. You can only support Single Sign-On with JAZN-LDAP.

Select JAZN-LDAP as the user manager in the Enterprise Manager. Configure

its users and groups using the Delegated Administrative Service (DAS) from

Oracle Internet Directory. The user repository is an Oracle Internet Directory,
8-4 Oracle9iAS Containers for J2EE User’s Guide

Provider Types
which necessitates that the application server instance is associated with an

infrastructure. If it is not associated with an Oracle Internet Directory,

JAZN-LDAP is not a security option.

Figure 8–1 demonstrates how JAZN is broken up into two different provider types.

Figure 8–1 OC4J Security Architecture Under the JAZNUserManager Class

Using the XMLUserManager Class
The XMLUserManager class is a simple user manager that manages users, groups,

and roles in a file-based system. It does allow user passwords to be passed in the

clear, and is not secure. All of its configuration information is stored in the

principals.xml file, which is the user repository for the XMLUserManager class.

Note: The XMLUserManager class is supported for backward

compatibility. Oracle recommends that you use one of the JAZN

provider types.

Oracle HTTP
Server OC4Jmod_oc4j

JAZNUserManager

JAAS provider

user repositoryuser repository

LDAP-based
provider type

XML-based
provider type

jazn-data.xmlOracle Internet
Directory
Security 8-5

Specifying Your User Manager
Specifying Your User Manager
The user manager, employing the user name and password, verifies the user’s

identity based on information in the user repository. The user manager defines what

type of authentication you will be using. It contains your definitions for users,

groups, or roles. The default user manager is the JAZNUserManager .

You can define a user manager for all applications or for specific applications.

■ Global user manager—The global user manager is inherited by all applications

that have not defined a specific user manager.

■ Specific user manager—This is a user manager that is defined solely for a single

application. It is not used by any other application.

Figure 8–2 shows the Enterprise Manager Security page that enables you to choose

the type of user manager you prefer. This page is the same both for global and

application-specific security definition.

Note: Within a single OC4J instance, you must either use JAZN or

XML. You cannot use both JAZN and XML user managers in the

same OC4J instance. For example, you cannot define the

JAZNUserManager as the global user manager and define the

XMLUserManager as a specific user manager for an application.

Thus, the only time you can define a specific user manager for an

application is when you use JAZN, since it has two provider types,

or if you have a custom user manager.
8-6 Oracle9iAS Containers for J2EE User’s Guide

Specifying Your User Manager
Figure 8–2 User Manager Page

To modify the global user manager, do the following:

1. On the OC4J Home Page, scroll down to the Default Application section and

choose the default application.

2. On the default application page, scroll down to the Administration section.

Choose General under the Properties column.

3. Scroll down to the User Manager section and click on the user manager button

that you wish to use. Enter appropriate information for this user manager. For
Security 8-7

Specifying Your User Manager
example, the JAZNUserManager requires that you enter the realm and location

of the jazn-data.xml file.

– For the global security definition, the location of this file is relative to

/j2ee/home/config . This is because the global application resides in this

directory.

– For an application-specific security definition, the location of this file is

relative to where the application is deployed. Typically, the application is

deployed to j2ee/home/application-deployments/<appname> .

4. Click Apply.

Modifying the user manager for a specific application is similar as follows:

1. On the OC4J Home Page, scroll down to the Applications section and choose

the application.

2. On the application page, scroll down to the Administration section. Choose

General under the Properties column.

3. Scroll down to the User Manager section and click on the user manager button

that you wish to use. Enter appropriate information for this user manager.

4. Click Apply.

Once you apply the changes, go back up to the application page and choose

Security. If you chose JAZNUserManager or XMLUserManager , a page is shown

where you can add users, groups, or roles that are appropriate for the user manager.

If you chose one of the JAZN provider types, then the type is designated in the

jazn.xml file that is located in j2ee/home/config . The jazn.xml file is used to

configure the provider type, but you can also add other JAZN configuration

information in this file. See Oracle9iAS Containers for J2EE Services Guide for

information on this file.

The following is a sample jazn.xml file with both provider types. The

JAZN-LDAP provider is commented out.

<?xml version="1.0" encoding="UTF-8" standalone=’yes’?>
<!DOCTYPE jazn PUBLIC "JAZN Config"
"http://xmlns.oracle.com/ias/dtds/jazn.dtd">

<jazn provider="XML" location="./jazn-data.xml" />

<!--
<jazn provider="LDAP" location="ldap://myoid.us.oracle.com:389" />
8-8 Oracle9iAS Containers for J2EE User’s Guide

Specifying Users, Groups, and Roles
-->

Specifying Users, Groups, and Roles
Each provider type enables you to define users, groups, and roles in the following

ways:

■ JAZN-XML—use Enterprise Manager or the JAZN Admintool

■ JAZN-LDAP—use Delegated Administrative Service (DAS) from Oracle

Internet Directory

■ XML—use Enterprise Manager

You manage users, groups, and roles for the JAZN-XML and XML user managers

with the same Enterprise Manager pages. The following sections discusses how to

modify both JAZN-XML and XML provider type users, groups, and roles using

Enterprise Manager.

■ Shared Groups, Users, and Roles—These are defined at the global level. Thus,

these users, groups, and roles can be used by any application in the OC4J

instance.

■ Application-Specific Groups, Users, and Roles—These are defined at the

application level. Thus, these can only be used by the application.

Shared Groups, Users, and Roles
Shared users and groups are listed in the user repository, which are defined in the

Security section on the OC4J Home Page. The type of user manager as the default

for all applications is defined in the General section of the default application page.

To add groups, users, and roles for all applications, do the following:

1. On the OC4J Home Page, scroll down to the Administration section.

2. On the default application page, scroll down to the Administration section.

Choose Security under the Application Defaults column.

3. Add or remove groups, users, and roles by clicking the following buttons:

Note: See Oracle9iAS Containers for J2EE Services Guide for

information on the JAZN Admintool and the Delegated

Administrative Service.
Security 8-9

Specifying Users, Groups, and Roles
– Click Add Group to add a new group.

– Select the radio button of a group in the group section and click Remove to

remove a specified group.

– Click Add User to add a new user.

– Select the radio button of a user in the user section and click Remove to

remove a specified user.

Application-Specific Groups, Users, and Roles
Application-specific users and groups are listed in the application-specific user

repository, which are defined in the Security section on the application page. The

type of user manager used for this application is defined in the General section of

this application.

Modifying groups, users, and roles for a specific application is similar as follows:

1. On the OC4J Home Page, scroll down to the Applications section and choose

the application.

2. On the application page, scroll down to the Administration section. Choose

Security under the Security column.

3. Add or remove groups, users, and roles by clicking the following buttons:

– Click Add Group to add a new group.

– Select the radio button of a group in the group section and click Remove to

remove a specified group.

– Click Add User to add a new user.

– Select the radio button of a user in the user section and click Remove to

remove a specified user.

Figure 8–3 shows an example of how to specify groups, users, and roles for the

JAZNUserManager .
8-10 Oracle9iAS Containers for J2EE User’s Guide

Specifying Users, Groups, and Roles
Figure 8–3 Security Page
Security 8-11

Specifying Users, Groups, and Roles
Specifying Users and Groups in jazn-data.xml
If you are familiar with the OC4J XML configuration, the JAZN-XML users, roles,

and groups are defined in the jazn-data.xml file. When you add users, roles, and

groups using the Enterprise Manager pages, these are stored in the

jazn-data.xml file. The passwords are obfuscated.

The following jazn-data.xml is an example of a JAZN-XML group named

allusers and a user named guest .

<role>
<name>allusers </name>
<members>

<member>
<type> user </type>
<name>guest </name>

</member>
</members>

</role>

Unlike the XML from the XMLUserManager user repository, the password is

encrypted under the JAZNUserManager .

<user>
<name>guest </name>
<description>The default user</description>
<credentials>NVgOIAV2Xe0Is+t+Q1xhU/3G5glW/KH8</credentials>

</user>

These elements define a role of allusers with a member of user/guest and its

credentials on the Security page.

Note: If you do modify jazn-data.xml by hand, you can enter

the password prefixed by an exclamation point (!). The next time

JAZN touches this file, the password will be obfuscated. However,

you should not edit jazn-data.xml by hand in a clustered

environment.
8-12 Oracle9iAS Containers for J2EE User’s Guide

Authenticating HTTP Clients
Specifying Users and Groups in XMLUserManager
The XMLUserManager users, roles, and groups are defined in the

principals.xml file. The following XML from the principals.xml file (the

user repository for the XMLUserManager class) shows how to define a group

named allusers and a user named guest with password welcome . The guest
user is made a member of the allusers group. The passwords provided in a

principals.xml file are not encoded; thus, they constitute a security risk.

<principals>
<groups>

<group name="allusers">
<description>Group for all normal users</description>
<permission name="rmi:login" />
<permission name="com.evermind.server.rmi.RMIPermission" />

</group>
....other groups...

</groups>
<users>

<user username="guest" password="welcome">
<description>Guest user</description>
<group-membership group="allusers" />

</user>
</users>

</principals>

Use these elements to define a group of allusers with the correct Permissions,

with a user of guest/welcome on the Security page.

Permissions
The Enterprise Manager does not enable you to add Permissions. To add

Permissions, use the JAZN Admintool for JAZN-XML and the Delegated

Administrative Service for JAZN-LDAP. See Oracle9iAS Containers for J2EE Services
Guide for more information.

Authenticating HTTP Clients
Most clients are Web browsers that access OC4J through the Oracle HTTP Server

mod_oc4j module. OC4J requests the client to authenticate itself when accessing

protected URLs. You can achieve authentication through a user name and

password, or in the case of SSL, through an SSL certificate. Although in most cases
Security 8-13

Authenticating EJB Clients
where authentication is required, the user will be prompted to enter a user name

and password.

If a servlet turns around and invokes an EJB, the caller principal is delegated to the

EJB. That is, the caller user name and password are passed along to the EJB for

authentication.

Authenticating EJB Clients
When you access EJBs in OC4J, you must pass valid credentials to this server.

■ Standalone clients can define their credentials in the jndi.properties file,

either deployed with the EAR file or in the InitialContext object.

■ Servlets or JavaBeans running within OC4J pass their credentials within the

InitialContext object, which is created to look up the remote EJBs.

Setting JNDI Properties
If the client exists within the same application as the target, or the target exists

within its parent, you do not need a JNDI properties file. If not, you must initialize

your JNDI properties either within a jndi.properties file, in the system

properties, or within your implementation, before the JNDI call. If you store your

password in a jndi.properties file, it is not encoded.

The following sections discuss these three options:

■ No JNDI Properties

■ JNDI Properties File

■ JNDI Properties Within Implementation

No JNDI Properties
A servlet that exists in the same application with the target bean automatically

accesses the JNDI properties for the node. Therefore, accessing the EJB is simple: no

JNDI properties are required.

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object empObject = ic.lookup("java:comp/env/employeeBean");
8-14 Oracle9iAS Containers for J2EE User’s Guide

Authenticating EJB Clients
This is also true if the target bean is in an application that has been deployed as this

application’s parent. To specify parents, configure the parent application in the

application.xml file in the EAR when deploying the originating application.

JNDI Properties File
If setting the JNDI properties within the jndi.properties file, set the properties

as follows. Ensure that this file is accessible from the CLASSPATH.

Factory
java.naming.factory.initial=

com.evermind.server.ApplicationClientInitialContextFactory

Location
The ORMI default port number is 23791, which can be modified in

j2ee/home/config/rmi.xml . Therefore, set the URL in the jndi.properties ,

in one of the two ways:

java.naming.provider.url=ormi://<hostname>/<application-name>

- or -

java.naming.provider.url=ormi://<hostname>:23791/<application-name>

Security
When you access EJBs in OC4J, you must pass valid credentials to this server.

Standalone clients define their credentials in the jndi.properties file deployed

with the code of the client. When using JAZN, both the realm and the user name are

defined as the principal. If only one realm exists, then the user name can be

specified alone. The assumption is to use the single realm.

java.naming.security.principal=<JAZNrealm/username>
java.naming.security.credentials=<password>

Note: The default realm for JAZN-XML is "jazn.com ."

JAZN-LDAP can be initialized with a "jazn.com " realm as a

demo. You can install this demo realm by executing the

j2ee/jazn/install/postinstall.sh shell script. However,

since it is only a demo realm, you should use an actual realm in

your production environment.
Security 8-15

Authenticating EJB Clients
JNDI Properties Within Implementation
Set the properties with the same values, but with different syntax. For example,

JavaBeans running within the container pass their credentials within the

InitialContext , which is created to look up the remote EJBs.

To pass JNDI properties within the Hashtable environment, set these as shown

below. This example shows the client using JAZN-XML format by providing

’jazn.com/guest’ in the realm/username format.

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://localhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);

Using the Initial Context Factory Classes
For most clients, set the initial context factory class to

ApplicationClientInitialContextFactory . If you are not using a J2EE

logical name defined in the <ejb-ref> in your XML configuration file, then you

must provide the actual JNDI name of the target bean. In this case, you can use a

different initial context factory class, the

com.evermind.server.RMIInitialContextFactory class.

Example 8–1 Servlet Accessing EJB in Remote OC4J Instance

The following servlet uses the JNDI name for the target bean:

/cmpapp/employeeBean . Thus, this servlet must provide the JNDI properties in

an RMIInitialContext object, instead of the

ApplicationClientInitialContext object. The environment is initialized as

follows:

■ The INITIAL_CONTEXT_FACTORY is initialized to a

RMIInitialContextFactory .

■ Instead of creating a new InitialContext , it is retrieved.
8-16 Oracle9iAS Containers for J2EE User’s Guide

Authorization In J2EE Applications
■ The actual JNDI name is used in the lookup.

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "ormi://localhost/cmpapp");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.evermind.server.rmi.RMIInitialContextFactory ");

Context ic =
new com.evermind.server.rmi.RMIInitialContextFactory().

getInitialContext(env);

Object homeObject = ic.lookup("/cmpapp/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =

(EmployeeHome) PortableRemoteObject.narrow(homeObject,
EmployeeHome.class);

Authorization In J2EE Applications
Authorization is the process of granting or denying a user access to a J2EE

application based on its identity. Authorization is distinct from authentication,

which is the process of verifying that a user is valid.

You specify authorization for users and groups in the J2EE and OC4J-specific

deployment descriptors. The J2EE deployment descriptor is where you specify the

access rules for using logical roles. The OC4J-specific deployment descriptor is

where you map logical roles to actual users and groups, which are defined in a user

repository.

The following sections describe how to define users, groups, and roles:

■ Specifying Logical Roles in a J2EE Application

■ Mapping Logical Roles to Users and Groups
Security 8-17

Authorization In J2EE Applications
Specifying Logical Roles in a J2EE Application
Specify the logical roles that your application uses in the XML deployment

descriptors. Depending on the application component type, update one of the

following with the logical roles:

■ web.xml for the Web component

■ ejb-jar.xml for the EJB component

■ application.xml for the application

In each of these deployment descriptors, the roles are defined by an XML element

named <security-role> .

Example 8–2 EJB JAR Security Role Definition

The following steps describe the XML necessary to create a logical role named

VISITOR in the ejb-jar.xml deployment descriptor.

1. Define the logical security role, VISITOR , in the <security-role> element.

<security-role>
<description>A role for every user</description>
<role-name>VISITOR</role-name>

</security-role>

2. Define the bean and methods that this role can access in the

<method-permission> element.

<method-permission>
<description>VISITOR role needed for CustomerBean methods</description>
<role-name>VISITOR</role-name>
<method>

<ejb-name>customerbean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
8-18 Oracle9iAS Containers for J2EE User’s Guide

Authorization In J2EE Applications
Mapping Logical Roles to Users and Groups
Map logical roles defined in the application deployment descriptors to actual users

and groups defined in a user repository. The mapping is specified in the

OC4J-specific deployment descriptor with a <security-role-mapping>
element. Figure 8–4 illustrate this mapping.

Figure 8–4 Mapping Logical Roles to Users, Groups, and Roles

Example 8–3 Mapping Logical Role to Actual Role

This example maps the logical role VISITOR to the allusers group in the

orion-ejb-jar.xml file. Any user that can log in as part of this group is

considered to have the VISITOR role and can therefore execute the methods of

customerbean .

<security-role-mapping name="VISITOR">

Note: The security role mapping layer, defined in either the

JAZNUserManager repository (jazn-data.xml) or in the

XMLUserManager repository (principals.xml), is bypassed if

the following conditions are true:

■ The name of the security role and group (or roles, as in the case

of JAZNUserManager) are the same.

■ No security role mapping is specified.

application.xml
ejb_jar.xml
web.xml

orion_application.xml
orion_ejb_jar.xml<security_role_mapping>

<security_role>

<group>, <user>, <role>

orion_web.xml

jazn-data.xml or
principals.xml
Security 8-19

Authorization In J2EE Applications
<group name="allusers" />
</security-role-mapping>

The previous demonstrated the XML that you can provide in the

orion-ejb-jar.xml file in your application EAR file. However, if you decide to

not map the logical role at this time, the deployment wizard gives you a chance to

map all logical roles in the security role mapping stage. The deployment wizard

would display the logical name VISITOR and provide you a field that you can map

it to allusers .

The following screen shows the security role mapping stage of the deployment

wizard:

Note: You can map a logical role to a single group or to several

groups.

put security mapping screen here.
8-20 Oracle9iAS Containers for J2EE User’s Guide

Creating Your Own User Manager
Creating Your Own User Manager
To create your own user manager, complete the following steps:

1. Write a custom user manager, which must implement the UserManager
interface. Table 8–2 describes the methods of this interface.

Table 8–2 Methods of the UserManager Interface

Method Description

void addDefaultGroup
 (java.lang.String name)

Adds a group to the set of default groups, of which all
users of the user manager are members.

■ java.lang.String name - the name of the group
being added to the default group

Group createGroup
 (java.lang.String name)

Creates a new group. If the group already exists, a
java.lang.InstantiationException is thrown.

■ java.lang.String name - the name of the new
group

User createUser
 (java.lang.String username,
 java.lang.String password)

Creates a new user.

■ java.lang.String username - the new user
name

■ java.lang.String password - the new user
password

User getAdminUser() Returns the default admin user or null if there is none.

User getAnonymousUser() Returns the default anonymous user or null if none
exists.

java.util.Set getDefaultGroups() Returns the set of default groups for the user manager.

Group getGroup(java.lang.String name) Returns the group with the specified name or null if
none exists.

■ java.lang.String name - the name of the
specified group

int getGroupCount() Return the number of users contained in the user
manager. Throws UnsupportedOperationException
if not supported.

java.util.List getGroups
 (int start,int max)

Returns a list of groups (between the specified indexes)
contained in the user manager. Throws
UnsupportedOperationException if not supported.

UserManager getParent() Returns the parent manager of the user manager.
Security 8-21

Creating Your Own User Manager
2. Define the user manager in the General Properties page. On the General

Properties page, as shown in Figure 8–2, you click on the Use Custom User
Manager button. Then, supply the class name of your user manager in the class

name field. Additionally, you can provide a name and a description for your

own recognition.

3. Define your users and groups on the Security page.

See "Specifying Users, Groups, and Roles" on page 8-9.

4. Create security constraints in your application.

See "Authorization In J2EE Applications" on page 8-17.

User getUser
 (java.lang.String username)

Returns the user with the specified user name or null if
there is no match.

User getUser
 (java.lang.String issuerDN,
 java.math.BigInteger serial)

Returns the user associated with this certificate or null if
either certificates are not supported or there is no user
associated with this certificate.

User getUser
 (java.security.cert.X509Certificate
 certificate)

Returns the user associated with this certificate or null if
either certificates are not supported or there is no user
associated with this certificate.

int getUserCount() Returns the number of users contained in this manager.
Throws UnsupportedOperationException if not
supported.

java.util.List getUsers
 (int start,int max)

Returns a list of users (between the specified indexes)
contained in this manager. Throws
UnsupportedOperationException if not supported.

void init
 (java.util.Properties properties)

Instantiates the user manager with the specified settings.
Throws java.lang.InstantiationException if any
errors occur.

boolean remove(Group group) Removes the specified group from the user manager and
returns true if the operation is successful.

boolean remove(User user) Removes the specified user from the user manager and
returns true if the operation is successful.

void setParent
 (UserManager parent)

Sets the parent user manager if one exists. This method is
called only on a nested user manager.

A user manager can delegate work to its parent user
manager.

Table 8–2 Methods of the UserManager Interface (Cont.)

Method Description
8-22 Oracle9iAS Containers for J2EE User’s Guide

Creating Your Own User Manager
Example of Customer User Manager With the DataSourceUserManager Class
OC4J provides an example of a custom user manager—the

DataSourceUserManager class. This class manages the users in a database

specified by the DataSource interface.

Thus, you do not need to implement this class, but only configure it as designated

in steps 2-4 above.

On the General Properties page, choose the Custom User Manager button with the

class of "com.evermind.sql.DataSourceUserManager. " In addition, this

class requires certain input parameters for startup. Thus, at the bottom of the User

Manager section of this page you will enter these parameters and their values in the

Initialization Parameters for Class section. For each of the following parameters,

click the Add Another Row button and enter the parameter name and its value.

■ name="table" value="j2ee_users"

■ name="userNameField" value="username"

■ name="passwordField" value="password"

■ name="dataSource" value="jdbc/OracleCoreDS"

■ name="groupMemberShipTableName" value="second_table"

■ name="groupMemberShipGroupFieldName" value="group"

■ name="groupMemberShipUserNameFieldName" value="userId"

In addition, this DataSourceUserManager class assumes that the following tables

exist in the database:

■ Table "j2ee_users" for usernames and passwords

■ Table "second_table" for userId and group association

Notice that no table exists for the list of groups that are available. Instead, the list of

groups is specified in the principals.xml file. The mappings from groups to

roles is specified in the application.xml .

The user manager is a hierarchical implementation with a parent-child relationship.

The parent of the DataSourceUserManager class is the file-based

XMLUserManager class, which uses the principals.xml user repository.

However, you can change the parent with the setParent() method. The sample

DataSourceUserManager class invokes parent.getGroups() to retrieve all

the available groups.
Security 8-23

Creating Your Own User Manager
8-24 Oracle9iAS Containers for J2EE User’s Guide

Oracle9iAS Clus
9

Oracle9 iAS Clustering

This chapter discusses concepts of clustering, and provides instructions on how to

manage clusters.

It contains the following topics:

■ About Oracle9iAS Clustering

■ Architecture

■ Enterprise Manager Configuration Tree

■ Instance-Specific Parameters

■ Examples

■ Cluster Configuration
tering 9-1

About Oracle9iAS Clustering
About Oracle9 iAS Clustering
A cluster is a set of application server instances configured to act in concert to

deliver greater scalability and availability than a single instance can provide. While

a single application server instance can only leverage the operating resources of a

single host, a cluster can span multiple hosts, distributing application execution

over a greater number of CPUs. While a single application server instance is

vulnerable to the failure of its host and operating system, a cluster continues to

function despite the loss of an operating system or host, hiding any such failure

from clients.

Clusters leverage the combined power and reliability of multiple application server

instances while maintaining the simplicity of a single application server instance.

For example, browser clients of applications running in a cluster interact with the

application as if it were running on a single server. The client has no knowledge of

whether the application is running on a single application server or in an

application server cluster. From the management perspective, an application server

administrator can perform operations on a cluster as if the administrator was

interacting with a single server. An administrator can deploy an application to an

individual server; the application is propagated automatically to all application

server instances in the cluster.

The following sections discuss how application server clustering increases

scalability, availability, and manageability.

■ Scalability

■ Availability

■ Manageability

■ Component Support

■ Non-Managed Clustering

Scalability
Oracle9iAS clustering enables you to scale your system beyond the limitations of a

single application server instance on a single host. Figure 9–1 shows how a cluster

unifies multiple application server instances spread over multiple hosts to

collectively serve a single group of applications. In this way, clustering makes it

possible to serve increasing numbers of concurrent users after the capacity of a

single piece of hardware is exhausted.
9-2 Oracle9iAS Containers for J2EE User’s Guide

About Oracle9iAS Clustering
Clients interact with the cluster as if they are interacting with a single application

server. An administrator can add an application server instance to the cluster

during operation of the cluster, increasing system capacity without incurring

downtime.

Figure 9–1 Oracle9iAS Cluster

Clients access the cluster through a load balancer which hides the application server

configuration. The load balancer can send requests to any application server

instance in the cluster, as any instance can service any request. An administrator can

raise the capacity of the system by introducing additional application server

instances to the cluster, each of which derives its configuration from a shared

Oracle9iAS Metadata Repository.

Availability
Oracle9iAS clustering enables you to achieve a higher level of system availability

than that which is possible with only a single application server instance. An

application running on a single instance of an application server is dependent on

the health of the operating system and host on which the server is running. In this

case, the host poses as a single point of failure because if the host goes down, the

application becomes unavailable.

Client Load Balancer
Oracle9iAS

Metadata Repository

Oracle9i
Application Server

Instances

Application Server Cluster
Oracle9iAS Clustering 9-3

About Oracle9iAS Clustering
An application server cluster eliminates the single point of failure by introducing

redundancy and failover into the system. Any application server instance in the

cluster can service any client request, and the failure of any single instance or host

does not bring down the system. Client session state is replicated throughout the

cluster, thereby protecting against the loss of session state in case of process failure.

The extent of session state replication is configurable by the administrator.

Figure 9–2 Application Server Instance Failure in a Cluster

Figure 9–2 illustrates how application server clusters enable higher availability by

providing redundancy and backup and eliminating a single point of failure. Clients

access the cluster through a load balancer which can send requests to any

application server instance in the cluster. In the case that an application server

instance becomes unavailable, the load balancer can continue forwarding requests

to the remaining application server instances, as any instance can service any

request.

Manageability
Figure 9–3 demonstrates how managed clustering uses Enterprise Manager. While

any clustered system requires all instances to be similarly configured in order to

function properly, Oracle9iAS managed clustered instances synchronize their

configurations automatically, relieving the administrator of the responsibility to

Client Load Balancer

Oracle9i
Application Server

Instances

Application Server Cluster

X
Oracle9iAS

Metadata Repository
9-4 Oracle9iAS Containers for J2EE User’s Guide

About Oracle9iAS Clustering
manually update each individual instance. Using Enterprise Manager, the

administrator can make configuration changes as if on a single application server

instance. Applicable changes are propagated automatically to all instances in the

cluster.

Oracle9iAS cluster management simplifies the tasks of creating and administering

clusters and reduces the chance of human error corrupting the system. An

administrator creates a cluster in a single management operation. Then, the

administrator adds the initial application server instance to the cluster to define the

base configuration for the cluster. The additional instances automatically inherit this

base configuration.

Figure 9–3 Enterprise Manager Manages a Cluster

Component Support
Oracle9iAS clustering applies to the synchronization and management of Oracle

HTTP Server (OHS) and Oracle9iAS Containers for J2EE (OC4J) components.

Other Oracle9iAS components, such as Oracle9iAS Web Cache, may support a

component-specific clustering model or cluster-like functionality. This is separate

Oracle9iAS
Metadata Repository

Oracle9i
Application Server

Instances

Application Server Cluster

Oracle
Enterprise Manager
Oracle9iAS Clustering 9-5

About Oracle9iAS Clustering
from application server clustering and is not discussed in this chapter. Please see

the component documentation for further details. For more information about

Oracle9iAS Web Cache clustering, see Oracle9iAS Web Cache Administration and
Deployment Guide.

Non-Managed Clustering
This chapter discusses managed application server clusters that offer scalability,

availability, and manageability. Managed application server clusters require a

metadata repository to stored shared configuration data.

Oracle9iAS also enables you to create non-managed application server clusters that

do not require a metadata repository and therefore have no database dependency.

Non-managed clusters provide scalability and availability, but not manageability. In

a non-managed cluster, it is your responsibility to synchronize the configuration of

the application server instances. Figure 9–4 illustrates that a non-managed cluster

does not require a database, but you have to configure each application server

instance yourself.

Figure 9–4 Non-Managed Clustering

Client Load Balancer Administrator

Oracle9i
Application Server

Instances

Application Server
Cluster

No database
is required
9-6 Oracle9iAS Containers for J2EE User’s Guide

About Oracle9iAS Clustering
If you want to cluster J2EE applications and do not want to use a metadata

repository, there are two types of non-managed clusters that you can use:

■ Non-managed application server cluster

■ OC4J-only cluster

Non-Managed Application Server Cluster
Create a non-managed application server cluster if you want to use both OHS and

OC4J. In a non-managed application server cluster, mod_oc4j will load-balance

requests to all OC4J instances in the cluster.

For more information on non-managed application server clustering, see the

Oracle9iAS page on OTN at http://otn.oracle.com/products/ias .

OC4J-Only Cluster
Create an OC4J-only cluster if you want to use the standalone OC4J that is available

for download from OTN. In an OC4J-only cluster, the Java load balancer

load-balances requests to all OC4J instances in the cluster. An OC4J-only cluster has

a lightweight disk footprint, but the Java load balancer can be a single point of

failure.

For more information on OC4J-only clustering, see the OC4J page on OTN at

http://otn.oracle.com/tech/java/oc4j .
Oracle9iAS Clustering 9-7

Architecture
Architecture
A cluster coordinates several application server instances and its components. The

roles of the components included in the cluster are described in the following

sections:

■ Front-End Load Balancer

■ Metadata Repository in the Infrastructure

■ Farm

■ Cluster

■ Application Server Instance

■ Management Features

■ Component Instances

■ J2EE Applications

Figure 9–5 shows the architecture of a farm and a cluster. There are three

application server instances, where each instance shares the same Oracle9iAS

Metadata Repository within an infrastructure. Thus, all three application server

instances are part of the same farm.

Application server instances 1 and 2 are involved in a cluster together. In front of

the cluster is a front-end load balancer. Included within each application server

instance are its manageability features—Oracle Process Management and

Notification (OPMN) and Dynamic Configuration Management (DCM)—and its

installed components—Oracle HTTP Server and Oracle9iAS Containers for J2EE

(OC4J).
9-8 Oracle9iAS Containers for J2EE User’s Guide

Architecture
Figure 9–5 Oracle9iAS Cluster Architecture

Front-End Load Balancer
After you have created a cluster, you can add a load balancer in front of all

application server instances in the cluster, which provides availability and

scalability for the application server instances.

We recommend that you purchase and install a hardware load balancer for the best

performance. Alternatively, you could use a Web Cache as a load balancer, which

could be a single point of failure. See Oracle9iAS Web Cache Administration and
Deployment Guide for instructions on how to set up Web Cache as your load balancer

for your cluster.
Oracle9iAS Clustering 9-9

Architecture
Metadata Repository in the Infrastructure
When you install Oracle9iAS, you have the option of installing the Oracle9iAS

Infrastructure. An Oracle9iAS Infrastructure provides Oracle Internet Directory,

Oracle9iAS Single Sign-On, and the Oracle9iAS Metadata Repository. The metadata

repository is an Oracle9i database that is used to store the application server

instance information and configuration. The application server instance tables are

created in the metadata repository. Multiple application server instances can share

the metadata repository of the infrastructure.

Application server instances associate with an infrastructure either during

installation or through the Enterprise Manager after installation.

Farm
A farm is a group of multiple application server instances that associate with the

same metadata repository. The application server instances that belong to a farm

can be installed anywhere on the network.

■ It is only within the constraint of a farm that you can create a cluster.

■ A farm can host multiple clusters.

Cluster
A cluster is a logical group of application server instances that belong to the same

farm. Each application server instance may be part of only one cluster. If an instance

is part of a cluster, then all of its configured components are implicitly part of that

cluster. Each application server instance can only be configured with OHS and OC4J

components to be contained in a cluster. A cluster can include zero or more

application server instances.

All application server instances involved in the cluster have the same "cluster-wide"

configuration. If you modify the configuration on one application server instance,

then the modification is automatically propagated across all instances in the cluster.

Note: This chapter does not define what an infrastructure or a

farm is. See the Concepts chapter in the Oracle9i Application Server
Administrator’s Guide for a full description.
9-10 Oracle9iAS Containers for J2EE User’s Guide

Architecture
Application Server Instance
An application server instance consists of a single Oracle HTTP Server and one or

more OC4J instances. It is a single installation in one Oracle home. If you have

multiple application servers on a single host, each is installed into its own Oracle

home and uses separate port numbers.

To manage clusters from Enterprise Manager, the application server uses a

metadata repository for storing its tables and configuration. Each application server

instance in the cluster has the same base configuration. The base configuration

contains the cluster-wide parameters and excludes instance-specific configuration.

If you modify any of the cluster-wide configuration, the modifications are

propagated to all other application server instances in the cluster. If you modify an

instance-specific parameter, it is not propagated as it is only applicable to the

specified application server instance. See "Instance-Specific Parameters" on

page 9-23 for a listing of the instance-specific parameters. The cluster-wide

parameters are all other parameters.

In order for each application server instance to be a part of a cluster, the following

must be true:

■ The application server instances you add to a cluster must be part of the farm

and use a common metadata repository, where the cluster resides. Associate

application server instances with the same metadata repository either during

install time or after installation through Enterprise Manager.

■ Each application server instance in a cluster must be installed on the same type

of operating system, such as UNIX.

■ The first application server instance you add to the cluster must contain only

OC4J and Oracle HTTP Server components. The Web Cache can be configured,

but it will be ignored for clustering operations. If other Oracle9iAS components

are part of the application server instance, Oracle9iAS displays an error and

does not add the application server instance to the cluster.

Note: "Instance-specific" configuration parameter modifications

are not propagated. For a description of these parameters, see

"Instance-Specific Parameters" on page 9-23.
Oracle9iAS Clustering 9-11

Architecture
■ When you install additional application server instances, ensure that only

Oracle HTTP Server, OC4J, and Web Cache are configured. The Web Cache will

be ignored for clustering operations.

■ Each application server instance can contain only one Oracle HTTP Server.

■ Each application server instance can contain one or more OC4J instances.

To cluster application server instances, do the following:

1. Create an empty cluster in the farm. The only requirement for creating a cluster

is a unique name.

2. Add the first application server instance to the cluster. This application server

instance must already belong to the farm. The configuration of this first instance

is used as the base configuration for all additional application server instances.

The base configuration overwrites any existing configuration of subsequent

application server instances that join the cluster.

The base configuration includes the cluster-wide properties. It does not include

instance-specific properties. See "Instance-Specific Parameters" on page 9-23 for

more information about instance-specific properties.

3. Add other application server instances—even if it exists on another host—to the

cluster. Each additional application server instance inherits the base

configuration.

4. If you add application server instances into a cluster, set the base configuration,

then remove all application server instances from a cluster. The cluster is now

empty and the base configuration is not set. Thus, the next application server

instance that you add becomes the source of the base configuration.

5. When added to or removed from the cluster, the application server instance is

stopped. You can restart the added application server instances within the

context of the cluster. You can restart the removed application server instance

from the standalone instances section in the farm.

Once grouped in the same cluster, these application server instances will have the

following properties:

Note: Oracle9iAS Web Cache provides its own clustering

functionality separate from application server clustering. See

Oracle9iAS Web Cache Administration and Deployment Guide for more

information.
9-12 Oracle9iAS Containers for J2EE User’s Guide

Architecture
■ Each application server instance has the same cluster-wide configuration. That

is, if you modify any cluster-wide parameters, the modifications are propagated

to all application server instances in the cluster. For instance-specific

parameters, you must modify these on each individual application server

instance.

■ If you deploy an application to one application server instance, it is propagated

to all application server instances in the cluster. The application is actually

deployed to an OC4J Instance in the application server instance and propagated

to the same OC4J Instance in the other application server instances in the

cluster. You can change some of the configuration for the deployed application,

and this change is propagated to the same OC4J Instance in the other

application server instances in the cluster.

■ Each application server instance is equal in the cluster. You can remove any of

them at any time. The first instance does not have special properties. The base

configuration is created from this instance, but the instance can be removed

from the cluster in the same manner as the other instances.

■ Most of the clustering management, configuration, and application deployment

is handled through the Oracle Enterprise Manager. If you want to use a

command-line tool, you can use the Distributed Configuration Management

(DCM) command-line tool, which is documented in Appendix A, "DCM

Command-Line Utility (dcmctl)".

■ You can remove application server instances from the cluster. The application

server instance is stopped when removed from the cluster. When the last

application server instance is removed, the cluster still remains. You must delete

the cluster itself for it to be removed.

Management Features
Each application server instance contains management features that manage and

monitor the application server instance, its components, and how it performs in a

cluster. The management features do the following:

■ propagate the cluster-wide configuration for the application server instances

and its components

■ manage the application server components by starting, stopping, and restarting

these components

■ notice if a component dies and restarts it

■ notifies the OHS if any OC4J instances starts or stops
Oracle9iAS Clustering 9-13

Architecture
All of these activities are provided by the following management features:

■ Distributed Configuration Management (DCM)

■ Oracle Process Management Notification (OPMN)

Distributed Configuration Management (DCM)
Distributed Configuration Management (DCM) manages configuration by

propagating the cluster-wide configuration for the application server instances and

its components. When you add the additional application server instances to the

cluster, it is the DCM component that automatically replicates the base

configuration to all instances in the cluster. When you modify the cluster-wide

configuration, DCM propagates the changes to all application server instances in

the cluster.

DCM is a management feature in each application server instance. However, it is

not a process that exists at all times. DCM is invoked either by Enterprise Manager

or manually by a user through dcmctl to do the following:

■ create or remove a cluster

■ add or remove application server instances to or from a cluster

■ synchronize configuration changes across application server instances

■ send application server instance start, restart, and stop requests to OPMN

■ enable automatic re-configuration on system failure

You can also manually execute the DCM command-line tool—dcmctl —to perform

these duties. However, there are restrictions on how to use dcmctl , which are

detailed below:

■ If Enterprise Manager is up and managing the cluster, you can invoke the DCM

command-line tool from any host where a clustered application server instance

exists. DCM informs Enterprise Manager of the requested function. Enterprise

Manager then interfaces with the other DCM management features on the other

application server instances in the cluster to complete the cluster-wide function.

■ If Enterprise Manager is not up and managing the cluster, you must start the

DCM command-line tool in the foreground on each application server instance

in the cluster. Once started in the foreground, DCM in each application server

instance communicates with each other about configuration changes and

deployed applications.
9-14 Oracle9iAS Containers for J2EE User’s Guide

Architecture
Oracle Process Management Notification (OPMN)
Oracle Process Management Notification (OPMN) manages Oracle HTTP Server

and OC4J processes within an application server instance. It channels all events

from different components to all components interested in receiving them.

OPMN consists of the following two components:

■ Oracle Process Manager

■ Oracle Notification System

Oracle Process Manager The Oracle Process Manager manages all Oracle HTTP

Server and OC4J related processes and is responsible for starting, restarting,

shutting down, and detecting the death of any Oracle HTTP Server or OC4J process.

The Oracle Process Manager starts or stops each process according to the

characteristics configured in the opmn.xml configuration file or it waits for a

command to start processes from the Enterprise Manager.

Oracle Notification System The Oracle Notification System is the transport mechanism

for failure, recovery, startup, and other related notifications between components in

Oracle9iAS. It operates according to a subscriber-publisher model, wherein any

component that wishes to receive an event of a certain type subscribes to the Oracle

Notification System. When such an event is published, the Oracle Notification

System sends it to all subscribers.

All Oracle HTTP Servers know about all active OC4J processes in the cluster. This

enables the Oracle HTTP Servers to load balance incoming requests to any of the

OC4J processes. This includes the OC4J processes in its own application server

instance as well as in other application server instances in the cluster. The Oracle

Notification System notifies all Oracle HTTP Servers when any OC4J process is

started, dies, restarted, or stopped.

Component Instances
The application server is installed with several different types of components.

However, to be involved in a cluster, each application server instance can only

contain one Oracle HTTP Server (OHS) and one or more Oracle9iAS Containers for

See Also: Appendix A, "DCM Command-Line Utility (dcmctl)"

for directions on how to do the previous functions with the dcmctl
tool.
Oracle9iAS Clustering 9-15

Architecture
J2EE (OC4J) components. As noted above, Web Cache can be installed, but it will

not be clustered within this environment. Web Cache has its own clustering model.

Oracle HTTP Server (OHS)
The Oracle HTTP Server (OHS) is a Web server for the application server instance. It

serves client requests. In addition, it forwards OC4J requests to an active OC4J

process. Because of this, OHS is a natural load balancer for OC4J instances. When

you have a single application server instance, the OHS handles the incoming

requests for all of the OC4J processes in this sole application server instance.

However, in a clustered environment, the OHS is updated with information about

existing OC4J processes by OPMN in all application server instances in the cluster.

Thus, the OHS can do the following:

■ Forward an incoming stateless request to any OC4J process in the cluster. The

priority is to forward the incoming request first to an OC4J process in its own

application server instance. If none are available, it will forward the request to

any OC4J process in another application server instance in the cluster.

■ Forward an incoming stateful request to the particular OC4J process where the

conversation originated. If the OC4J process has failed, OHS forwards the

request to another OC4J process that has the replicated state of that application.

OPMN starts (or restarts) each OC4J process. OPMN notifies each Oracle HTTP

Server (OHS) in the cluster of each OC4J process. Thus, any OHS can load balance

incoming requests among any OC4J process in the cluster.

Figure 9–6 demonstrates how the two Oracle HTTP Servers in the cluster know

about both of the OC4J processes. It does not matter that one OC4J process exists in

a separate application server instance, which can be installed on a separate host.

The OPMN components in each application server instance notifies both Oracle

HTTP Servers of the OC4J processes when they were initialized.

Note: Other application server components, such as Web Cache,

can be clustered independently from application server clusters. It

is not recommended that a component be part of an independent

cluster as well as an application server instance cluster. For

information on components that can be clustered independently,

see each component administrator’s guide.
9-16 Oracle9iAS Containers for J2EE User’s Guide

Architecture
Figure 9–6 OHS As A Load Balancer For OC4J Processes

OC4J Instance
The OC4J instance is the entity to which J2EE applications are deployed and

configured. It defines how many OC4J processes exist within the application server

and the configuration for these OC4J processes. The OC4J process is what executes

the J2EE applications for the OC4J instance.

The OC4J instance has the following features:

■ The configuration of the OC4J instance is valid for one or more OC4J executable

processes. This way, you can duplicate the configuration for multiple OC4J

processes by managing these processes in the OC4J instance construct. When

you modify the cluster-wide configuration within the OC4J instance, the

modifications are valid for all OC4J processes.

■ Each OC4J instance can be configured with one or more OC4J processes.

■ When you deploy an application to an OC4J instance, the OC4J instance

deploys the application to all OC4J processes defined in the OC4J instance. The

OC4J instance is also responsible for replicating the state of its applications.

OPMN DCM DCMOPMN

Oracle HTTP ServerOracle HTTP Server

OC4J
Processes

OC4J
Processes

Application Server Instance #1 Application Server Instance #2

CLUSTER
Oracle9iAS Clustering 9-17

Architecture
■ The number of OC4J processes is specific to each OC4J instance. This must be

manually configured for each application server instance in the cluster. The

OC4J process configuration provides flexibility to tune according to the specific

hardware capabilities of the host. By default, each OC4J instance is instantiated

with a single OC4J process.

Within the application sever instance, you can configure multiple OC4J instances,

each with its own number of OC4J processes. The advantage for this is for

configuration management and application deployment for separate OC4J

processes in your cluster.

Figure 9–7 demonstrates the OC4J_home default OC4J instance. In the context of a

cluster, the OC4J instance configuration is part of the cluster-wide configuration.

Thus, the OC4J_home instance, configured on the first application instance, is

replicated on all other application server instances.

The number of processes in each OC4J_home instance is an instance-specific

parameter, so you must configure the OC4J_home instance separately on each

application server instance for the number of OC4J processes that exist on each

application server instance. Figure 9–7 shows that the OC4J_home instance on

application server instance 1 contains two OC4J processes; the OC4J_home instance

on application server instance 2 contains only one OC4J process. Each OC4J

instance defaults to having one OC4J process.

Figure 9–7 OC4J Processes in a Cluster

Oracle HTTP ServerOracle HTTP Server

Application Server Instance #1 Application Server Instance #2

CLUSTER

OC4J
Process

OC4J
Process

OC4J Instance

OC4J
Process

OC4J Instance
9-18 Oracle9iAS Containers for J2EE User’s Guide

Architecture
OC4J Process
The OC4J process is the JVM process that executes J2EE applications. Each OC4J

process is contained in an OC4J instance and inherits its configuration from the

OC4J instance. All applications deployed to an OC4J instance are deployed to all

OC4J processes in the OC4J instance.

You can define one or more OC4J processes within an OC4J instance, so that J2EE

requests can be load balanced and have failover capabilities.

The configuration for the number of OC4J processes is instance-specific. Thus, you

must configure each OC4J instance in each application server instance with the

number of OC4J processes you want to start up for that OC4J instance. The default

is one OC4J process.

Each host that you install the application server instances on has different

capabilities. To maximize the hardware capabilities, configure the number of OC4J

processes in each OC4J instance that will use these capabilities properly. For

example, you can configure a single OC4J process on host A and five OC4J

processes on host B.

When you define multiple OC4J processes, you enable the following:

■ You can serve multiple users with multiple OC4J processes.

■ You can provide failover if the state of the application is replicated across

multiple OC4J processes.

■ OHS provides load balancing for all OC4J processes in the OC4J instance. The

OPMN component notifies each OHS when a new OC4J process is initiated.

Thus, each OHS in the cluster knows of each OC4J process in the cluster.

Replicating Application State The OC4J processes involved in the cluster can replicate

application state to all OC4J processes. Once you configure replication, OC4J

handles the propagation of the application state for you.

If one OC4J process fails, then another OC4J process—which has had the

application state replicated to it—takes over the application request. When an OC4J

process fails during a stateful request, the OHS forwards the request in the

following order:

1. If another OC4J process is active within the same application server instance,

OHS forwards the request to this process.

2. Otherwise, OHS forwards the state request to an OC4J process in another

application server instance in the cluster.
Oracle9iAS Clustering 9-19

Architecture
There are two types of failure that you want to protect against: software failure and

hardware failure.

Islands
An island is a logical grouping of OC4J processes that allows you to determine

which OC4J processes will replicate state.

In each OC4J instance, you can have more than one OC4J process. If we consider

state replication in a situation where all OC4J processes tried to replicate state, then

the CPU load can significantly increase. To avoid a performance degradation, the

OC4J instance enables you to subgroup your OC4J processes. The subgroup is

called an island.

To ensure that the CPU load is partitioned among the processes, the OC4J processes

of an OC4J instance can be partitioned into islands. The state for application

requests is replicated only to OC4J processes that are grouped within the same

island. All applications are still deployed to all OC4J processes in the OC4J instance.

The only difference is that the state for these applications is confined to only a

subset of these OC4J processes.

The island configuration is instance-specific. The name of the island must be

identical in each OC4J instance, where you want the island to exist. When you

configure the number of OC4J processes on each application server instance, you

can also subgroup them into separate islands. The OC4J processes are grouped

across application server instances by the name of the island. Thus, the application

state is replicated to all OC4J processes within the island of the same name

spanning application server instances.

The grouping of OC4J processes for the state replication is different for EJB

applications than for Web applications. Web applications replicate state within the

island sub-grouping. EJB applications replicate state between all OC4J processes in

the OC4J instance and do not use the island sub-grouping.

Failure Type Avoidance Technique

Software failure occurs
when the OC4J process
fails.

Multiple OC4J processes in the same OC4J instance. When one
OC4J process fails, the OHS forwards the request to another
OC4J process in the same OC4J instance.

Hardware failure occurs
when the host goes
down.

OC4J processes in the cluster configured on separate hosts.
When the first host dies, the OC4J process on another host can
take over the request. This requires that you have installed an
application server instance on another host, which is a part of
the cluster, and the OC4J instance has at least one OC4J process.
9-20 Oracle9iAS Containers for J2EE User’s Guide

Architecture
Figure 9–8 demonstrates OC4J processes in islands within the cluster. Two islands

are configured in the OC4J_home instance: default-island and

second-island . One OC4J process is configured in each island on each

application server instance. The OC4J islands, designated within the shaded area,

span application server instances.

Figure 9–8 Island Description

J2EE Applications
J2EE applications are deployed in all cases to the OC4J instance—whether the

application server instance is included in a cluster or not. However, when the

application is deployed to an OC4J instance that is in a cluster, certain configuration

details must be accomplished:

■ Multicast host and port—The state of the applications is replicated from one

OC4J process to another over a multicast address. In the case of an EJB

application, you must also specify a username and password. You can either

accept the defaults for the multicast address or configure it through the

Enterprise Manager.

■ State replication request—You request state replication for all applications

through the Enterprise Manager.

Oracle HTTP ServerOracle HTTP Server

Application Server Instance #1 Application Server Instance #2

CLUSTER

OC4J Instance OC4J Instance

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process

DEFAULT-ISLAND

SECOND-ISLAND
Oracle9iAS Clustering 9-21

Enterprise Manager Configuration Tree
■ XML deployment descriptor elements—Both Web and EJB applications require

an additional configuration in their respective XML deployment descriptors.

■ Island definition—Web applications use the island subgrouping for its state

replication. EJB applications ignore the island subgrouping and use all OC4J

processes for its state replication.

Enterprise Manager Configuration Tree
Enterprise Manager uses a hierarchical approach for configuring and managing

your cluster.

Figure 9–9 demonstrates the configuration tree for a cluster.

■ A cluster contains one or more application server instances.

■ Each application server instance contains a single Oracle HTTP Server and one

or more OC4J instances.

■ Within each OC4J instance, you do the following:

– Define one or more islands

– Configure one or more OC4J processes within designated islands

– Deploy applications
9-22 Oracle9iAS Containers for J2EE User’s Guide

Instance-Specific Parameters
Figure 9–9 Enterprise Manager Cluster Configuration Tree

Instance-Specific Parameters
The following parameters are not replicated across the cluster.

■ Islands and number of OC4J processes—While you want to keep the names of

the islands consistent across the application server instances, the definition of

the islands and the number of OC4J processes is configured independently. The

host on which you install each application server instance has different

capabilities. On each host, you can tune the number of OC4J processes to match

the host capabilities. Remember that the state is replicated in islands across

application boundaries. So the island names must be the same in each OC4J

instance.

■ Port numbers—The RMI, JMS, and AJP port numbers can be different for each

host.

9iAS
Farm

9iAS
Cluster

Application
Server

Instance

OHS
Instance

OC4J
Instance

OC4J
Process

0…n per 9iAS cluster

1 per application server instance

1…n per application server instance

1…n per OC4J instance

0…n per 9iAS farmfor each

for each
Oracle9iAS Clustering 9-23

Examples
■ Command line options—The command line options you use can be different for

each host.

Examples
No matter how many application server instances you add within the cluster, the

cluster-wide configuration is replicated within the cluster. You control protecting

against software and hardware failure with how you configure island and OC4J

processes, which are instance-specific parameters.

Software Failure
Suppose you configure more than one OC4J process within your OC4J instance,

then if one of these processes fails, another process can take over the work load of

the failed process. Figure 9–10 shows application server instance 1, which is

involved in the cluster. Within this application server instance, there are two OC4J

processes defined in the default-island in the OC4J_home instance. If the first OC4J

process fails, the other can pick up the work load.

Both of these OC4J processes are on the same host; so, if the host goes down, both

OC4J processes fail and the client cannot continue processing.
9-24 Oracle9iAS Containers for J2EE User’s Guide

Examples
Figure 9–10 Software Failure Demonstration

Hardware Failure
To protect against hardware failure, you must configure OC4J processes in the same

OC4J instance across hosts. Figure 9–11 shows OC4J_home instance in application

server instance 1 and 2. Within the default-island, two OC4J processes are

configured on application server instance 1 and three are configured in application

server instance 2. If a client is interacting with one of the OC4J processes in

application server 1, which terminates abnormally, the client is redirected

automatically to one of the OC4J processes in the default-island in application

server 2. Thus, your client is protected against hardware failure.

Application Server Instance #1

OC4J_home instance

OC4J process

OC4J process

default_island
Oracle9iAS Clustering 9-25

Examples
Figure 9–11 Hardware Failure Demonstration

State Replication
If the client is a stateful application, then the state is replicated only within the same

island. In the previous example, there is only a single island, so the state of the

application would be preserved.

To enhance your performance, you want to divide up state replication among

islands. However, you must also protect for hardware and software failure within

these islands.

The optimal method of protecting against software and hardware failure, while

maintaining state with the least number of OC4J processes, is to configure at least

one OC4J process on more than one host in the same island. For example, if you

have application server instance 1 and 2, within the OC4J_home instance, you

configure one OC4J process in the default-island on each application server

instance. Thus, you are protected against hardware and software failure and your

client maintains state if either failure occurs.

Application Server Instance #1

OC4J_home instance

OC4J process

OC4J process

default_island

Application Server Instance #2

OC4J_home instance

OC4J process

OC4J process

OC4J process
9-26 Oracle9iAS Containers for J2EE User’s Guide

Examples
■ If one of the OC4J processes fails, then the client request is redirected to the

other OC4J process in the island. The state is preserved and the client does not

notice any irregularity.

■ If application server 1 terminates abnormally, then the client is redirected to the

OC4J process in the default-island on application server 2. The state is

preserved and the client does not notice any irregularity.

As demand increases, you will configure more OC4J processes. To guard against a

performance slowdown, separate your OC4J processes into separate islands. For

example, if fifteen OC4J processes utilize the hardware efficiently on the two hosts

and serve the client demand appropriately, then you could divide these processes

into at least two islands. The following shows the fifteen OC4J processes grouped

into three islands:

■ The host where application server 1 is installed can handle seven OC4J

processes; the host where application server 2 is installed can handle eight OC4J

processes.

■ Each island contains at least one OC4J process in each island across hosts to

protect against software and hardware failure.

■ The performance is maximized by dividing up the state replication across three

islands.

Island Names Application Server 1 Application Server 2

default-island two three

second-island two three

third-island three two
Oracle9iAS Clustering 9-27

Cluster Configuration
Cluster Configuration
The following sections describe how to create a cluster and add application server

instances to this cluster using Enterprise Manager:

■ Managing an Oracle9iAS Cluster

■ Managing Application Server Instances in a Cluster

■ OC4J Instance Configuration

■ Configuring Single Sign-On

■ Configuring Instance-Specific Parameters

Managing an Oracle9 iAS Cluster
From the Oracle9iAS Farm Home Page, you can view a list of all the application

server instances that are part of the farm. These application server instances can be

clustered.

For more information, see the following topics:

■ Associating an Instance with an Oracle9iAS Infrastructure

■ Creating the Cluster

■ Figure

Associating an Instance with an Oracle9 iAS Infrastructure
If you have not already done so during installation, you can associate an application

server instance with an infrastructure, as follows:

1. Navigate to the Oracle9iAS Instance Home Page.

2. Scroll down to the Administration section and click Use Infrastructure.

3. Follow the instructions provided by the Use Infrastructure wizard. This is

discussed in more detail in Chapter 9 of the Oracle9i Application Server
Administrator’s Guide.

Note: As an alternative to using Enterprise Manager, you can

create a cluster, add application server instances to the cluster, and

manage the cluster using the DCM command-line tool. See

Appendix A, "DCM Command-Line Utility (dcmctl)" for

information on the DCM command-line tool.
9-28 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
Creating the Cluster
Use the Oracle9iAS Farm Home Page to create a new cluster. The Farm Home Page

appears when you open the Enterprise Manager Web site on a host computer that

contains an application server instance that is part of a farm.

To create a cluster:

1. Navigate to the Farm Home Page.

Figure 9–12 shows the Farm Home Page with a single application server instance.

Figure 9–12 Oracle9iAS Farm Home Page

2. Click Create Cluster.

Oracle9iAS displays the Create Cluster page. Figure 9–13 shows this page.
Oracle9iAS Clustering 9-29

Cluster Configuration
Figure 9–13 Create Cluster Page

3. Enter a name for the cluster and click Create.

A confirmation message appears.

4. Click OK to return to the Farm Home Page.

The new cluster is listed in the Clusters table.

Managing the Cluster
Figure 9–14 shows the Farm Home Page after a cluster is created.

add create cluster page screen shot
9-30 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
Figure 9–14 Oracle9iAS Farm Home Page

Managing Application Server Instances in a Cluster
The following sections discuss how you can manage application server instances in

a cluster:

■ Adding an Application Server Instance to a Cluster

■ Removing an Application Server Instance from a Cluster

If you want to Then ...

Start all application server instances in a
cluster

Select the radio button next to the cluster and
click Start.

Restart all application server instances in a
cluster

Select the radio button next to the cluster and
click Restart.

Stop all application server instances in a
cluster

Select the radio button next to the cluster and
click Stop.

Delete a cluster, including any application
server instances still included in the cluster.

Select the radio button next to the cluster and
click Delete.
Oracle9iAS Clustering 9-31

Cluster Configuration
Adding an Application Server Instance to a Cluster
To add an application server instance to a cluster:

1. Navigate to the Farm Home Page, which is shown in Figure 9–14.

2. Select the radio button of the application server instance in the Standalone

Instances section that you want to add to a cluster. In Figure 9–14, the radio

button by the inst1 application server instance is selected.

3. Click Join Cluster. Figure 9–15 shows the Join Cluster page.

Figure 9–15 Join Cluster Page

4. Select the radio button of the cluster that you want the application server

instance to join. In Figure 9–15, the test cluster is selected.

5. Click Join.

Oracle9iAS adds the application server instance to the selected cluster and then

displays a confirmation page.

6. Click OK to return to the Farm Home Page. This moves the application server

instance from the standalone instances into the cluster. In doing so, the instance

is stopped. You can restart the instance within the context of the cluster.

You will notice that the application server instance disappears from the Standalone

Instances section. Also, the number of application server instances displayed for the

cluster increases by one. If you display the cluster, you will see that the application

add join cluster page screen shot
9-32 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
server instance was moved into the cluster. Thus, the Standalone Instances section

displays only those application server instances that are not a part of any cluster.

Repeat these steps for each additional standalone application server instance you

want to add to the cluster.

Removing an Application Server Instance from a Cluster
To remove the application server instance from the cluster, do the following:

1. On the Farm Home page, select the cluster in which you are interested. This

brings you to the cluster page.

2. Select the radio button of the application server instance to remove from the

cluster and click Remove.

When you add or remove an application server instance to or from a cluster, the

application server instance is stopped.

OC4J Instance Configuration
The Oracle9iAS Containers for J2EE User’s Guide describes how to configure an OC4J

Instance. The following sections describe how to configure your OC4J Instance for

clustering:

■ Configuring Islands and Processes

■ Configuring Web Application State Replication

■ Configuring EJB Application State Replication

Configuring Islands and Processes
To modify the islands and the number of processes each island contains, do the

following:

1. Scroll down to the Administration section of the OC4J Home Page.

2. Select Server Properties in the Instance Properties column.

3. Scroll down to the Multiple VM Configuration section. This section defines the

islands and the number of OC4J processes that should be started on this

application server instance in each island.

Figure 9–16 displays the Multiple VM Configuration section.
Oracle9iAS Clustering 9-33

Cluster Configuration
Figure 9–16 Island and Process Configuration

4. Create any islands for this OC4J instance within the cluster by clicking Add
Another Row. You can supply a name for each island within the Island ID field.

You can designate how many OC4J processes should be started within each

island by the number configured in the Number of Processes field.

Configuring Web Application State Replication
Configuring state replication for stateful applications is different for Web

applications than for EJB applications. To configure state replication for Web

applications, do the following:

1. Scroll down to the Administration section of the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the Web Applications section. Figure 9–17 shows this section.

4. Select the Replicate session state checkbox.

5. Optionally, you can provide the multicast host IP address and port number. If

you do not provide the host and port for the multicast address, it defaults to

host IP address 230.0.0.1 and port number 9127.The host IP address must be

between 224.0.0.2 through 239.255.255.255. Do not use the same multicast

address for both HTTP and EJB multicast addresses.
9-34 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
Figure 9–17 Web State Replication Configuration

6. Add the <distributable/> tag to all web.xml files in all Web applications.

If the Web application is serializable, you must add this tag to the web.xml file.

The following shows an example of this tag added to web.xml :

<web-app>
 <distributable/>
 <servlet>
 ...
 </servlet>
</web-app>

Configuring EJB Application State Replication
The concepts for understanding how EJB object state is replicated within a cluster

are described in the Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s
Guide and Reference. To configure EJB replication, you must do the following:

1. Scroll down to the Administration section of the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the EJB Applications section. Figure 9–18 shows this section.

4. Select the Replicate session state checkbox.

5. Provide the username and password, which is used to authenticate itself to

other hosts in the cluster. If the username and password are different for other

hosts in the cluster, they will fail to communicate. You can have multiple

username and password combinations within a multicast address. Those with
Oracle9iAS Clustering 9-35

Cluster Configuration
the same username/password combinations will be considered a unique

cluster.

6. Optionally, you can provide the multicast host IP address and port number. If

you do not provide the host and port for the multicast address, it defaults to

host IP address 230.0.0.1 and port number 9127.The host IP address must be

between 224.0.0.2 through 239.255.255.255. Do not use the same multicast

address for both HTTP and EJB multicast addresses.

Figure 9–18 EJB State Replication Configuration

7. Configure the type of EJB replication within the orion-ejb-jar.xml file

within the JAR file. The type of configuration is dependent on the type of the

bean. See "EJB Replication Configuration in the Application JAR" on page 9-36

for full details. You can configure these within the orion-ejb-jar.xml file

before deployment or add this through the Enterprise Manager screens after

deployment. If you add this after deployment, drill down to the JAR file from

the application page.

EJB Replication Configuration in the Application JAR Modify the orion-ejb-jar.xml
file to add the configuration for stateful session beans and entity beans require for

state replication. The following sections offer more details:

■ Stateful Session Bean Replication Configuration

■ Entity Bean Replication Configuration

Stateful Session Bean Replication Configuration
You configure the replication type for the stateful session bean within the bean

deployment descriptor. Thus, each bean can use a different type of replication.
9-36 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
VM Termination Replication Set the replication attribute of the

<session-deployment> tag in the orion-ejb-jar.xml file to

"VMTermination ". This is shown below:

<session-deployment replication="VMTermination" .../>

End of Call Replication Set the replication attribute of the

<session-deployment> tag in the orion-ejb-jar.xml file to "endOfCall ".

This is shown below:

<session-deployment replication="EndOfCall" .../>

Stateful Session Context No static configuration is necessary when using the stateful

session context to replicate information across the clustered hosts. To replicate the

desired state, set the information that you want replicated and execute the

setAttribute method within the StatefulSessionContext class in the server

code. This enables you to designate what information is replicated and when it is

replicated. The state indicated in the parameters of this method is replicated to all

hosts in the cluster that share the same multicast address, username, and password.

Entity Bean Replication Configuration
Configure the clustering for the entity bean within its bean deployment descriptor.

Modify the orion-ejb-jar.xml file to add the clustering-schema attribute

to the <entity-deployment> tag, as follows:

<entity-deployment ... clustering-schema="asynchronous-cache" .../>
Oracle9iAS Clustering 9-37

Cluster Configuration
Configuring Single Sign-On
In order to participate in Single Sign-On functionality, all Oracle HTTP Server

instances in a cluster must have an identical Single Sign-On registration.

■ Each Oracle HTTP Server is registered with the same Single Sign-On server.

■ Each Oracle HTTP Server redirects a success, logout, cancel, or home message

to the public network load balancer. In a clustered environment, each Oracle

HTTP Server should redirect message URLs to the network load balancer. Since

the client cannot access an Oracle HTTP Server directly, the client interacts with

the network load balancer.

As with all cluster-wide configuration, the Single Sign-On configuration is

propagated among all Oracle HTTP server instances in the cluster. However, the

initial configuration is manually configured and propagated. On one of the

application server instances, define the configuration with the ossoreg.jar tool.

Then, DCM propagates the configuration to all other Oracle HTTP Servers in the

cluster.

If you do not use a network load balancer, then the Single Sign-on configuration

must originate with whatever you use as the incoming load balancer—Web Cache,

Oracle HTTP Server, and so on.

To configure a cluster for Single Sign-On, execute the ossoreg.jar command

against one of the application server instances in the cluster. This tool registers the

Single Sign-On server and the redirect URLs with all Oracle HTTP Servers in the

cluster.

Run the ossoreg.jar command with all of the options as follows, substituting

information for the italicized portions of the parameter values.

The values are described fully in Table 9–1.

■ Specify the host, port, and SID of the database used by the Single Sign-On

server.

■ Specify the host and port of the front-end load balancer in each of the redirect

URL parameters—success_url , logout_url , cancel_url , and home_url .

These should be HTTP or HTTPS URLs depending on the site security policy

regarding SSL access to Single Sign-On protected resources.

■ Specify the root user of the host that you are executing this tool on in the -u
option.

See Also: Oracle9iAS Single Sign-On Administrator’s Guide
9-38 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
java -jar ORACLE_HOME/sso/lib/ossoreg.jar
-oracle_home_path ORACLE_HOME
-host sso_database host_name
-port sso_database port_number
-sid sso_database SID
-site_name site name
-success_url http:// host.domain:port /osso_login_success

-logout_url http:// host.domain:port /osso_logout_success

-cancel_url http:// host.domain:port /

-home_url http:// host.domain:port /

-admin_id admin_id
-admin_info admin_info
-config_mod_osso TRUE
-u root
-sso_server_version v1.2

Table 9–1 SSORegistrar Parameter Values

Parameter Value

-oracle_home_path
<path>

Absolute path to the Oracle home of the application server instance,
where you are invoking this tool.

-host <sso_host> Database host name where Single Sign-On server resides.

-port <sso_port> Database port where Single Sign-On server resides.

-sid <sso_SID> Database SID where Single Sign-On server resides.

-site_name <site> Hostname and port (host:port) of the Web site. You can provide a
logical name; however, the hostname and port are helpful to the
administrator.

-success_url <URL> Redirect URL (host.domain:port) for the routine that establishes
the partner application session and session cookies. Use HTTP or
HTTPS.

-logout_url <URL> Redirect URL (host.domain:port) for the routine that logs out of
the application session.

-cancel_url <URL> Redirect URL (host.domain:port) to which users are redirected
when they cancel authentication.

-home_url <URL> Redirect URL (host.domain:port) for home. This should be a public
host.domain and port: HTTP or HTTPS.

-admin_id <name> (Optional) User name of the mod_osso administrator. This shows up
in the Single Sign-On tool as contact information.
Oracle9iAS Clustering 9-39

Cluster Configuration
The SSORegistrar tool establishes all information necessary to facilitate secure

communication between the Oracle HTTP Servers in the cluster and the Single

Sign-On server.

When using Single Sign-On with the Oracle HTTP Servers in the cluster, the

KeepAlive directive must be set to OFF. The reason is because the Oracle HTTP

Servers are behind a network load balancer. Thus, if the KeepAlive directive is set to

ON, then the network load balancer maintains state with the Oracle HTTP Server

for the same connection, which results in an HTTP 503 error. Modify the KeepAlive

directive in the Oracle HTTP Server configuration. This directive is located in the

httpd.conf file of the Oracle HTTP Server.

Configuring Instance-Specific Parameters
The manageability feature of the cluster causes the configuration to be replicated

across all application server instances in the cluster, which is defined as a

cluster-wide configuration. However, there are certain parameters where it is

necessary to configure them separately on each instance. These parameters are

referred to as instance-specific.

The following parameters are instance-specific parameters, which are not replicated

across the cluster. You must modify these parameters on each application server

instance.

OC4J Instance-Specific Parameters
The following are instance-specific parameters within each OC4J instance:

■ islands

■ number of OC4J processes

■ port numbers

■ command-line options

All other parameters are part of the cluster-wide parameters, which are replicated

across the cluster.

-admin_info <text> (Optional) Additional information about the mod_osso
administrator, such as e-mail address. This shows up in the Single
Sign-On tool as contact information.

Table 9–1 SSORegistrar Parameter Values (Cont.)

Parameter Value
9-40 Oracle9iAS Containers for J2EE User’s Guide

Cluster Configuration
Figure 9–19 shows the section where these parameters are modified. These sections

are located in the Server Properties off the OC4J Home Page.

Figure 9–19 Non-Replicated Configuration

In the Command Line Options section, you can add debugging options to the OC4J

Options line. For more information about debugging in the OC4J process, see

http://otn.oracle.com/tech/java/oc4j .

Oracle HTTP Server Instance-Specific Parameters
The following are instance-specific parameters in the Oracle HTTP Server.

■ ports

■ listening addresses
Oracle9iAS Clustering 9-41

Cluster Configuration
■ virtual host information

The HTTP Server ports and listening addresses are modified on the Server

Properties page off of the HTTP Server Home Page. The virtual host information is

modified by selecting a virtual host from the Virtual Hosts section off of the HTTP

Server Home Page.
9-42 Oracle9iAS Containers for J2EE User’s Guide

DCM Command-Line Utility (dc
A

DCM Command-Line Utility (dcmctl)

The Distributed Configuration Management (DCM) utility, dcmctl, provides a

command-line alternative to using Oracle Enterprise Manager for some

management tasks. The dcmctl tool uses the same distributed architecture and

synchronization features as Enterprise Manager Web site, thereby providing

identical functionality in a format that is ideal for scripting and automation.

The following sections describe the tasks you can perform using dcmctl :

■ Overview

■ Starting and Stopping

■ Managing Application Server Instances

■ Managing Components

■ Managing Clusters

■ Deploying Applications

■ Using the dcmctl Shell

■ Executing dcmctl from a Command File
mctl) A-1

Overview
Overview
The dcmctl utility is located in ORACLE_HOME/dcm/bin/dcmctl .

In order to run dcmctl you must log in to your operating system as the user that

installed Oracle9i Application Server. You can run dcmctl from your operating

system prompt using the following syntax:

dcmctl command [options]

Table A–1 displays dcmctl help and error information commands.

Note: The only type of application server instance that you can

manage with dcmctl is a J2EE and Web Cache instance type with

only Oracle HTTP Server (OHS) and Oracle9iAS Containers for

J2EE (OC4J) configured. If Web Cache is configured, it will be

ignored by dcmctl .

Table A–1 Help and Error Commands

Command Description

help View usage information.

getError [err_number |
err_name]

View a description of the most recent error that occurred
if no parameter is given. If you provide an error number
or name, the description for that error is displayed. An
example of a valid number is 906007 ; an example of a
valid name is ADMN-906007.

getReturnStatus Print the current status of the last command executed.
The last command must be a command that performs an
operation, not a command that returns state. If the last
command has a failed or unknown state, the -verbose
option will provide more information.
A-2 Oracle9iAS Containers for J2EE User’s Guide

Overview
The following sections describe overall information on how to use dcmctl :

■ About dcmctl Commands and Options

■ Using dcmctl in a Clustered Environment

■ Passing Parameters to the JVM

About dcmctl Commands and Options
The dcmctl utility supports many commands, which are described in the

subsequent sections of this appendix. Commands are a single word and are not

case-sensitive. Each dcmctl command supports zero or more options.

Options take the following form:

- option [argument]

Option names have a long and short form, and are not case-sensitive. There are two

types of dcmctl options: target and universal.

Target Options
Table A–2 lists the dcmctl target options that define the target on which to apply

the given command. Subsequent sections of this appendix describe which target

options can be used with each command. On hosts with multiple application server

instances, dcmctl determines the target instance as follows:

■ The target is all instances in the designated cluster with the -cluster or -cl
option.

■ The target is the instance supplied with the -instance or -i option.

■ If a cluster or instance is not supplied, then the target is the instance associated

with the -oraclehome universal option.
DCM Command-Line Utility (dcmctl) A-3

Overview
■ If the cluster, instance, or -oraclehome is not supplied, use the instance

associated with the Oracle home directory in which the dcmctl executable

resides.

Universal Options
Table A–3 lists the dcmctl universal options that define command behavior and

can be used with all commands.

Table A–2 dcmctl Target Options

Option Description

-application app_name

-a app_name

Apply the command to the named application

-cluster cluster_name

-cl cluster_name

Apply the command to the named application server
cluster

-component comp_name

-co comp_name

Apply the command to the named component

-componentType type

-ct type

Apply the command to components of the named
component type. Component type can be ohs or oc4j .

-instance instance_name

-i instance_name

Apply the command to the named application server
instance

Table A–3 dcmctl Universal Options

Option Description

-debug

-d

Print the stack trace if an exception occurs when executing
the command

-logdir directory

-l directory

Save the DCM error log file log.xml in the named
directory. The directory can be a full pathname or a
pathname relative to the current directory. The default
directory is ORACLE_HOME/dcm/logs.

-oraclehome directory

-o directory

Set the Oracle home to the named directory. The default is
the Oracle home where the dcmctl command resides.

-timeout num_seconds

-t num_seconds

Set the maximum number of seconds to allow for a
command to complete. The default is 45 seconds.
A-4 Oracle9iAS Containers for J2EE User’s Guide

Overview
Using dcmctl in a Clustered Environment
In order to use dcmctl in a clustered environment, you must have a DCM daemon

associated with every instance in the cluster. You can do this in one of the following

ways:

■ Start the Oracle Enterprise Manager Web site on each host that contains an

application server instance in your cluster. On each host, log in as the user that

installed Oracle9i Application Server and enter the following command in the

Oracle home of the primary installation (the primary installation is the first

application server or infrastructure installed on the system):

ORACLE_HOME/bin/emctl start

■ Start the dcmctl shell in each application server instance in the cluster. On each

host that contains instances in the cluster, log in as the user that installed

Oracle9i Application Server and execute the following command in the Oracle

home directory for each instance in the cluster:

ORACLE_HOME/dcm/bin/dcmctl shell

To stop the process, use the following command:

dcmctl> exit

-verbose

-v

Print the long version of state and error messages

Table A–3 dcmctl Universal Options (Cont.)

Option Description
DCM Command-Line Utility (dcmctl) A-5

Starting and Stopping
Passing Parameters to the JVM
You can pass parameters directly to the JVM when executing dcmctl through the

ORACLE_DCM_JVM_ARGS environment variable.

For example, to set up a proxy:

ORACLE_DCM_JVM_ARGS="-DhttpProxy.host= yourproxyhost.com
-DhttpProxy.port= yourproxyport "

Starting and Stopping
Use dcmctl to start, stop, restart, and retrieve the status of application server

instances, components, and clusters.

Table A–4 lists the administration commands and their options for starting,

stopping, restarting, and retrieving the status of instances, clusters, or components

within the instance or cluster.

Table A–4 Administration Commands and Their Options

Command Description

start [[-cl cluster_name] |
[-i instance_name] |
[-co component_name] | [-ct
type]]

Start the processes indicated. The default is to start the local
application server instance only. Refer to Table A–2 for
information on the scope parameters. Note that you can choose to
start all application server instances in the cluster (-cl), the local
application server instance (default), a remote application server
instance (-i), a single component within the local instance (-co),
or a component type (ohs or oc4j) within an instance (-ct). For
all options except the -co and -ct options, OPMN and DCM are
started if not already executing.

stop [[-cl cluster_name] |
[-i instance_name] |
[-co component_name] | [-ct
type]]

Stop the processes indicated. See the start command for further
discussion. This does not stop OPMN and DCM.
A-6 Oracle9iAS Containers for J2EE User’s Guide

Managing Application Server Instances
Managing Application Server Instances
Table A–5 describes commands that you can use to display information about

application server instances and destory and resynchronize instances.

restart [[-cl cluster_name] |
[-i instance_name] |
[-co component_name] | [-ct
type]]

Restart the processes indicated. See the start command for further
discussion. This will leave OPMN and DCM running.

shutdown Stops the local application server instance, including its
components, OPMN, and DCM. This command is appropriate to
run before a system shutdown.

getstate [[-cl cluster_name] |
[-i instance_name] |
[-co component_name]]

Return the current status of the processes indicated. This
command returns a status of "up" or "down" for the indicated
process.

Table A–5 Listing and Destroying Application Instances

Command Description

listInstances Return the names of all instances that belong to the farm as the target instance
and are not part of a cluster. If the target instance does not belong to a farm,
return only the name of the target instance.

whichInstance Return the name of the target instance.

destroyInstance -i
instance_name

Remove all information related to the instance from the DCM repository. This
command can be used if an instance was not deinstalled properly using Oracle
Universal Installer. Note that the instance name must be supplied for this
command.

listComponents [[-i
instance_name] |
[-cl cluster_name]]

Return a list of component instance names in the application server instance.

resyncInstance
[-force]
[-i instance_name]

Resynchronize the local configuration information for an instance with what is in
the DCM repository. This command can be used if an instance was not able to be
updated due to a system failure, and the instance state is not in sync with the
DCM repository. The -force option causes an instance to resynchronized with
information from the DCM repository regardless of whether the instance state
indicates that it requires resynchronization.

Table A–4 Administration Commands and Their Options

Command Description
DCM Command-Line Utility (dcmctl) A-7

Managing Components
Managing Components
Table A–6 describes commands that you can use to manage Oracle HTTP Server

and OC4J instances that reside within a J2EE and Web Cache instance type.

Managing Clusters
Table A–7 describes commands that you can use to manage application server

clusters.

Table A–6 Listing or Destroying Instances

Command Description

listComponentTypes Return a list of supported component types. The current
supported component types are ohs and oc4j .

getComponentType -co
component_name [-i instance_name
]

Return the type of the component instance.

createComponent -ct type -co
component_name

Create a new component instance of the specified type with the
specified name. Only the oc4j type is allowed.

removeComponent -co
component_name

Remove the specified component from the local instance (and
from the cluster if applicable). Only oc4j component instances
can be removed.

updateConfig [-ct type [, type]] Update the DCM repository with configuration changes made by
manually editing the component configuration files. The
componentType indicates the component type that has been
edited (ohs or oc4j). The default is both component types.

Table A–7 Managing Clusters

Command Description

createCluster -cl cluster_name Create a cluster with the indicated name in the farm.

removeCluster -cl cluster_name Remove the cluster and destroy all information about the cluster
in the DCM repository. A cluster must contain zero instances
when it is removed.

listInstances [-cl cluster_name] Return a list of application server instances in the cluster. If no
cluster is supplied, list instances that are not in a cluster.

listClusters Return a list of cluster names in the farm that is associated with
this host.
A-8 Oracle9iAS Containers for J2EE User’s Guide

Managing Clusters
whichCluster [-i instance_name] Return the name of the cluster that contains the supplied
instance.

isClusterable [-i instance_name] Determine if an application server instance is eligible for
clustering. Only J2EE and Web Cache instance types with OHS
and OC4J configured are eligible. Note that the -verbose
option will describe why an instance is not eligible for clustering.

isCompatible -cl cluster_name
[-i instance_name]

Determine if an application server instance is compatible with a
cluster, and therefore eligible to join the cluster. Note that the
-verbose option will describe why an instance is not
compatible with a cluster.

joinCluster -cl cluster_name
[-i instance_name]

Add the indicated instance to the specified cluster. An instance is
stopped after being added to a cluster and you can manually start
it.

leaveCluster [-i instance_name] Remove the indicated instance from the cluster. An instance is
stopped after being removed from a cluster and you can
manually start it.

updateConfig [-ct type] Update the DCM repository and other members of the cluster
with configuration changes made by manually editing the
component configuration files. The componentType indicates
the component type that has been edited (ohs or oc4j). The
default is both component types.

resyncInstance [-force]
[-i instance_name]

Resynchronize an application server instance with other instances
in the cluster. This command can be used after a synchronization
operation failed. For example, if you deployed an application
across a cluster, and one instance was not able to deploy the
application due to insufficient disk space, you could correct the
disk space problem and run this command to redeploy the
application across all instances. The -force option causes an
instance to resynchronize with information from the DCM
repository regardless of whether the instance state indicates that
it requires resynchronization.

Table A–7 Managing Clusters

Command Description
DCM Command-Line Utility (dcmctl) A-9

Deploying Applications
Deploying Applications
This section describes commands for deploying, redeploying, and undeploying

OC4J applications.

On hosts with multiple OC4J instances, dcmctl determines the target OC4J

instance as follows:

■ If an OC4J instance is specified with the -co target option, apply the operation

to that OC4J instance within the associated application server instance. The

application server instance is determined first by the -oraclehome option, and

second by the Oracle home directory in which the dcmctl executable resides. If

the application server instance is part of a cluster, apply the operation to all

OC4J instances with the specified name within the cluster.

■ If the -co target option is not supplied, apply the operation to all OC4J

instances within the associated application server instance. The application

server instance is determined first by the -oraclehome option, and second by

the Oracle home directory in which the dcmctl executable resides. If the

application server instance is part of a cluster, apply the operation to all OC4J

instances within the cluster.

Table A–8 Deploying Applications

Command Description

deployApplication -file name
-a app_name [-co comp_name] [-rc
root_context]

Deploy an application to the current instance using the WAR
or EAR file supplied with the -file option. The application
name is assigned to the application for administrative
purposes. The name used to access the application from the
Web is still the name supplied in the EAR file. The -rc
option is required if the application is a WAR file. Do not use
the -rc option when deploying an EAR file

redeployApplication -file name
-a app_name [-co comp_name] [-rc
root_context]

Redeploy an application to the current instance using the
WAR or EAR file indicated by the -file option and associate
the indicated name as the name of the application for
administrative purposes. The -rc option is required if the
application is a WAR file. Do not use the -rc option when
deploying an EAR file
A-10 Oracle9iAS Containers for J2EE User’s Guide

Saving a Backup
Saving a Backup
Table A–9 lists commands that you can use to back up your application instance,

including clustering information, configuration, and applications deployed.

undeployApplication
-a app_name [-co comp_name]

Undeploy the indicated application.

listApplications -co comp_name
[[-cl cluster_name] | [-i
instance_name]]

Return a list of the applications deployed within the indicated
OC4J component. Note that this command allows you to
specify an instance or cluster that contains the OC4J
component.

validateEarFile -file
simple_ear_file

Determine if the supplied EAR file is J2EE compliant. In order
to run this command, you must set up your proxy so that
Document Type Definitions (DTDs) may be reached on the
Web.

See Also: "Passing Parameters to the JVM" on page A-6 for
more information.

Table A–9 Backing Up the Application Instance

Command Description

saveInstance
-dir directory_name

Saves the configuration and application information of the current instance to
the designated directory. Creates the directory if it does not exist. If it does
exit, then the specified directory must be empty. This command can be used
to save current configuration settings and installed J2EE applications before
making configuration changes. You can then back out of the changes, if
necessary, using the restoreInstance command.

restoreInstance
[-dir directory_name]

Restores the configuration and application information from the specified
directory for this instance. If no directory is specified, then the instance is
restored to the configuration set at install time. This command causes the
instance to be shut down. If the instance is a member of a cluster, it is
removed from the cluster before the information is restored.
RestoreInstance does not effect the configuration of the other members of
the cluster.

resetFileTransaction When using a file-based repository for your application instance, it may leave
uncommitted information in the repository if an operation is interrupted
(control C). This command blocks all subsequent updates to the repository,
cleans up uncommitted data, and reopens the repository for update.

Table A–8 Deploying Applications

Command Description
DCM Command-Line Utility (dcmctl) A-11

Using the dcmctl Shell
Using the dcmctl Shell
You can execute dcmctl commands from within the dcmctl shell. To start the

dcmctl shell, type:

dcmctl shell

The following is a sample session using the dcmctl shell:

dcmctl shell
dcmctl> createcluster testcluster
dcmctl> joincluster testcluster
dcmctl> createcomponent -ct oc4j -co component1
dcmctl> start -co component1
dcmctl> deployapplication -f /stage/apps/app1.ear -a app1 -co component1
dcmctl> start -cl testcluster
dcmctl> getstate
dcmctl> exit

Executing dcmctl from a Command File
You can execute dcmctl commands from a script file using the following

command:

dcmctl shell -f script_file_name

For example, create a file called testFile.cmd containing the following lines:

this is a comment in a dcmctl command file
echo "creating testcluster"
createcluster testcluster
echo "joining testcluster"
joincluster testcluster
echo "creating component component1"
createcomponent -ct oc4j -co component1
echo "starting component to deploy application"
start -co component1
echo " deploying application"
deployapplication -f /stage/apps/app1.ear -a app1 -co component1

Note: You can repeat any command within the dcmctl shell

using the !! command.
A-12 Oracle9iAS Containers for J2EE User’s Guide

Executing dcmctl from a Command File
echo "starting the cluster"
start -cl testcluster
echo "verifying everything started "
getstate
exit

Execute testFile.cmd using the following command:

dcmctl shell -f testFile.cmd
DCM Command-Line Utility (dcmctl) A-13

Executing dcmctl from a Command File
A-14 Oracle9iAS Containers for J2EE User’s Guide

Additional Inform
B

Additional Information

This appendix contains complete information about the following topics:

■ Description of XML File Contents

■ Elements in the server.xml File

■ Configuration and Deployment Examples

Most of these sections discuss how to modify your XML files. Modify all XML files

only through Enterprise Manager. Do not modify XML files on a single node.
ation B-1

Description of XML File Contents
Description of XML File Contents
OC4J uses configuration and deployment XML files. The following sections describe

each of these types.

OC4J Configuration XML Files
This section describes the following XML files, which are necessary for OC4J

configuration:

■ server.xml

■ web-site.xml

■ jazn-data.xml

■ data-sources.xml

■ jms.xml

■ rmi.xml

■ httpds.conf

■ mod_oc4j.conf

■ workers.properties

server.xml
This file contains the configuration for the application server. The server.xml file is

the root configuration file—it contains references to other configuration files. In this

file, you specify the following:

■ The library path, which is located in the application deployment descriptor

■ The global application, the global Web application, and the default Web site

served

■ Maximum number of HTTP connections the server allows

■ Logging settings

■ Java compiler settings

■ Cluster ID

■ Transaction time-out

■ SMTP host
B-2 Oracle9iAS Containers for J2EE User’s Guide

Description of XML File Contents
■ Location of the data-sources.xml configuration

■ Location of the configuration for JMS and RMI

■ Location of the default and additional Web sites

You specify these locations by adding entries that list the location of the Web

site configuration files. You can have multiple Web sites. The

default-web-site.xml file defines a default Web site; therefore, there is only

one of these XML files. All other Web sites are defined in web-site.xml
configuration files. You register each Web site within the server.xml file, as

follows:

<web-site path="./default-web-site.xml" />
<web-site path="./another-web-site.xml" />

Finally, you can add your own applications to the server.xml file. You can have as

many application directories as you want and they do not have to be located under

the OC4J installation directory.

web-site.xml
This file contains the configuration for a Web site. In the web-site.xml file specify

the following:

■ Host name or IP address, virtual host settings for this site, listener ports, and

security using SSL

■ Default Web application for this site

■ Additional Web applications for this site

■ Access-log format

■ Settings for user Web applications (for /~user/ sites)

■ SSL configuration

jazn-data.xml
This file contains security information for the OC4J server. It defines the user and

group configuration for employing the default JAZNUserManager . In the

jazn-data.xml file, specify the following:

Note: The path designated is relative to the config/ directory.
Additional Information B-3

Description of XML File Contents
■ Username and password for the client-admin console

■ Name and description of users/groups, and real name and password for users

data-sources.xml
This file contains configuration for the data sources used. In addition, it contains

information on how to retrieve JDBC connections. In the data-sources.xml file,

specify the following:

■ JDBC driver

■ JDBC URL

■ JNDI paths to which to bind the data source

■ User/password for the data source

■ Database schema to use

■ Inactivity time-out

■ Maximum number of connections allowed to the database

jms.xml
This file contains the configuration for the in-memory Java Messaging Service (JMS)

implementation. In the jms.xml file, specify the following:

■ Host name or IP address, and port number to which the JMS server binds

■ Settings for queues and topics to be bound in the JNDI tree

■ Log settings

rmi.xml
This file contains configuration for the Remote Method Invocation (RMI) system. It

contains the setting for the RMI listener, which provides remote access for EJBs. In

the rmi.xml file, specify the following:

Note: Database schemas are used to make auto-generated SQL

work with different database systems. OC4J contains an XML file

format for specifying properties, such as type-mappings and

reserved words. OC4J comes with database schemas for MS SQL

Server/MS Access, Oracle, and Sybase. You can edit these or make

new schemas for your DBMS.
B-4 Oracle9iAS Containers for J2EE User’s Guide

Description of XML File Contents
■ Host name or IP address, and port number to which the RMI server binds

■ Remote servers to which to communicate

■ Clustering settings

■ Log settings

J2EE Deployment XML Files
The OC4J-specific deployment XML files contain deployment information for

different components. If you do not create the OC4J-specific files, they are

automatically generated when using automatic deployment. You can edit

OC4J-specific deployment XML files manually. These files are used by OC4J to map

environment entries, resources references, and security-roles to actual

deployment-specific values.

This section describes the following XML files necessary for Web application

deployment:

■ application.xml

■ orion-application.xml

■ ejb-jar.xml

■ orion-ejb-jar.xml

■ web.xml

■ orion-web.xml

■ application-client.xml

■ orion-application-client.xml

application.xml
This file identifies the Web or EJB applications contained within the J2EE

application. It also identifies the location of the security XML definition

file—jazn-data.xml .

orion-application.xml
This file configures the global application. In the orion-application.xml file,

specify the following:

■ Whether to auto-create and auto-delete tables for CMP beans
Additional Information B-5

Description of XML File Contents
■ The default data source to use with CMP beans

■ Security role mappings

■ Specifying the user manager

■ JNDI namespace-access rules (authorization)

ejb-jar.xml
This file defines the deployment parameters for the EJBs in this JAR file.

orion-ejb-jar.xml
This file is the OC4J-specific deployment descriptor for EJBs. In the

orion-ejb-jar.xml file, specify the following:

■ Time-out settings

■ Transaction retry settings

■ Session persistence settings

■ Transaction isolation settings

■ CMP mappings

■ OR mappings

■ Finder method specifications

■ JNDI mappings

web.xml
This file contains deployment information about the servlets and JSPs in this

application.

orion-web.xml
This is the OC4J-specific deployment descriptor for mapping Web settings. This

XML file contains the following:

■ Auto-reloading (including modification-check time-interval)

■ Buffering

■ Charsets

■ Development mode
B-6 Oracle9iAS Containers for J2EE User’s Guide

Elements in the server.xml File
■ Directory browsing

■ Document root

■ Locales

■ Web timeouts

■ Virtual directories

■ Clustering

■ Session tracking

■ JNDI mappings

application-client.xml
This file contains JNDI information for accessing the server application and other

client information.

orion-application-client.xml
This OC4J-specific deployment file is for the client application. It contains JNDI

mappings and entries for the client.

Elements in the server.xml File
The server.xml file is where you perform the following tasks:

■ Configure OC4J

■ Reference other configuration files

■ Specify your J2EE application(s)

Configure OC4J
Configuring the OC4J server includes defining the following elements in the

server.xml file:

■ The library path

■ The global application, the global web application, and the default Web site

■ Maximum number of HTTP connections the server allows

■ Logging settings
Additional Information B-7

Elements in the server.xml File
■ Java compiler settings

■ Cluster ID

■ Transaction time-out

■ SMTP host

Reference Other Configuration Files
Referencing other configuration files in the server.xml file includes specifying the

following:

■ The data-sources.xml location

■ The jazn-data.xml location

■ The jms.xml and rmi.xml locations

Several XML files and directories are defined in the server.xml file. The path to

these files or directories can be relative or absolute. If relative, the path should be

relative to the location of the server.xml file.

<application-server> Element Description
The top level element of the server.xml file is the <application-server>
element.

<application-server>

This element contains the configuration for an application server.

Attributes:

■ application-auto-deploy-directory=".../applications/auto"
—Specifies the directory from which EAR files are automatically detected and

deployed by the running OC4J server. Also, performs the Web application

binding for the default application.

■ auto-start-applications="true|false" —If set to true , all

applications defined in the <applications> elements are automatically

started when the OC4J server is started. If set to false , the applications are not

started unless their auto-start attribute is set to true . The default for

auto-start-applications is true .

■ application-directory=".../applications" — Specifies a directory to

store applications (EAR files). If none is specified (the default), OC4J stores the

information in j2ee/home/applications .
B-8 Oracle9iAS Containers for J2EE User’s Guide

Elements in the server.xml File
■ deployment-directory=".../application-deployments" —Specifies

the master location where applications that are contained in EAR files are

deployed. This defaults to j2ee/home/application-deployments/ .

■ connector-directory= The location and file name of the

oc4j-connectors.xml file.

■ recovery-procedure="automatic|prompt|ignore"> — Specifies how

the EJB container reacts for recovery if an error occurred in the middle of a

global transaction (JTA). If a CMP bean is in the middle of a global transaction,

the EJB container saves the transactional state to a file. The next time OC4J is

started, these attributes specify how to recover the JTA transaction.

– automatic — automatically attempts recovery (the default)

– prompt — prompts the user (system in/out)

You may notice a prompt for recovery even if no CMP beans were

executing. This is because the OC4J server asks for permission to see if there

was anything to recover.

– ignore — ignores recovery (useful in development environments or if you

are never executing a CMP entity bean)

Elements Contained Within <application-server>
Within the <application-server> element, the following elements, which are

listed alphabetically and not by DTD ordering, can be configured:

<application>

An application is a entity with its own set of users, Web applications, and EJB JAR

files.

Attributes:

■ auto-start="true|false" — Specifies whether the application should be

automatically started when the OC4J server starts. The default is true . Setting

auto-start to false is useful if you have multiple applications installed and

want them to start on demand. This can improve general server startup time

and resource usage.

■ deployment-directory=".../application-deployments/myapp" —

Specifies a directory to store application deployment information. If none is

specified (the default), OC4J looks in the global deployment-directory , and

if none exists there, it stores the information inside the EAR file. The path can be
Additional Information B-9

Elements in the server.xml File
relative or absolute. If relative, the path should be relative to the location of the

server.xml file.

■ name="anApplication" — Specifies the name used to reference the

application.

■ parent="anotherApplication" — The name of the optional parent

application. The default is the global application. Children see the namespace of

its parent application. This is used to share services such as EJBs among

multiple applications.

■ path=".../applications/myApplication.ear" /> — The path to the

EAR file containing the application code. In this example, the EAR file is named

myApplication.ear .

<compiler>

Specifies an alternative compiler (such as Jikes) for EJB/JSP compiling.

Attributes:

■ classpath="/my/rt.jar" — Specifies an alternative/additional classpath

when compiling. Some compilers need an additional classpath (such as Jikes,

which needs the rt.jar file of the Java 2 VM to be included).

■ executable="jikes" /> — The name of the compiler executable to use,

such as Jikes or JVC.

<cluster>

Cluster settings for this server.

Attribute:

■ id="123" /> — The unique cluster ID of the server.

<global-application>

The default application for this server. This acts as a parent to other applications in

terms of object visibility.

Attributes:

■ name="default" — Specifies the application.

■ path=".../application.xml" /> — Specifies the path to the global

application.xml file, which contains the settings for the default application.

An application.xml file exists for each application as the manifest, which is

different than this file. This application.xml may have the same name, but

it exists to provide global settings for all J2EE applications.
B-10 Oracle9iAS Containers for J2EE User’s Guide

Elements in the server.xml File
<global-web-app-config>

path=".../web-application.xml" /> — The path where the

web-application.xml file is located.

<jms-config>

Attribute:

path=".../jms.xml" — Specifies the path to the jms.xml file.

<log>

<file >

Attribute:

■ path=".../log/server.log" — Specifies a relative or absolute path to

a file where log events are stored.

<mail >

An e-mail address where log events are forwarded. You must also specify a

valid mail-session if you use this option.

Attribute:

■ address="my@mail.address" — Specifies the mail address.

<max-http-connections>

Used to define the maximum number of concurrent connections any given Web site

can accept at a single point in time. If text exists inside the tag, it is used as a

redirect-URL when the limit is reached.

Attributes:

■ max-connections-queue-timeout="10" — When the maximum number

of connections are reached, this is the number of seconds that can pass before

the connections are dropped and a message is returned to the client stating that

the server is either busy or connections will be redirected. The default is 10

seconds.

■ socket-backlog — The number of connections to queue up before denying

connections at the socket level. The default is 30.

■ value — The maximum number of connections.

<rmi-config>

Attribute:
Additional Information B-11

Elements in the server.xml File
path=".../rmi.xml" — Specifies the path to the rmi.xml file.

<transaction-config>

Transaction configuration for the server.

Attribute:

■ timeout="60000" — Specifies the maximum amount of time (in

milliseconds) that a transaction can take to finish before it is rolled back due to a

timeout. The default value is 60000.

<web-site>

Attribute:

■ path=".../my-web-site.xml" /> — The path to a *web-site.xml file

that defines a Web site. For each Web site, you must specify a separate

*web-site.xml file. This example shows that a Web site is defined in the

my-web-site.xml file.

DTD for the server.xml
The DTD designates the syntax and ordering of the server.xml configuration.

<!ENTITY % BOOLEAN "true|false">

<!-- The default application for this server. This will act as a parent
to the other applications in terms of object visibility etc. -->
<!ELEMENT global-application (#PCDATA)>
<!ATTLIST global-application name CDATA #IMPLIED
path CDATA #IMPLIED>

<!-- Specifies an alternative compiler (such as Jikes) for EJB/JSP
compiling. -->
<!ELEMENT compiler (#PCDATA)>
<!ATTLIST compiler classpath CDATA #IMPLIED
 executable CDATA #IMPLIED>

<!-- A relative/absolute path to log events to. -->
<!ELEMENT file (#PCDATA)>
<!ATTLIST file path CDATA #IMPLIED>

<!-- Used to restrict the maximum number of connections any given site
can accept concurrently at any time. If text exists inside the tag it is
used as redirect-URL when the limit is reached. -->
B-12 Oracle9iAS Containers for J2EE User’s Guide

Elements in the server.xml File
<!ELEMENT max-http-connections (#PCDATA)>
<!ATTLIST max-http-connections max-connections-queue-timeout CDATA
#IMPLIED
 socket-backlog CDATA #IMPLIED
 value CDATA #IMPLIED>

<!-- Logging settings. -->
<!ELEMENT log (file*, mail*)>

<!-- A e-mail address to log events to. A valid mail-session also needs
to be specified if this option is used. -->
<!ELEMENT mail (#PCDATA)>
<!ATTLIST mail address CDATA #IMPLIED>

<!-- This file contains the configuration for an application-server. -->
<!ELEMENT application-server (library*, rmi-config?, jms-config?,
principals?, log?, transaction-config?, global-application,
application*, global-web-app-config?, max-http-connections?, web-site*,
compiler?, cluster?)>
<!ATTLIST application-server
 application-auto-deploy-directory CDATA #IMPLIED
 auto-start-applications (true | false) "true"
 auto-unpack-applications (true | false) #IMPLIED
 application-directory CDATA #IMPLIED
 deployment-directory CDATA #IMPLIED
 connector-directory CDATA #IMPLIED
 recovery-procedure CDATA #IMPLIED
 localhostIsAdmin (true|false) "true"
 transaction-log CDATA #IMPLIED>

<!ELEMENT jms-config (#PCDATA)>
<!ATTLIST jms-config path CDATA #IMPLIED>

<!-- Transaction configuration for the server. -->
<!ELEMENT transaction-config (#PCDATA)>
<!ATTLIST transaction-config timeout CDATA #IMPLIED>

<!ELEMENT web-site (#PCDATA)>
<!ATTLIST web-site path CDATA #IMPLIED>

<!ELEMENT principals (#PCDATA)>
Additional Information B-13

Elements in the server.xml File
<!ATTLIST principals path CDATA #IMPLIED>

<!-- An application is a unit with it’s own set of users, web-apps and
ejb-jars. -->
<!ELEMENT application (#PCDATA)>
<!ATTLIST application auto-start (true|false) "true"
 deployment-directory CDATA #IMPLIED
 name CDATA #IMPLIED
 parent CDATA #IMPLIED
 path CDATA #IMPLIED>

<!-- Cluster settings for this server. -->
<!ELEMENT cluster (#PCDATA)>
<!ATTLIST cluster id CDATA #IMPLIED>

<!-- A relative/absolute path/URL to a directory or a .jar/.zip to add
as a library-path for this server. Directories are scanned for jars/zips
to include at startup. -->
<!ELEMENT library (#PCDATA)>
<!ATTLIST library path CDATA #IMPLIED>

<!ELEMENT rmi-config (#PCDATA)>
<!ATTLIST rmi-config path CDATA #IMPLIED>

<!ELEMENT global-web-app-config (#PCDATA)>
<!ATTLIST global-web-app-config path CDATA #IMPLIED>
B-14 Oracle9iAS Containers for J2EE User’s Guide

Configuration and Deployment Examples
Configuration and Deployment Examples
The following example shows how to configure and deploy a J2EE application

within OC4J. See "Configuring the Pet Store Web Application Demo" on page 2-14

to learn how to modify the XML configuration files for the Pet Store demo.

In this example, the myapp application contains a Java client, an EJB assembled into

a JAR file, servlets and JSPs assembled into a WAR file, and an EAR file that

contains both the EJB JAR file and the Web application WAR file. The tree structure

showing the location of all the XML configuration files, the Java class files, and the

JSP files is shown in Figure B–1. Notice that you can separate all the configuration

files into logical directories within the application directory.

Figure B–1 Application EAR Structure

myapp.EAR

META-INF/
application.xml

myapp-ejb.JAR

META-INF/
ejb-jar.xml

myapp-web.WAR

index.html

WEB-INF/
web.xml
classes/

myapp-client.JAR

TemplateClient.class
META-INF/

application-client.xml

TemplateServlet.class

orion-application-client.xml

Template.class
TemplateBean.class
TemplateHome.class

add.jsp
delete.jsp
edit.jsp
list.jsp
serv.jsp
Additional Information B-15

Configuration and Deployment Examples
application.xml Example
The myapp/META-INF/application.xml file lists the EJB JAR and Web

application WAR file that is contained in the EAR file using the <module>
elements.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
 <display-name>myapp j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Container Managed
 Entity Bean and JSPs for a client.
 </description>
 <module>
 <ejb>myapp-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>myapp-web.war</web-uri>
 <context-root>/myapp</context-root>
 </web>
 </module>
</application>

web.xml Example
The myapp/web/WEB-INF/web.xml file contains the class definitions for EJBs,

servlets, and JSPs that are executed within the Web site. The myapp Web module

specifies the following in its descriptor:

■ The default page to be displayed for the application’s root context

(http://<apache_host>:<port>/j2ee/myapp)

■ Where to find the stubs for the EJB home and remote interfaces

■ The JNDI name for the EJB

■ The included servlets and where to find each servlet class

■ How servlets are mapped to a subcontext using the <servlet-mapping>
element (/template) off of the application root context

The Web server looks for the following:
B-16 Oracle9iAS Containers for J2EE User’s Guide

Configuration and Deployment Examples
■ All servlet classes under WEB-INF/classes/<package>.<class> .

■ All HTML and JSP from the root of the WAR file that is pointed to by

<web-app name="<warfile.war>"> in the web-site.xml file, which is

packaged in the deployed corresponding application EAR file.

■ OC4J compiles each JSP from .java into .class the first time it is used and

caches it for subsequent use.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <display-name>myapp web application</display-name>
 <description>
 Web module that contains an HTML welcome page, and 4 JSP’s.
 </description>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>TemplateBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>TemplateHome</home>
 <remote>Template</remote>
 </ejb-ref>
 <servlet>
 <servlet-name>template</servlet-name>
 <servlet-class>TemplateServlet</servlet-class>
 <init-param>
 <param-name>length</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
</web-app>

ejb-jar.xml Example
The ejb-jar.xml file contains the definitions for a container-managed persistent

EJB. The myapp EJB deployment descriptor contains the following:

■ The entity bean uses container-managed persistence.
Additional Information B-17

Configuration and Deployment Examples
■ The primary key is stored in a table. This descriptor defines the type and fields

of the primary key.

■ The table name is TemplateBean , and columns are named according to fields

in the ejb-jar.xml descriptor and type mappings in

j2ee/home/config/database-schemas/oracle.xml .

■ The bean uses JDBC to access databases, as specified in data-source.xml , by

ejb-location or by default-data-source in

orion-application.xml .

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <display-name>myapp</display-name>
 <description>
 An EJB app containing only one Container Managed Persistence
 Entity Bean
 </description>
 <enterprise-beans>
 <entity>
 <description>
 template bean populates a generic template table.
 </description>
 <display-name>TemplateBean</display-name>
 <ejb-name>TemplateBean</ejb-name>
 <home>TemplateHome</home>
 <remote>Template</remote>
 <ejb-class>TemplateBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
B-18 Oracle9iAS Containers for J2EE User’s Guide

Configuration and Deployment Examples
 <method>
 <ejb-name>TemplateBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <security-role>
 <description>Users</description>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

server.xml Addition
When you deploy the application using the deployment wizard, this adds the

location of the application EAR file to the server.xml file. This causes the

application to be started every time that OC4J is started. If you do not want the

application to be started with OC4J, change the auto-start variable to FALSE.

<application name="myapp" path="../myapp/myapp.ear"
auto-start="true" />

where

■ The name variable is the name of the application.

■ The path indicates the directory and filename for the EAR file.

■ The auto-start variable indicates if this application should be automatically

started each time OC4J is started.

default-web-site.xml Addition
The deployment wizard defines the root context for the Web application and binds

the Web context and adds the following to the default-web-site.xml file:

<web-app application="myapp" name="myapp-web" root="/myapp" />

Note: If you set auto-start to FALSE, you can manually start

the application through Enterprise Manager or it is automatically

started when a client requests the application.
Additional Information B-19

Configuration and Deployment Examples
■ The name variable is the name of the WAR file, without the .WAR extension.

■ The root variable defines the root context for the application off of the Web

site. For example, if you defined your Web site as

"http://<apache_host>:7777/j2ee" , then to initiate the application, you

would point your browser at

"http://<apache_host>:7777/j2ee/myapp" .

Client Example
The application client that accesses the myapp application has a descriptor, which

describes where to find the EJB stubs (home and remote interface) and its JNDI

name.

The client XML configuration is contained in two files:

application-client.xml and orion-application-client.xml .

The application-client.xml file contains a reference for an EJB, as follows:

<?xml version="1.0"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

<application-client>
<display-name>TemplateBean</display-name>
<ejb-ref>

<ejb-ref-name>TemplateBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>mTemplateHome</home>
<remote>Template</remote>

</ejb-ref>
</application-client>

The orion-application-client.xml file maps the EJB reference logical name

to the JNDI name for the EJB. For example, this file maps the <ejb-ref-name>
element, "TemplateBean," defined in the application-client.xml , to the

JNDI name, "myapp/myapp-ejb/TemplateBean ", as follows:

<?xml version="1.0"?>
<!DOCTYPE orion-application-client PUBLIC "-//Evermind//DTD J2EE
Application-client runtime 1.2//EN"
"http://xmlns.oracle.com/ias/dtds/orion-application-client.dtd">
B-20 Oracle9iAS Containers for J2EE User’s Guide

Configuration and Deployment Examples
<orion-application-client>
<ejb-ref-mapping name="TemplateBean"

location="myapp/myapp-ejb/TemplateBean" />
</orion-application-client>

JNDI Properties for the Client Set the JNDI properties for a regular client so it finds the

initial JNDI context factory in one of the following manners:

■ Set the JNDI properties within a Hashtable, then pass the properties to

javax.naming.InitialContext.

■ Set the JNDI properties within a jndi.properties file.

If you provide the JNDI properties in the jndi.properties file, package the

properties in myapp-client.jar to ensure that it is in the CLASSPATH.

jndi.properties:

java.naming.factory.initial=com.evermind.server.ApplicationClientInitialCont
extFactory
java.naming.provider.url=ormi://<apache_host>:7777/j2ee/myapp
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Client Module—Standalone Java Client Invoking EJBs
Package your client module in a JAR file with the descriptor

META-INF/application-client.xml .

Manifest File for the Client Package the client in a runable JAR with a manifest that has

the main class to run and required CLASSPATH, as shown below. Check that the

relative paths in this file are correct. Verify that you point to the relative location of

the required OC4J class libraries.

manifest.mf

Manifest-Version: 1.0
Main-Class: myapp.myapp-client.TemplateClient
Name: "TemplateClient"
Created-By: 1.2 (Sun Microsystems Inc.)
Implementation-Vendor: "Oracle"
Class-Path: ../../../j2ee/home/oc4J.jar ../../../j2ee/home/jndi.jar
../../../j2ee/home/ejb.jar ../myapp-ejb.jar
Additional Information B-21

Configuration and Deployment Examples
Executing the Client To execute the client, perform the following:

% java -jar myapp-client.jar
TemplateClient.main(): start
Enter integer value for col_1: 1
Enter string value for col_2: BuyME
Enter float value for col_3: 99.9
Record added through bean
B-22 Oracle9iAS Containers for J2EE User’s Guide

Third Party Lice
C

Third Party Licenses

This appendix includes the Third Party License for all the third party products

included with Oracle9i Application Server. Topics include:

■ Apache HTTP Server

■ Apache JServ
nses C-1

Apache HTTP Server
Apache HTTP Server
Under the terms of the Apache license, Oracle is required toprovide the following

notices. However, the Oracle program license that accompanied this product

determines your right to use the Oracle program, including the Apache software,

and the terms contained in the following notices do not change those rights.

Notwithstanding anything to the contrary in the Oracle program license, the

Apache software is provided by Oracle "AS IS" and without warranty or support of

any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
C-2 Oracle9iAS Containers for J2EE User’s Guide

Apache HTTP Server
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */
Third Party Licenses C-3

Apache JServ
Apache JServ
Under the terms of the Apache license, Oracle is required toprovide the following

notices. However, the Oracle program license that accompanied this product

determines your right to use the Oracle program, including the Apache software,

and the terms contained in the following notices do not change those rights.

Notwithstanding anything to the contrary in the Oracle program license, the

Apache software is provided by Oracle "AS IS" and without warranty or support of

any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must

display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache

Project" must not be used to endorse or promote products derived from this

software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may

"Apache" nor "Apache JServ" appear in their names without prior written

permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following

acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND

ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
C-4 Oracle9iAS Containers for J2EE User’s Guide

Apache JServ
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.
Third Party Licenses C-5

Apache JServ
C-6 Oracle9iAS Containers for J2EE User’s Guide

Index

Symbols
<application> element, 7-13

<ejb> element, 7-11

<ejb-ref> element, 8-16

<java> element, 7-11

<method-permission> element, 8-18

<module> element, 7-11

<security-role> element, 8-18

<security-role-mapping> element, 8-19

<web> element, 7-11

A
ACL

defined, 1-14

administration, 2-11

admin.jar tool

undeployment, 2-29

AJP, 1-15

overview, 2-5

ANT, 2-19

Apache

Oracle HTTP Server, 2-2

Apache JServ protocol, see AJP

application

deployment, 2-20

example, 2-14

undeployment, 2-29

ApplicationClientInitialContextFactory, 8-16

application-client.xml file

example, B-20

application.xml

designating data-sources.xml, 4-7

application.xml file, 7-11

example, 7-12, B-16

overview, 7-11

archiving EJBs, 7-10

EAR file, 7-12

authentication, 8-2, 8-6

authorization, 8-2, 8-17

B
bean

creating, 7-3

implementation, 7-6

removal, 7-7

build.bat, 2-19

C
CGI, 5-3

CLASSPATH, 2-6

Cloudscape database, 2-18

clustered environment

dcmctl, A-5

clustering, 9-1 to 9-42

adding application server instance, 9-12

application server instance

role, 9-10

architecture, 9-8

configuration, 9-28

configure replication, 9-34

configuring islands, 9-33

configuring OC4J instance, 9-17

configuring OC4J processes, 9-33

creating a cluster, 9-28
Index-1

DCM, 9-13, 9-14

deleting a cluster, 9-30

EJB applications, 9-20, 9-35

hardware load balancer, 9-9

OC4J instance, 9-19

OHS role, 9-16

removing application server instance, 9-33

replicating application state, 9-19

SSO, 9-38

tuning parameters, 9-23, 9-40

using infrastructure, 9-10

Web applications, 9-20, 9-34

clusters, 1-16

com.evermind.server.RMIInitialContextFactory

class, 8-16

configuration

default, 2-2, 2-12

EJB deployment descriptor, 2-18

server.xml file, 2-22

Web context, 3-29

web.xml file, 2-18

connection pooling, 1-11

create method, 7-7

EJBHome interface, 7-4

createCluster, A-8

createComponent, A-8

CreateException, 7-4

createUser method, 8-3

D
DAS, 8-4, 8-9

data source

default, 4-2

definition, 4-2

emulated, 4-2

introduction, 4-1

location of XML file, 4-7

retrieving connection, 4-8

database

retrieving connection, 4-8

DataSource interface, 4-9, 8-23

data-sources.xml

designating location, 4-7

data-sources.xml file

pre-installed definitions, 4-2

DataSourceUserManager class, 8-23

DCM

clustering, 9-15

overview, 2-4, A-1

role in clustering, 9-13, 9-14

DCM command-line utility, A-1

dcmctl, A-1

a app_name, A-4

administration, A-6

application, A-4

backup, A-11

cluster, A-4

cluster capabilities, A-5

clustered environment, A-5

command overview, A-3

commands and options, A-3

target options, A-3

universal options, A-4

component, A-4

componentType, A-4

createCluster, A-8

createComponent, A-8

DCM utility, 2-4, A-1

debug, A-4

deployApplication, A-10

deploying applications, A-10

destroyInstance, A-7

executing from command file, A-12

execution from a file, A-12

execution from a shell, A-12

getComponentTypes, A-8

getError, A-2

getError command, A-2

getReturnStatus, A-2

getstart, A-7

help, A-2

help command, A-2

instance, A-4

isClusterable, A-9

isCompatible, A-9

joinCluster, A-9

leaveCluster, A-9

listApplications, A-11

listClusters, A-8
Index-2

listComponents, A-7

listComponentTypes, A-8

listInstances, A-7, A-8

logdir, A-4

managing

application server instances, A-7

clusters, A-8

components, A-8

managing clusters, A-8

managing components, A-8

managing instances, A-7

oraclehome, A-4

overview, A-2

passing parameters, A-6

passing parameters to JVM, A-6

redeployApplication, A-10

removeCluster, A-8

removeComponent, A-8

resetFileTransaction, A-11

restart, A-7

restoreInstance, A-11

resyncInstance, A-7, A-9

saveInstance, A-11

saving a backup, A-11

shutdown, A-7

start, A-6

starting, A-6

stop, A-6

stopping, A-6

target option list, A-3

timeout, A-4

undeployApplication, A-11

universal option list, A-4

updateConfig, A-8, A-9

using dcmctl shell, A-12

validateEarFile, A-11

verbose, A-5

whichCluster, A-9

whichInstance, A-7

dcmctl shell, A-12

debug, A-4

debugging

OC4J, 9-41

default-web-site.xml file, 3-28

example, B-19

Delegated Administrative Service, see DAS

deployApplication, A-10

deployment

applications, 2-20

error recovery, 2-29

example, 2-17

deployment descriptor, 7-9

destroy method, 5-10

destroyInstance, A-7

development

recommendations, 2-13

Distributed Configuration Management, see DCM

E
EAR file, 7-1

creation, 2-21, 7-12

structure, 2-20

used in deployment, 2-20

EJB

archive, 7-10

creating, 7-2, 7-3, 7-6

definition, 1-7

deployment, 2-20, 7-13

manual, 7-13

deployment descriptor, 7-9

development suggestions, 7-2

entity bean, 1-8

home interface, 7-4

interact with JSPs, 6-2

remote interface, 7-5

replication, 9-36

session bean, 1-7

ejbCreate method, 7-4

EJBException, 7-4, 7-5

EJBHome interface, 7-3, 7-4

ejb-jar.xml file, 7-9

example, B-17

EJBObject interface, 7-3, 7-5

ejb.xml file, 2-18

Enterprise Archive file, see EAR file

Enterprise JavaBeans, see EJB

EntityBean interface, 7-4

environment

modifications, 2-18
Index-3

F
failover, 1-16

fault tolerance, 1-16

firewall tunneling, 1-14

front-end listener

Oracle HTTP Server, 2-2

G
getComponentTypes, A-8

getConnection method, 4-9

getError, A-2

getGroup method, 8-3

getReturnStatus, A-2

getstart, A-7

getUser method, 8-3

H
hashtable, B-21

home interface

creating, 7-3

creating bean instance, 7-7

example, 7-5

lookup, 7-7

HTTP tunneling, 1-15

I
identities, 8-2

inCompatible, A-9

installation

requirements, 2-6

isClusterable, A-9

J
J2EE

capabilities, 1-2

definition, 1-1

version, 1-2

jar archiving command, 7-10

Java Messaging Service, see JMS

Java Transaction API, see JTA

JAVA_HOME variable, 2-18

JavaBeans

JSP code to call a JavaBean, 6-8

jazn-data.xml, 8-19

jazn-data.xml file, 8-3, 8-4, 8-12

JAZNUserManager class, 8-4

JDBC

defined, 1-10

drivers specified, 1-11

retrieving connection, 4-8

JDBC-OCI driver, 1-11

JDK, 1-1

Jikes, B-10

JMS, 1-15, B-4

defined, 1-13

JNDI

defined, 1-12

lookup, 7-7

lookup of data source, 4-8

joinCluster, A-9

JSP pages

caching tags, 1-6

code to call a JavaBean, 6-8

code to use a tag library, 6-11

definition, 1-5

deployment, 2-20

interact with EJBs, 6-2

overview, 6-2

overview of Oracle value-added features, 6-15

placing tag library files into OC4J directory

structure, 6-12

running in OC4J, 6-6

simple example code, 6-2

steps in using a tag library, 6-11

JSP technology

overview, 6-2

JTA, 1-12, 1-13

JVM, 1-1, A-6

L
LDAP, 8-4

LDAP-based provider type, 8-4

leaveCluster, A-9

Lightweight Directory Access Protocol, see LDAP

listApplications, A-11
Index-4

listClusters, A-8

listComponents, A-7

listComponentTypes, A-8

listInstances, A-7, A-8

logdir, A-4

M
manifest file, 2-17, 2-21

creation, 2-18

MDB, 1-8

Message-Driven Bean, see MDB

mod_oc4j module, 2-5, 8-13

mod_ossl, 8-4

mod_osso, 8-4

N
narrowing, 7-7

O
OC4J

application example, 2-14

clustering role, 9-19

debugging, 9-41

installation requirements, 2-6

restarting, 2-11

setup, 2-2

startup, 2-11

stopping, 2-11

testing, 2-12

OC4J options, 2-29

Oc4jMount directive, 3-29

OCI driver, 1-11

ODBC, 1-10

OHS

clustering role, 9-16

Open Database Connectivity, see ODBC

OPMN

role in clustering, 9-15

Oracle HTTP Server

clustering role, 9-16

front-end listener, 2-2

Oracle HTTP Server (OHS), 3-29

Oracle Internet Directory, 8-2, 8-3, 8-4

Oracle JDBC-OCI driver, 1-11

Oracle Net Services protocol, 1-11

Oracle Process Management Notification, see

OPMN

Oracle Thin JDBC driver, 1-11

oraclehome, A-4

orion-application-client.xml file

example, B-20

Out of Memory error, 2-29

P
Pet Store

example, 2-17

pooling

support, 1-11

PortableRemoteObject

narrow method, 7-7

Q
query string, 5-6

R
RAR, 3-31

redeployApplication, A-10

remote interface

business methods, 7-7

creating, 7-3, 7-5

example, 7-5

RemoteException, 7-4, 7-5

remove method, 7-7

removeCluster, A-8

removeComponent, A-8

requirements

software, 2-6

resetFileTransaction, A-11

Resource Adapter Achieve, see RAR

restart, A-7

restart OC4J, 2-11

restoreInstance, A-11

resyncInstance, A-7, A-9

RMI, B-4
Index-5

roles, 8-2

run-as identity, 8-4

S
saveInstance, A-11

Secure Sockets Layer, see SSL

security

defined, 1-13, 8-1

mapping logical roles, 8-19

server.xml file, 2-22, 7-13

example, B-19

servlets

definition, 1-3

deployment, 2-20

engine support, 1-4

failover, 1-5

session bean

home interface, 7-5

SessionBean interface

EJB, 7-4

setParent method, 8-23

shutdown, A-7

Single Sign-on, see SSO

SSL, 1-14

SSO, 8-4

starting

dcmctl, A-6

startup OC4J, 2-11

stop, A-6

stop OC4J, 2-11

stopping

dcmctl, A-6

T
tag libraries

JSP code to use, 6-11

placing support files in OC4J directory

structure, 6-12

steps to use in a JSP page, 6-11

Thin JDBC driver, 1-11

timeout, A-4

Tomcat, 1-4

U
undateConfig, A-8

undeployApplication, A-11

undeployment, 2-29

updateConfig, A-9

user manager

definition, 8-2

user repository, 8-17

definition, 8-2

jazn-data.xml, 8-3, 8-4, 8-12, 8-19

Oracle Internet Directory, 8-3, 8-4

principals.xml, 8-3, 8-5, 8-13, 8-19, 8-23

UserManager interface, 8-21

V
validateEarFile, A-11

verbose, A-5

W
WAR

definition, 1-4

Web

application deployment, 2-20

mount points, 3-29

Web Application Archive, see WAR

Web context

customization, 3-29

web.xml file, 2-18

example, B-16

whichCluster, A-9

whichInstance, A-7

Windows Explorer, 2-19

X
XML-based provider type, 8-4

XMLUserManager class, 8-23
Index-6

	Oracle9iAS Containers for J2EE User’s Guide, Release 2 (9.0.2)
	Send Us Your Comments
	Oracle9iAS Containers for J2EE User’s Guide, Release 2 (9.0.2)
	Preface
	1 J2EE Overview
	OC4J Features
	Set of Pure Java Containers and Runtime Executing on the JDK
	J2EE Certified

	Overview of J2EE APIs and OC4J Support
	Java Servlets
	OC4J Servlet Container

	JavaServer Pages
	Enterprise JavaBeans
	Session Beans
	Entity Beans
	Message-Driven Beans
	OC4J EJB Support

	Java Database Connectivity Services
	Oracle Database Access Through JDBC
	Full JDBC 2.0 Support
	Data Direct Connect JDBC Drivers
	SQLJ Support

	Java Naming and Directory Interface
	Java Transaction API
	Java Messaging Service
	JAAS Provider

	Tunneling, Load Balancing, and Clustering Services Provided by OC4J
	RMI Tunneling Over HTTP
	Oracle HTTP Server to JSP/Servlet Container Connectivity
	JSP/Servlet-to-EJB and EJB-to-EJB Connectivity
	HTTP and HTTP-S Tunneling

	Load Balancing and Clustering

	Java Plug-In Partners and Third Party Tools Support
	Actional Control Broker
	Blaze Advisor
	Borland JBuilder
	Cacheon Business Service Center
	Computer Associates Cool:Joe
	Compuware OptimalJ
	Documentum WDK
	Empirix BeanTest
	FatWire UpdateEngine
	ILOG JRules
	Macromedia UltraDev
	Mercury Interactive LoadRunner
	Neuvis NeuArchitect
	Pramati Studio
	Rational Rose
	Sitraka JProbe
	Sonic Software SonicMQ
	Sun Forte
	TogetherSoft ControlCenter
	VMGear Optimizeit
	WebGain Visual Cafe

	2 Configuration and Deployment
	OC4J Installation
	Using OC4J in an Enterprise or Standalone Environment
	Managing Multiple OC4J Instances in an Enterprise Environment
	Managing a Single OC4J Instance
	OC4J Documentation Set Assumptions

	OC4J Communication
	HTTP Communication
	Requirements

	Starting and Stopping the Oracle Enterprise Manager Web Site
	Creating or Deleting an OC4J Instance
	OC4J Home Page
	General and Status
	Deployed Applications
	Administration

	Starting and Stopping OC4J
	Testing the Default Configuration

	Creating the Development Directory
	Configuring the Pet Store Web Application Demo
	Downloading An OC4J-Ready Pet Store Demo
	Explanation of the Changes to the Pet Store Demo

	Deploying Applications
	Basic Deployment
	Introduction
	Select Application
	Provide The URL Mappings For All Web Modules
	Provide Any Resource Reference Mappings
	Specify Any User Manager
	Provide Any Security Role Mappings
	Publish Web Services
	Summary of Deployment
	Post-Deployment Application Modifications

	Recovering From Deployment Errors
	Undeploying Web Applications

	3 Advanced Configuration, Development, and Deployment
	Configuring OC4J Using Enterprise Manager
	OC4J Instance Level Configuration
	Deploy Applications
	Configuring Server Properties
	Configure Web Site
	Configure Global JSP Container Parameters
	Configure Global Web Application Parameters
	Configure RMI and JMS
	Configure Data Sources
	Configure Security
	Configure UDDI Registry
	Manipulating XML Files

	Application Level Configuration
	Configuring Application General Parameters
	Configuring Local J2EE Services
	Modifying XML Files Included in the Deployed Application EAR File

	Overview of OC4J and J2EE XML Files
	XML Configuration File Overview
	XML File Interrelationships

	What Happens When You Deploy?
	OC4J Tasks During Deployment
	Configuration Verification of J2EE Applications

	Understanding and Configuring OC4J Listeners
	HTTP Requests
	RMI Requests

	Configuring Oracle HTTP Server With Another Web Context
	Building and Deploying Within a Directory

	4 Data Sources Primer
	Introduction
	Definition of Data Sources
	Defining Data Sources
	Configuring A New Data Source
	Defining the Location of the DataSource XML Configuration File

	Retrieving a Connection From a Data Source

	5 Servlet Primer
	What Is a Servlet?
	The Servlet Container
	Servlet Performance

	Two Servlet Examples
	The Hello World Servlet
	Comments on HelloWorldServlet
	Request and Response Objects

	The GetEmpInfo Servlet
	The HTML Form
	The Servlet
	Comments on GetEmpInfo
	How GetEmpInfo Runs

	Session Tracking
	Session Tracking Example
	SessionServlet Comments

	Servlet Filters
	A Logging Filter
	LogFilter Code
	Comments on the LogFilter Example
	Configuring Filters
	Example Output

	Learning More About Servlets

	6 JSP Primer
	A Brief Overview of JavaServer Pages Technology
	What Is JavaServer Pages Technology?
	JSP Translation and Runtime Flow
	Key JSP Advantages
	JSP in Application Architecture

	Running a Simple JSP Page
	Create and Deploy the JSP
	Run welcomeuser.jsp

	Running a JSP Page That Invokes a JavaBean
	Create the JSP—usebean.jsp
	Create the JavaBean—NameBean.java
	Run usebean.jsp

	Running a JSP Page That Uses Custom Tags
	Create the JSP Page—sqltagquery.jsp
	Set Up Files for Tag Library Support
	Run sqltagquery.jsp

	Overview of Oracle Value-Added Features for JSP Pages

	7 EJB Primer
	Developing EJBs
	Creating the Development Directory
	Implementing the Enterprise JavaBeans
	Creating the Home Interface
	Example
	Creating the Remote Interface
	Example
	Implementing the Bean
	Accessing the Bean

	Creating the Deployment Descriptor
	Archiving the EJB Application

	Preparing the EJB Application for Assembly
	Modifying Application.XML
	Creating the EAR File

	Deploying the Enterprise Application to OC4J

	8 Security
	Overview of Security Functions
	Provider Types
	Using the JAZNUserManager Class
	Using the XMLUserManager Class

	Specifying Your User Manager
	Specifying Users, Groups, and Roles
	Shared Groups, Users, and Roles
	Application-Specific Groups, Users, and Roles
	Specifying Users and Groups in jazn-data.xml
	Specifying Users and Groups in XMLUserManager
	Permissions

	Authenticating HTTP Clients
	Authenticating EJB Clients
	Setting JNDI Properties
	No JNDI Properties
	JNDI Properties File
	JNDI Properties Within Implementation

	Using the Initial Context Factory Classes

	Authorization In J2EE Applications
	Specifying Logical Roles in a J2EE Application
	Mapping Logical Roles to Users and Groups

	Creating Your Own User Manager
	Example of Customer User Manager With the DataSourceUserManager Class

	9 Oracle9iAS Clustering
	About Oracle9iAS Clustering
	Scalability
	Availability
	Manageability
	Component Support
	Non-Managed Clustering
	Non-Managed Application Server Cluster
	OC4J-Only Cluster

	Architecture
	Front-End Load Balancer
	Metadata Repository in the Infrastructure
	Farm
	Cluster
	Application Server Instance
	Management Features
	Distributed Configuration Management (DCM)
	Oracle Process Management Notification (OPMN)

	Component Instances
	Oracle HTTP Server (OHS)
	OC4J Instance
	OC4J Process
	Islands

	J2EE Applications

	Enterprise Manager Configuration Tree
	Instance-Specific Parameters
	Examples
	Software Failure
	Hardware Failure
	State Replication

	Cluster Configuration
	Managing an Oracle9iAS Cluster
	Associating an Instance with an Oracle9iAS Infrastructure
	Creating the Cluster
	Managing the Cluster

	Managing Application Server Instances in a Cluster
	Adding an Application Server Instance to a Cluster
	Removing an Application Server Instance from a Cluster

	OC4J Instance Configuration
	Configuring Islands and Processes
	Configuring Web Application State Replication
	Configuring EJB Application State Replication

	Configuring Single Sign-On
	Configuring Instance-Specific Parameters
	OC4J Instance-Specific Parameters
	Oracle HTTP Server Instance-Specific Parameters

	A DCM Command-Line Utility (dcmctl)
	Overview
	About dcmctl Commands and Options
	Target Options
	Universal Options

	Using dcmctl in a Clustered Environment
	Passing Parameters to the JVM

	Starting and Stopping
	Managing Application Server Instances
	Managing Components
	Managing Clusters
	Deploying Applications
	Saving a Backup
	Using the dcmctl Shell
	Executing dcmctl from a Command File

	B Additional Information
	Description of XML File Contents
	OC4J Configuration XML Files
	server.xml
	web-site.xml
	jazn-data.xml
	data-sources.xml
	jms.xml
	rmi.xml

	J2EE Deployment XML Files
	application.xml
	orion-application.xml
	ejb-jar.xml
	orion-ejb-jar.xml
	web.xml
	orion-web.xml
	application-client.xml
	orion-application-client.xml

	Elements in the server.xml File
	Configure OC4J
	Reference Other Configuration Files
	<application-server> Element Description
	Elements Contained Within <application-server>
	DTD for the server.xml

	Configuration and Deployment Examples
	application.xml Example
	web.xml Example
	ejb-jar.xml Example
	server.xml Addition
	default-web-site.xml Addition
	Client Example
	Client Module—Standalone Java Client Invoking EJBs

	C Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

