
Oracle9iAS InterConnect

User’s Guide

Release 2 (9.0.2)

January 2002

Part No. A92174-01

Oracle9iAS InterConnect User’s Guide, Release 2 (9.0.2)

Part No. A92174-01

Copyright © 2001, Oracle Corporation. All rights reserved.

Contributing Authors: Rahul Pathak, Herb Stiel, Jeff Hutchins, Maneesh Joshi, Bo Stern

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent and other intellectual and industrial property laws. Reverse engineering,
disassembly or decompilation of the Programs, except to the extent required to obtain interoperability with
other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the Programs, including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject
to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of
their respective owners.

Contents

Send Us Your Comments ... xi

Preface.. xiii

1 Getting Started with Oracle9iAS InterConnect

What is Oracle9iAS InterConnect?.. 1-2
Oracle9iAS InterConnect Components ... 1-3

Standard Messaging ... 1-5
Oracle9iAS InterConnect Integration Process .. 1-7

Design Time... 1-7
Runtime.. 1-7
Separation of Integration Logic and Platform Functionality ... 1-8
Unique Integration Methodology .. 1-9
Integration Lifecycle Management .. 1-11
Using Adapters for Integration .. 1-12

2 Using iStudio

Overview of iStudio ... 2-2
iStudio Concepts... 2-2

Starting iStudio ... 2-7
Parts of the iStudio Window .. 2-8

Menu Bar.. 2-9
Toolbar ... 2-11
Design Navigation Tree... 2-12
iii

Deploy Navigation Tree .. 2-12
Context Menus .. 2-13
Detail View .. 2-13

Using Workspaces in iStudio.. 2-13
Creating a New Workspace... 2-13
Opening an Existing Workspace .. 2-14

Using Projects in iStudio ... 2-14
Creating a New Project .. 2-15
Opening an Existing Project .. 2-16

3 Creating Applications, Common Views, and Business Objects

Applications: An Overview .. 3-2
Application View.. 3-2
Application Data Types ... 3-2
Creating an Application... 3-2

Common Views and Business Objects: An Overview... 3-3
Defining Common Views .. 3-3

4 Using Events in iStudio

Events: An Overview.. 4-2
Event Maps .. 4-2

Creating Events.. 4-3
Publishing and Subscribing to an Event.. 4-4

Publishing an Event.. 4-5
Subscribing to an Event ... 4-12

5 Using Procedures in iStudio

Using Procedures .. 5-2
Creating a Procedure.. 5-3

Invoking and Implementing a Procedure .. 5-4
Invoking a Procedure ... 5-5
Implementing a Procedure.. 5-12

Exporting Stored Procedures .. 5-18
iv

6 Enabling Infrastructure

Enabling Infrastructure ... 6-2
Content-Based Routing.. 6-2
Cross Reference Tables .. 6-2
Domain Value Maps... 6-2

Working with Content-Based Routing ... 6-2
Modifying Content-Based Routing.. 6-2

Working with Cross Reference Tables.. 6-7
Creating Cross-Reference Tables.. 6-7
Adding Applications to Cross Reference Tables ... 6-7
Removing Applications From Cross Reference Tables... 6-7
Populating Cross Reference Tables.. 6-8

Working with Domain Value Mappings .. 6-9
Creating a Domain Value Mapping Table .. 6-9
Adding Applications to Domain Value Mappings.. 6-9
Removing Applications From Domain Value Mappings... 6-9
Modifying Domain Value Mappings... 6-10
Deleting Domain Value Mappings .. 6-10
Deleting Domain Value Mapping Tables.. 6-10
Modifying Attribute Mappings .. 6-11
Removing Attribute Mappings... 6-11
Adding Custom Transformations .. 6-11
Deleting Custom Transformations... 6-12
Adding Mapping Variables .. 6-12
Deleting a Mapping Variable.. 6-13

Cross Reference Table Walk-Through .. 6-13
Domain Value Mappings Walk-Through .. 6-14

7 Using Oracle Workflow

Oracle Workflow Overview .. 7-2
Oracle Workflow Solves Common Business Problems... 7-2

Oracle9iAS InterConnect Integration with Oracle Workflow.. 7-4
Design Time Tools .. 7-4
Runtime.. 7-6

Using Oracle Workflow to Apply Business Logic .. 7-7
v

Install Oracle Workflow Components ... 7-7
Design Business Process .. 7-7
Deploy Business Processes for Runtime.. 7-7

Design Business Process.. 7-8
Process Bundle .. 7-8
Business Process.. 7-8
Activity ... 7-8
Creating a Process Bundle ... 7-10
Creating a Business Process .. 7-10
Populating a Business Process with Activities ... 7-10
Deploying to Oracle Workflow... 7-12
Launching Oracle Workflow Tools .. 7-15
Modifying Existing Oracle Workflow Processes.. 7-17

8 Runtime System Concepts and Compents

Integration Architecture .. 8-2
Features ... 8-2

Messaging Paradigms .. 8-2
Message Delivery.. 8-3
Message Retention.. 8-3
Routing Support.. 8-3
Error Management.. 8-4
Scalability and Load Balancing... 8-4

Components ... 8-6
Adapters... 8-6
Repository .. 8-9
Advanced Queues... 8-9
Oracle Workflow... 8-10

9 Runtime Management

Introduction to Runtime Management ... 9-2
Starting Oracle Enterprise Manager... 9-2

Features ... 9-4
Common Features for Adapters and the Repository .. 9-4
Repository Specific Features ... 9-5
vi

Adapter Specific Features.. 9-5

A Integration Scenario

Integration Scenario Overview .. A-2
The New Centralized System ... A-2
The Legacy System ... A-2
The Integration Scenario.. A-3

Modeling the Integration .. A-4
Integration Modeling using iStudio... A-5

Implementing the Scenario... A-6
Review Legacy System Database Trigger ... A-6
Create a Project ... A-8
Create the Common View Business Object .. A-9
Create Business Object Events .. A-10
Create Applications.. A-13
Create a Cross Reference Table .. A-14
Create Publish Events .. A-15
Subscribing to Events... A-19
Create Content Based Routing.. A-28
Create an Oracle Workflow Process Bundle... A-30
Deploy the Process Bundle to Oracle Workflow.. A-33
Creating Objects in Oracle Workflow for Modeling ... A-35

Modeling Business Logic in Oracle Workflow ... A-39
Deployment ... A-43

Setting Queues .. A-43
Pushing Metadata... A-44
Exporting and Installing Code.. A-44

Conclusion ... A-46

B Using the Data Definition Description Language

About D3L .. B-2
What Is D3L? ... B-2
When Is D3L Used? .. B-3

Native Format Message and D3L File Example .. B-4
Native Format Message Contents Description in a D3L File ... B-4
vii

Native Format Message Configuration with a D3L File ... B-5
D3L File Structure ... B-9

Supported D3L Data Types.. B-11
D3L Integration with Oracle9iAS InterConnect Technology Adapters B-14

Runtime Initialization ... B-14
Native Format Message to Common View Incoming Message Translations................... B-15
Common View to Native Format Message Outgoing Messages Translations B-18

Installing D3L ... B-20
Configuring D3L... B-20

Task 1: Configure D3L with iStudio.. B-20
Task 2: Create a Native Format Message ... B-21
Task 3: Create a D3L File Describing the Native Format Message..................................... B-21
Task 4: Configure a Native Format Message with a D3L File... B-22
Task 5: Configure D3L with Oracle9iAS InterConnect Technology Adapters B-22
Task 6: Import a D3L File in iStudio ... B-23
Task 7: Define Metadata Properties with Each Event (Optional) B-24

D3L Use Case .. B-26
D3L Use Case Overview ... B-26
Creating Data Type Definitions for Application Views... B-27
Configuring the aqapp_pub and fileapp_sub Applications in iStudio B-30
Installing the Advanced Queuing and FTP Adapters.. B-42
Running the D3L Use Case... B-46
Using Other Adapters and XML Mode .. B-50

Additional D3L Sample Files and DTD .. B-52
Additional D3L Sample Files ... B-52
D3L DTD ... B-58

C Transformations

Copy Fields ... C-2
Copy Object .. C-2
Concat Fields .. C-2
Expand Fields ... C-2
Set Constant .. C-3
True Conditional Lookup XRef ... C-3
True Conditional Lookup DVM .. C-3
viii

Conditional Copy ... C-4
True Conditional Copy .. C-4
True Conditional Concat ... C-4
True Conditional To Number ... C-5
False Conditional Copy ... C-5
False Conditional Concat... C-5
False Conditional To Number .. C-6
To Number .. C-6
Substring .. C-6
Char Replace.. C-7
String Replace.. C-7
LTrim.. C-7
RTrim.. C-8
LPad.. C-8
RPad.. C-8
Lookup XRef.. C-9
Delete XRef .. C-9
Lookup DVM .. C-9
Truncate .. C-10
Increment .. C-10

Glossary

Index
ix

x

Send Us Your Comments

Oracle9iAS InterConnect User’s Guide, Release 2 (9.0.2)

Part No. A92174-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail - iasdocs_us@oracle.com
■ Fax - (650) 506-7409 Attn: Oracle Applications InterConnect Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Applications InterConnect Documentation Manager
500 Oracle Parkway, M/S 2op4
Redwood Shores, CA 94065 USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

Oracle9iAS InterConnect is the integration component of Oracle9iAS and provides a
comprehensive application integration framework to enable seamless integration of
enterprise software. Oracle9iAS InterConnect is built on top of Oracle’s robust
integration platform and leverages its underlying services. Oracle9iAS InterConnect
is designed to integrate heterogeneous systems, such as Oracle Applications,
non-Oracle applications, or 3rd party messaging oriented middleware. This
integration can be deployed either within an enterprise or across enterprise
boundaries through the Internet.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
xiii

Audience
This guide is targeted at the following types of users:

■ Business analysts and integration engineers, for iStudio.

■ System Administrators, for the runtime component.

The audience should have the following pre-requisites, which are discussed but not
explained:

■ Domain knowledge of the applications being integrated.

■ Database concepts and working knowledge of SQL, PL/SQL, or SQL* Plus.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.
xiv

Organization
This document contains:

Chapter 1, "Getting Started with Oracle9iAS InterConnect"
Introduces Oracle9iAS InterConnect and presents an overview of the product and
the tools.

Chapter 2, "Using iStudio"
Describes iStudio and how to create workspaces and projects.

Chapter 3, "Creating Applications, Common Views, and Business Objects"
Describes how to create and manage applications, common views, and business
objects using iStudio.

Chapter 4, "Using Events in iStudio"
Describes using iStudio to create, publish, and subscribe to events.

Chapter 5, "Using Procedures in iStudio"
Describes using iStudio to create, invoke, and implement procedures.

Chapter 6, "Enabling Infrastructure"
Describes the enabling infrastructure tasks in iStudio including creating cross
reference tables and domain value mappings.

Chapter 7, "Using Oracle Workflow"
Describes how Oracle9iAS InterConnect works with Oracle Workflow.

Chapter 8, "Runtime System Concepts and Compents"
Describes the runtime components and concepts of Oracle9iAS InterConnect.

Chapter 9, "Runtime Management"
Introduces the Runtime Management Console and describes how you use it to
manage your integration environment.

Appendix A, "Integration Scenario"
Provides an integration scenario and model based on a fictitious company, Acme,
Inc. using Oracle9iAS InterConnect.
xv

Appendix B, "Using the Data Definition Description Language"
Describes how to use the data definition description language (D3L) in native
format message-to-application view and application view-to-native format message
translations.

Appendix C, "Transformations"
Provides a list of Oracle9iAS InterConnect transformations.

"Glossary"
Provides a list of Oracle9iAS InterConnect terms and definitions.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Documentation Library CD-ROM

■ Oracle9i Application Server Platform Specific Documentation on Oracle9i
Application Server Disk 1

■ Oracle9iAS InterConnect Installation Guide

■ Oracle9iAS InterConnect Release Notes

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm
xvi

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
xviii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xix

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener
xx

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle8i Quick Reference for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxi

xxii

Getting Started with Oracle9iAS InterCo
1

Getting Started with Oracle9iAS

InterConnect

This chapter provides an overview of Oracle9iAS InterConnect, its features, and
components.

Topics include:

■ What is Oracle9iAS InterConnect?

■ Standard Messaging

■ Oracle9iAS InterConnect Integration Process
nnect 1-1

What is Oracle9iAS InterConnect?
What is Oracle9iAS InterConnect?
Oracle9iAS InterConnect is an integral component of Oracle9iAS and provides a
comprehensive application integration framework to enable seamless integration of
enterprise software. It is built on top of the Oracle9iAS integration platform and
leverages its underlying functionalities. It is designed to integrate heterogeneous
systems, such as Oracle Applications, non-Oracle Applications, or third party
messaging oriented middleware. This integration can be deployed within an
enterprise or across enterprise boundaries through the Internet.

The technical design goals for Oracle9iAS InterConnect are to:

■ Elevate the integration problem from a technical coding exercise to a functional
modeling exercise, thereby reducing or eliminating the programming effort
normally associated with integration.

■ Develop and expose an integration methodology that promotes reuse and
reduces the complexity and management issues that arise over the software
lifecycle.

Oracle9iAS InterConnect provides a complete framework for e-Business application
integration across the Application-to-Application, Application Service Provider, and
Business-to-Business domains. Oracle9iAS InterConnect components can be
deployed for these domains in the following methods:

■ Application-to-Application—Applications are distributed within a Local Area
Network or across a Wide Area Network. Oracle9iAS InterConnect is deployed
within the organization to integrate these applications.

■ Application Service Provider—Applications are distributed across firewall
boundaries with some applications residing inside the Application Service
Provider firewall and others inside the customer firewall. Oracle9iAS
InterConnect can be deployed inside either one of the two firewalls, or both, to
integrate these applications across the firewalls.

■ Business-to-Business—Similar to the Application Service Provider model only
the Application Service Provider is replaced with another business.
1-2 Oracle9iAS InterConnect User’s Guide

What is Oracle9iAS InterConnect?
Oracle9iAS InterConnect Components
Oracle9iAS InterConnect has the following core components:

■ Oracle9iAS InterConnect Development Kit

■ Oracle9iAS InterConnect Hub

■ Oracle9iAS InterConnect Adapters

■ Oracle9iAS InterConnect Management Infrastructure

Oracle9iAS InterConnect Hub
The Hub consists of a middle tier repository server program communicating with a
back-end database. The repository has the following functionality:

■ At design time, all integration logic defined in iStudio is stored in tables in the
repository as metadata.

■ At runtime, the repository provides access to this metadata for adapters to
integrate applications.

The repository server is deployed as a stand-alone Java application running outside
the database. The repository schema is a set of tables in the Oracle9iAS
Infrastructure. Both the repository server and the database are on the hub machine.

Oracle9iAS InterConnect Adapters
Adapters have two major tasks:

■ Provide connectivity between an application and the hub.

■ Transform and route messages between the application and the hub.

Adapters are deployed as stand-alone Java applications running outside the
database. Adapters are physically located with the applications they connect to,
either on the same machine as the application itself or on a separate machine.
Adapters are usually not deployed on the hub machine.

Oracle9iAS InterConnect Development Kit
iStudio is a design time integration specification tool targeted at business analysts.
This tool helps business analysts specify the integration logic at a functional level,
instead of a technical coding level. iStudio exposes the integration methodology
using simple wizards and reduces, or eliminates, the need for writing code to

See Also: "Using Adapters for Integration" on page 1-12
Getting Started with Oracle9iAS InterConnect 1-3

What is Oracle9iAS InterConnect?
specify the integration logic. This reduces the total time required to complete an
integration.

iStudio is a multi-user tool with fine-grained locking for all Oracle9iAS
InterConnect first class objects. Therefore, multiple users can work simultaneously
on the same integration scenario without compromising the consistency of the
metadata.

iStudio allows business analysts to complete the following tasks:

■ Define data to be exchanged across applications.

■ Semantically map data across applications.

■ Define the business process collaboration across applications using Oracle
Workflow and associate the semantic maps with business processes, if required.

■ Configure and deploy the integration.

iStudio is deployed as a stand-alone Java application running outside the database
and can be deployed on any machine with access to the hub machine running
Windows NT/2000/XP.

Oracle9iAS InterConnect Management Infrastructure
The Oracle Enterprise Manager provides the following functionality:

■ Manages runtime components and resources.

■ Troubleshoots errors and tracks messages.

The Oracle Enterprise Manager console includes a server component usually
installed on the hub machine. The client component can be installed on any
machine where the integration environment is managed. Both client and server
components are stand-alone Java applications running outside the database.

Oracle9iAS InterConnect SDKs
Oracle9iAS InterConnect is easily extended through SDKs that address custom
integration needs.

See Also: Chapter 2, "Using iStudio"
1-4 Oracle9iAS InterConnect User’s Guide

Standard Messaging
iStudio SDK The iStudio SDK is a collection of Java jar and Javadoc files usually
deployed on the same machine as iStudio. The iStudio SDK is only available on
Windows NT/2000/XP. Using the iStudio SDK and Java, users can build the
following:

■ New transformation functions.

■ New browsers to import application-native data structures and APIs into
iStudio.

Documentation and samples are provided with the iStudio SDK.

Adapter SDK The Adapter SDK is a collection of Java jar and Javadoc files that can be
deployed on any machine. The Adapter SDK is available on all tier one platforms.
Using this adapter, users can write new adapters in Java for applications or
protocols not currently supported by Oracle9iAS InterConnect. Specifically, only the
bridge sub-component must be written. The agent is a generic engine already
written and is part of each adapter.

Documentation and samples are provided with the Adapter SDK.

Oracle Workflow
Oracle Workflow provides a comprehensive business process management system
that enables traditional workflow applications, as well as process collaboration in a
single solution. Using Oracle Workflow Business Event System, Oracle9iAS
InterConnect can model an integration solution on business processes. With
Oracle9iAS InterConnect and Oracle Workflow, business collaborations across two
or more applications can be defined to implement the organization's business
processes.

Standard Messaging
Oracle9iAS InterConnect provides all the basic services expected of a messaging
middleware platform including:

■ Guaranteed delivery of messages—All messages have guaranteed delivery
end-to-end. Messages are delivered exactly once and in the order sent.

■ Scalability—Multiple adapters are instantiated to serve one application. The
hub runs in an Oracle Parallel Server environment.

■ Load Balancing—Messages can be partitioned based on load between multiple
adapters servicing one application. One or more adapters can serve all
Getting Started with Oracle9iAS InterConnect 1-5

Standard Messaging
messages for one application. In addition, one or more adapters can be
dedicated per integration point in which the application participates.

■ Runtime Management—The Oracle Enterprise Manager console helps manage
the integration scenario and components at runtime. This console allows users
to start and stop components, monitor message flow, detect problems, and
manage errors.

■ Deployment Support—The messaging hub consists of Advanced Queues that
are configured for runtime. Number of queues to create, naming these queues,
and matching adapters with messages in a specific named queue can be
configured using iStudio.

The following supplementary features do not require any additional coding:

■ Content Based Routing—Route messages by building business rules based on
message content. For example, a procurement system routes fulfillment
requests to different fulfillment centers based on an originating location.

■ Cross Referencing—Correlate keys that uniquely identify the entities in one
application with corresponding entities created in other applications. For
example, a purchase order created in a procurement system has a native id X. It
is then routed to a fulfillment system and the purchase order is created in the
fulfillment system with native id Y. Therefore, X and Y must be cross referenced
for Oracle9iAS InterConnect to correlate communication about this same logical
entity in two different systems without each system understanding the native id
of the other system.

■ Domain Value Mapping—Map code tables across systems. For example, a
purchase order in a procurement system has a PO Status field with possible
domain values Booked and Shipped. The corresponding field in a fulfillment
system has the possible domain values 1 and 2. Oracle9iAS InterConnect
allows the user to create the mappings booked=1, shipped=2 so it can
correlate these values at runtime without each system understanding the
domain value set of the other system.

Supported Messaging Paradigms
Oracle9iAS InterConnect supports the following messaging paradigms. These
paradigms are defined in iStudio at design time. The definitions are used at runtime
to route the messages appropriately.

■ Publish/Subscribe Messaging—An application publishes a message if it sends
data out to the Oracle9iAS InterConnect hub without knowing the destination
applications. Furthermore, data is not expected in return. An application
1-6 Oracle9iAS InterConnect User’s Guide

Oracle9iAS InterConnect Integration Process
subscribes to a message if it receives the data from the Oracle9iAS InterConnect
hub regardless of who sent the data. Furthermore, it does not send any data out
in return. Events in iStudio are used to model this paradigm.

■ Request/Reply Messaging—An application publishes a message and expects a
message in return as a reply. The application subscribing to the request sends a
reply back to the sender after processing the request. Procedures in iStudio are
used to model this paradigm. Request/Reply has the following two types of
characteristics:

■ Synchronous—The application making the request is blocked until it
receives a reply.

■ Asynchronous—The application makes the request and proceeds with
normal processing. It does not wait for a response. A reply is delivered next
and is consumed by the application.

■ Point-to-Point Messaging—Both Publish/Subscribe and Request/Reply can
acquire a point-to-point characteristic if the sending application explicitly calls
out which application should receive the message. This can be modeled using
content-based routing in iStudio.

Oracle9iAS InterConnect Integration Process
Application integration using Oracle9iAS InterConnect involves the following two
phases:

■ Design Time

■ Runtime

Design Time
During the design phase, a business analyst uses iStudio to define the integration
objects, applications that participate in the integration, and the specifications of the
data exchanged between applications. All the specifications are stored as metadata
in the Oracle9iAS InterConnect Repository.

Runtime
For each application participating in a specific integration, Oracle9iAS InterConnect
attaches one or more adapters to it. At runtime, the adapters retrieve the metadata
from the repository to determine the format of messages, perform transformations
Getting Started with Oracle9iAS InterConnect 1-7

Oracle9iAS InterConnect Integration Process
between the various data formats, and route the messages to the appropriate
queues in the Oracle9iAS InterConnect hub.

Figure 1–1 A graphical overview of design time and runtime phases in integration

Separation of Integration Logic and Platform Functionality
Integration using Oracle9iAS InterConnect is a two-step process. During design
time, integration logic is modeled in iStudio and captured in the repository as
metadata. Metadata is created in the repository using iStudio during design time
and is represented by application views, common views, and transformations. At
runtime, the underlying services regard this metadata as runtime instructions to
enable the conversation among participating applications. Integration has two
components:

App 1 App 2

Repository

Java API

Oracle9iAs InterConnect
Workflow

Oracle Workflow

Oracle9iAS

Oracle9iAS
Infrastructure

(Oracle9iAS InterConnect Hub)

iStudio
Oracle

Workflow
Builder

Adapter Adapter
1-8 Oracle9iAS InterConnect User’s Guide

Oracle9iAS InterConnect Integration Process
■ Integration logic—Consists of the business rules and transformation logic
necessary to integrate heterogeneous systems. Using iStudio, this integration
logic can be modeled and the results stored in the repository as metadata.

■ Platform functionality—Consists of the integration infrastructure provided with
Oracle9iAS InterConnect and the Oracle database. In addition, Oracle9iAS
InterConnect provides application and protocol adapters. The platform services
provide the requisite infrastructure necessary for integration.

Unique Integration Methodology
iStudio exposes an integration methodology that eliminates the complexities of
point-to-point custom integration solutions. The integration methodology is based
on a hub-and-spoke model.

How the Hub-and-Spoke Methodology Works
An integration point is defined as an event that triggers communication between
two or more participating applications in the integration scenario. The following are
examples of such events:

■ Create Customer—An integration scenario may require that customer
information across two applications be synchronized in real time. Whenever a
new customer is created in the application, App1, the customer should also be
created in the application, App2. Therefore, Create_Customer is an event that
triggers the communication between the two applications—App1 produces the
information, App2 consumes it.

■ Get Item Info—A user of App1 may request information on an item stored
in App1. The information on that item might be segmented across the two
applications. To give a meaningful response to the user of App1, it is necessary
to query App2 for information on the item. Therefore, Get_Item_Info is an
integration point between the two applications because it triggers
communication between the two applications—App1 produces a query, App2
consumes it, App2 produces the response, and App1 consumes it.

The common view consists of a list of such integration points, each with its own
associated data. Applications participate in the integration by binding to one or
more of these common view integration points.

For each binding, applications have their own application view of data that needs to
be exchanged. Each binding involves a mapping, or transformation, between the
application view and the common view in the context of the integration point. In
Getting Started with Oracle9iAS InterConnect 1-9

Oracle9iAS InterConnect Integration Process
this model, the application views are at the spokes and the common view is the
hub.

Create_Customer is an integration point. If the information to exchange is the
new customer's name only, the common view has all the information potentially
captured in a name defined in an application-independent method. This
information must be a superset of all the information that needs to be exchanged
across App1 and App2.

Prefix, First Name, Last Name, Middle Initial, Maiden Name,
Suffix is an example of a common view customer name definition.

Now, App1's internal definition of name (App1's application view) could be First
Name, Last Name, Middle Initial, Prefix.

The application view for App2 could be Name (one field that describes Last Name,
First Name).

For App1, when sending this information out or publishing an event,
transformations are defined from its application view to the common view. For
App2, when receiving this information or subscribing to an event, transformations
are defined from the common view to its application view.

Figure 1–2 illustrates this example within the hub-and-spoke model where the
common view is the hub and the application views are the spokes.

Figure 1–2 Oracle9iAS InterConnect Hub-and-Spoke Model

Transformation Transformation

Last Name
Middle Initial
Maiden Name
Suffix

Prefix
Internal definition
First Name
Last Name
Middle Initial
Prefix

Name
1-10 Oracle9iAS InterConnect User’s Guide

Oracle9iAS InterConnect Integration Process
This hub-and-spoke model has the following advantages:

■ Loosely coupled integration—Applications integrate to the common view, not
with each other directly. This reduces the number of integration interfaces.

■ Easy Customization—Changes in application views because of application
upgrades are localized. The changes in the upgraded application should only be
reflected through changes in its application view and mappings to the common
view. In other words, only the spoke of the changed application should be
re-mapped to the hub. The other spokes and their relationships with the hub
remain unchanged.

■ Easy Extensibility—Applications can be added or removed from the integration
scenario without affecting other applications. For example, if a new application
is added to the integration scenario, it must define its spoke component (the
application view) and map that component to the hub (common view) on a per
integration point basis. This does not affect other applications in the integration.

■ Enhanced Reusability—To integrate the Marketing CRM module to SAP, the
integration would be from iMarketing to common view to SAP. If there is a
requirement to integrate iMarketing to Peoplesoft, then the iMarketing to
common view integration can be reused. Only the common view to the
Peoplesoft integration needs to be built.

Integration Lifecycle Management
Managing, customizing, and evolving an integration over time is as important as
creating the integration in the first place. The hub-and-spoke integration model has
advantages to help achieve this goal. In addition, the Oracle9iAS InterConnect
repository, which contains all the integration logic, provides extensive services for
managing changes over time. The repository provides fine-grained versioning of all
Oracle9iAS InterConnect first class objects such as events, messages, and data types.
Some of the important aspects of versioning to aid the lifecycle support include:

■ Basic Versioning—New versions of first class objects, such as messages, can be
created to address changing integration needs. Different versions of the same
object can co-exist in the repository. This approach has two advantages:

■ Eliminates the need for an expanded namespace to address modifications.

■ Allows related entities to be grouped together for easier management.

■ Multiple Active Versions—Multiple versions of the same message can be active
in the same integration scenario simultaneously. This helps transition an
integration incrementally without requiring changes to existing messages. For
Getting Started with Oracle9iAS InterConnect 1-11

Oracle9iAS InterConnect Integration Process
example, if a purchase order definition for an application or the application
view of the purchase order needs to change, a new version of the message can
be created and activated for that application. Once this metadata is created, the
application can smoothly transition from sending and receiving messages based
on the old definitions to the new one.

■ Migration Support—Different versions of metadata can be migrated across
repositories on a first class object basis. This feature allows fine-grained control
of content in different repositories, such as a development repository and a
production repository.

■ Consistency Control—Oracle9iAS InterConnect detects and flags metadata
conflicts. This helps to prevent accidental overwriting of metadata and
maintains consistency of metadata in the repository.

Using Adapters for Integration
Adapters are runtime components which process integration logic captured in the
repository as runtime instructions to enable the integration. Prepackaged adapters
help re-purpose applications at runtime to participate in the integration without
any programming effort.

Adpaters complete the following tasks:

■ Application Connectivity—Connect to applications to transfer data between the
application and Oracle9iAS InterConnect. The logical subcomponent within an
adapter that handles this responsibility is called a bridge. This is the
protocol/application-specific piece of the adapter that communicates with the
application.

For example, the database adapter is capable of connecting to an Oracle
database using JDBC and calling SQL APIs. This subcomponent only knows
how to call the correct APIs.

■ Transformations—Transform data from the application view to common view
and vice versa as dictated by the repository metadata. In general, adapters are
responsible for carrying out all the runtime instructions captured through
iStudio as metadata in the repository. Transformations are an important subset
of these instructions. The logical subcomponent within an adapter that handles
the runtime instructions is called an agent. This is the generic runtime engine in
the adapter that is independent of the application to which the adapter
connects. It focuses on the integration scenario based on the integration
metadata in the repository. There is no integration logic coded into the adapter
1-12 Oracle9iAS InterConnect User’s Guide

Oracle9iAS InterConnect Integration Process
itself; all integration logic is stored in the repository. The repository contains the
metadata that drives this subcomponent.

In the database adapter example, this is the subcomponent that knows which
SQL API’s to call, but not how to call them. All adapters have the same agent
code; it is the difference in metadata that each adapter receives from the
repository that controls and differentiates the behavior of each adapter.

Figure 1–3 Oracle9iAS InterConnect Adapter Architecture

These adapters can be technology or application adapters. Oracle9iAS InterConnect
currently packages technology adapters for the Oracle database, Advanced Queues,
and HTTP/S technology.
Getting Started with Oracle9iAS InterConnect 1-13

Oracle9iAS InterConnect Integration Process
1-14 Oracle9iAS InterConnect User’s Guide

Using iS
2

Using iStudio

This chapter describes the iStudio and its concepts. This chapter discusses the
following topics:

■ Overview of iStudio

■ Parts of the iStudio Window

■ iStudio Concepts

■ Using Workspaces in iStudio

■ Using Projects in iStudio
tudio 2-1

Overview of iStudio
Overview of iStudio
iStudio is a design time integration specification tool used to help business analysts
specify the integration logic at a functional level, instead of a technical coding level.
iStudio exposes the integration methodology using simple wizards and reduces or
eliminates the need for writing code to specify the integration logic. This reduces
the total time required to complete an integration.

iStudio is a multi-user tool with fine-grained locking for all Oracle9iAS
InterConnect first class objects. This allows multiple users to work simultaneously
on the same integration scenario without compromising the consistency of the
metadata.

iStudio allows business analysts to complete the following tasks:

■ Define the data that needs to be exchanged across applications.

■ Semantically map the data across applications.

■ Define the business process collaboration across applications and associate the
semantic maps with business processes if required.

■ Configure and deploy the integration.

iStudio is deployed as a stand-alone Java application running outside the database.
iStudio runs only on Windows NT/2000/XP and can be deployed anywhere with
access to the hub machine.

iStudio Concepts
The following concepts are described briefly:

■ Applications

■ Common Views and Business Objects

■ Transformations or Mappings

■ Metadata Versioning

■ Tracking Fields

■ Content-Based Routing

■ Cross Reference Tables

See Also: Oracle9iAS Installation Guide
2-2 Oracle9iAS InterConnect User’s Guide

Overview of iStudio
■ Domain Value Mapping

■ Routing and the Message Capability Matrix

Applications
Each component integrated with Oracle9iAS InterConnect is referred to as an
application. Each application expresses interest specific messages, what its internal
data type is, and how the message should be mapped to or from that internal type
to the external world. iStudio also allows users to create applications.

Common Views and Business Objects
Oracle9iAS InterConnect follows a hub-and-spoke integration methodology. The
common view is the hub view of the integration where each spoke is the application
participating in the integration. The common view consists of the following
elements:

■ Business Objects—A collection of logically related integration points. For
example, Create Customer, Update Customer, Delete Customer, and Get
Customer Info are all integration points that logically belong under a Customer
business object.

■ Events—An integration point used to model the Publish/Subscribe paradigm.
An event has associated data which is the common view of all the data to be
exchanged through this event.

■ Procedures—An integration point used to model the Request/Reply paradigm.
This is a modeling paradigm only, no actual procedures are called.

■ Common Data Types—Used to define such data for reuse and is especially
useful for defining complex hierarchical data.

Events An event is an integration point used to model the Publish/Subscribe
paradigm. An event has associated data that is the common view of all the data to
be exchanged through this event. In other words, the data associated with an event
in the common view must be a superset of the data of participating applications.

See Also: Chapter 3, "Creating Applications, Common Views,
and Business Objects"

See Also: Chapter 3, "Creating Applications, Common Views,
and Business Objects"

See Also: Chapter 4, "Using Events in iStudio"
Using iStudio 2-3

Overview of iStudio
Procedures A procedure is an integration point used to model the Request/Reply
paradigm. This is a modeling paradigm only, no actual procedures are called. An
application can either invoke a procedure to model sending a request and receiving
a reply, or implement a procedure to model receiving a request and sending a reply.
Similar to events, a procedure has associated data. While an event is only associated
with one data set, a procedure has two data sets—one for the request or IN data and
one for the reply or OUT data.

Transformations or Mappings
Transformations are integration points between applications. In the following
example, an event is created for transferring customer names across applications:

Application View for App1 that publishes the event:

First Name

Last Name

Middle Initial

Common View Event New Customer:

Prefix

First Name

Last Name

Middle Initial

Suffix

Application View for App2 that subscribes to the event:

Name — One field in the form of LastName, FirstName

When publishing or subscribing to the event, the application view for App1 and
App2 must be mapped to the common view using transformations. There are
twenty-seven built-in transformation routines provided with Oracle9iAS
InterConnect that are used to build complex mappings. In addition, using the
iStudio SDK allows new transformation routines to be created using Java. These
transformations can be imported into iStudio and then used identically to a built-in
routine.

See Also: Chapter 5, "Using Procedures in iStudio"
2-4 Oracle9iAS InterConnect User’s Guide

Overview of iStudio
Metadata Versioning
iStudio supports versioning for application and common data types, events,
procedures, and messages.

An owner is the creator of the object and only the creator can modify the object.
However, other users can create new versions or copy the original object under a
new name. The owner is specified when the repository is installed.

In the following examples, metadata is created at Oracle Corporation and at the
time of repository installation. OAI is specified as the owner of the metadata. The
following functionality is available for versioning:

■ Automatic Versioning—First, an event called NewCustomerEvent is created.
When this object is created for the first time, the assigned owner is OAI and the
version is V1. This event name is NewCustomerEvent/OAI/V1.

■ Modify Object—The owner is the only user who can modify the contents of an
event and the data associated with it. However, the owner cannot change the
version number or the name of the event.

■ Create New Version—If the owner wants to keep the original
NewCustomerEvent but wants to create a new version of the information with
modified data, the owner can create a new version. When this version is saved,
there are now two objects—NewCustomerEvent/OAI/V1 and
NewCustomerEvent/OAI/V2.

■ Load Version—Not all versions of objects are loaded into iStudio. To work with
a specific version of an object, use the Load Version capability. When a new
version is created, it becomes the current version.

■ Copy Object—To create a NewBigCustomerEvent that has many common
elements with NewCustomerEvent/OAI/V1, first load
NewCustomerEvent/OAI/V1 and copy the object in iStudio. Copying the
object allows not only modifications to the data, but also modifications to the
name of the event. When the name of the NewBigCustomerEvent/OAI/V1
event has been modified, NewCustomerEvent/OAI/V1 will coexist in the
repository.

See Also:

■ Chapter 5, "Using Procedures in iStudio" for more information on
procedures

■ Appendix C, "Transformations" for more information on
transformations
Using iStudio 2-5

Overview of iStudio
In this example, all the metadata is built at Oracle Corporation and this metadata
can be transmitted to the customer, NewCorp. When NewCorp installs the
repository and specifies the owner as NewCorp, the metadata is in a read-only state.
If NewCorp wants to customize NewBigCustomerEvent/OAI/V1, they cannot
modify the existing version since the owners are different. However, they can use
the other features described.

To customize the metadata, NewCorp must create a new version so that
NewBigCustomerEvent/OAI/V1 and NewBigCustomerEvent/NewCorp/V2
coexist in the repository. NewCorp can use both events in defining messages if
required and NewCorp can now modify the event it owns.

Tracking Fields
Tracking fields are one or more application view fields in the context of a particular
message. If specified in iStudio, tracking fields can be used to track messages at
runtime using the Oracle Enterprise Manager. Tracking is executed only from the
perspective of the sending application.

For example, if App1 publishes a new purchase order and specifies the PO_order
number field as the tracking field, then the user can log in to the runtime console
and specify the message to track, or New Purchase Order in this case. The user is
then prompted to enter the purchase order number to display the corresponding
tracking information.

Content-Based Routing
Using the wizards in iStudio, messages can be routed to specific applications based
on business rules or message content.

Cross Reference Tables
Keys for corresponding entities created in different applications can be correlated
through cross referencing in iStudio.

Note: Names of events must be unique.

See Also: Chapter 4, "Using Events in iStudio"

See Also: Chapter 6, "Enabling Infrastructure"

See Also: Chapter 6, "Enabling Infrastructure"
2-6 Oracle9iAS InterConnect User’s Guide

Starting iStudio
Domain Value Mapping
Code tables can be mapped across systems using domain value mapping in iStudio.

Routing and the Message Capability Matrix
In the Oracle9iAS InterConnect hub, Advanced Queues in the database are used to
store, route, and forward messages from the sending application adapters to the
receiving application adapters. The following paradigm is used for routing
messages. The sending adapters evaluate who the recipients are based on metadata.

1. Every adapter has one or more queues where it receives messages.

2. The Message Capability Matrix allow queues to be specified for receiving
messages on a per message per receiving application basis.

Starting iStudio
To log into iStudio, the database and the repository must be running. To log in to
iStudio:

■ From the Windows Start menu, select Oracle9iAS InterConnect 5.0, then select
iStudio.

When iStudio starts, the last opened project is automatically loaded into the
default workspace.

See Also: Chapter 6, "Enabling Infrastructure"

Note: By default, there is only one queue named the oai_hub_
queue. This queue is used for all messages for all applications. This
queue does not need to be changed unless the single queue
implementation turns out to be a performance bottleneck.

See Also: "Creating a New Project" on page 2-15
Using iStudio 2-7

Parts of the iStudio Window
Parts of the iStudio Window
The main iStudio window has the following parts:

■ Menu Bar

■ Toolbar

■ Design Navigation Tree

■ Deploy Navigation Tree

■ Context Menus

■ Detail View

When iStudio is started, the main window displays:

Figure 2–1 Oracle9iAS InterConnect iStudio

Menu Bar

Toolbar

Navigation
Tabs

Navigation
Tree

Context Menu

Detail View
2-8 Oracle9iAS InterConnect User’s Guide

Parts of the iStudio Window
Menu Bar
The menu bar provides access to all commands. Click each menu to display its
commands. Click a command to execute it. There are five menus:

■ File Menu

■ Edit Menu

■ Procedure Menu

■ Event Menu

■ Help Menu

File Menu
Use the File menu to create new projects and workspaces, open existing projects
and workspaces, or reload existing projects. You can also create such objects as
events, procedures, and common data types from the File menu. Commands
include:

■ New Project...—Create a new project.

■ Open Project...—Open an existing project. In the Open dialog, select the
directory and project, then click Open.

■ New Workspace...—Create a new workspace.

■ Open Workspace...—Open an existing workspace. In the Open dialog, select the
directory and workspace, then click Open.

■ Reload Project—Reload a project. When Reload Project is selected, a list of
current projects displays. Select the project to Reload from the list.

■ Migrate—Migrate objects from one repository to another.

■ New—Create a new object in iStudio. When New is selected, a list of available
objects displays. Select the object to create. If some objects are grayed-out, then
they are not allowed to be created.

■ Export PL/SQL—Export SQL-stored procedure stubs generated by iStudio.

■ Push Metadata—Push metadata to adapters.

■ Exit—Leave iStudio.
Using iStudio 2-9

Parts of the iStudio Window
Edit Menu
Use the Edit menu to edit, copy, or delete selected objects. If an object is selected
and the Edit menu is not available, that selected object cannot be edited. Commands
include:

■ Edit—Edit a selected object. The type of editing depends on the object selected.

■ Copy—Copy a selected object.

■ Delete—Delete a selected object.

■ Rename—Rename a selected application.

■ Version—Create a new version of or load a selected object.

■ Domain Value Map—Add or remove applications from a domain value map.

■ Cross Reference Table—Add or remove applications from a cross reference
table.

■ Workflow—Deploy events to Oracle Workflow or edit Oracle Workflow
configuration information.

Procedure Menu
Use the Procedure menu to invoke or implement procedures. Commands include:

■ Invoke—Invokes a selected procedure by launching the Invoke Wizard.

■ Implement—Implements a selected procedure by launching the Implement
Wizard.

Event Menu
Use the Event menu to publish or subscribe events. Commands include:

■ Publish—Publishes a selected event by launching the Publish Wizard. An event
must be created.

■ Subscribe—Subscribes to a selected event by launching the Subscribe Wizard.
An event must be created.

Help Menu
The Help menu provides links to online help. Commands include:

■ Contents—Opens the User’s Guide.

■ About...—Display version information for iStudio.
2-10 Oracle9iAS InterConnect User’s Guide

Parts of the iStudio Window
Toolbar
The toolbar is made up of icons that represent frequently used commands. To
display a caption describing the icon, pause the cursor on the icon. The following
functions are provided:

Function Icon Description

New Project Create a new project in iStudio.

Open Project Open an existing project in iStudio.

Create
Integration
Object

Create a new integration object.

Create Like Create a new integration object similar to an existing object. This
icon is enabled only when an object is selected in the Navigator.

Edit
Integration
Object

Edit a selected integration object.

Delete
Integration
Object

Delete a selected integration object. This button is enabled only
when an integration object is selected in the Navigator.

Publish Event Publish a selected event. This button is enabled only when an
integration object is selected in the Navigator.

Subscribe
Event

Subscribe to a selected event. This button is enabled only when
an integration object is selected in the Navigator.
Using iStudio 2-11

Parts of the iStudio Window
Design Navigation Tree
The Design Navigation tree displays the hierarchical tree of all objects used in the
design phase of an opened project. Each object type in the Design Navigation tree is
identified by an icon and name. A container is represented by a folder icon and is a
logical grouping of one specific type of object, such as Business Objects and
Application Data Types.

The objects are grouped as follows:

■ Common Views

■ Applications

■ Workflow

■ Enabling Infrastructure

Deploy Navigation Tree
The Deploy Navigation tree displays the hierarchical tree of all objects used in the
deploy phase of an opened project. Each object type in the Design Navigation tree is
identified by an icon and name. A container is represented by a folder icon and is a
logical grouping of one specific type of object, such as Process Bundles.

The objects are grouped as follows:

■ Applications

■ Workflow

Invoke
Procedure

Invoke a selected procedure. This button is enabled only when
an integration object is selected in the Navigator.

Implement
Procedure

Implement a selected procedure. This button is enabled only
when an integration object is selected in the Navigator.

Help Display the help file.

Function Icon Description
2-12 Oracle9iAS InterConnect User’s Guide

Using Workspaces in iStudio
Context Menus
As in other Windows applications, you can right-click an object to pop up a context
menu; that is, a shortcut menu relating to the object right-clicked.

Detail View
To the right of the Navigation tree is the Detail View, composed of one or more
property sheets displaying information about the object selected. Often, these
property sheets may be edited.

Using Workspaces in iStudio
A workspace stores user settings and preferences such as application login
credentials and last opened project. Inside a workspace, users can work on multiple
projects.

Creating a New Workspace
To create a new workspace:

1. From the File menu, select New Workspace. The New Workspace Dialog
displays.

Navigation Tree Selected Item Context Menu Options

Design Object, such as Common View,
Application, Business Objects,
and Common Data Types

New, Edit, Copy, Delete

Container object, such as an
existing event or procedure

New, Edit, Copy Delete, Load Version,
New Version

Workflow object New, Edit, Copy, Delete, Launch WF
Builder, Launch WF Home Page

Deploy Object such as Applications New, Edit, Copy, Delete

Workflow object New, Edit, Copy, Delete, Deploy, Edit
Configuration, Launch WF Home Page

Container object, such as an
existing routing object

New, Edit, Copy, Delete, Create Partition
Using iStudio 2-13

Using Projects in iStudio
2. Enter a name for the workspace in the Workspace Name field.

3. Click OK.

Opening an Existing Workspace
To open an existing workspace:

1. From the File menu select Open Workspace. The Open dialog displays.

2. Enter the name and path to an existing workspace or select the workspace to
open.

3. Click Open. The selected workspace displays in iStudio.

Using Projects in iStudio
A project in iStudio encapsulates all the integration logic for one integration
scenario. An integration scenario is defined as a set of two or more applications
integrated with each other using Oracle9iAS InterConnect. One project corresponds
to one repository. For example, a user may have a development integration
environment and a production integration environment. These are two separate
projects and must, therefore, be self-contained in their own separate repositories.
2-14 Oracle9iAS InterConnect User’s Guide

Using Projects in iStudio
Since iStudio is a multi-user tool, multiple users can work on the same project
simultaneously without jeopardizing the integrity of the metadata. To create a
project in iStudio, the repository must be running.

Creating a New Project
To create a new project in iStudio:

1. From the File menu, select New Project. The New Project Dialog displays.

2. Enter the project name and click OK. The Repository Information dialog
displays:

3. Enter information in the following fields:

■ Repository Name—The name of the repository server.

■ Hub database username—The name of the hub database user. The default
username is oaihub.

■ Hub database password—The password associated with the hub database
user. The default password is set when Oracle9iAS InterConnect is
installed.

■ Hub database url—Information of the following form:

machine name:port number:database sid.

4. Click OK.
Using iStudio 2-15

Using Projects in iStudio
Opening an Existing Project
To open an existing project:

1. From the File menu, select Open Project. The Open dialog displays:

2. Enter the name and path to an existing project or select the workspace to open.

3. Click Open. The selected project displays in iStudio.
2-16 Oracle9iAS InterConnect User’s Guide

Creating Applications, Common Views, and Business O
3

Creating Applications, Common Views, and

Business Objects

This chapter describes how to create and manage applications, common views, and
business objects using iStudio. This chapter discusses the following topics:

■ Applications: An Overview

■ Common Views and Business Objects: An Overview
bjects 3-1

Applications: An Overview
Applications: An Overview
Each component integrated with Oracle9iAS InterConnect is referred to as an
application. Each application expresses interest in specific messages, what its
internal data type is, and how the message should be mapped to or from that
internal type to the external world.

Application View
Each application has its own application view of data that allows it to participate in
the integration. The application view of data uses transformations to insert into the
common view.

After creating an application in iStudio, events and procedures can be created and
used with the application.

Application Data Types
Application data types have the same function as Common Data Types but relate to
a particular application.

Creating an Application
To create an application:

1. From the File menu, select New, then select Application. The Create Application
dialog displays.

2. Enter a name for the application in the Application Name field.

3. Click OK.

The application created displays in the Design Navigation Tree under the
Applications node.

See Also:

■ Chapter 4, "Using Events in iStudio" for information on events

■ Chapter 5, "Using Procedures in iStudio" for more information on
procedures
3-2 Oracle9iAS InterConnect User’s Guide

Common Views and Business Objects: An Overview
Common Views and Business Objects: An Overview
The common view is the hub view of the integration where each spoke is an
application wanting to participate in the integration. After defining a common view
by creating a business object and common data types, existing events can be
published or subscribed to, and procedures can be invoked or implemented.

Defining Common Views
When defining a common view, business objects and common data types must be
created.

Creating Business Objects
To create a new business object:

1. From the File menu select New, then select Business Object. The Create Business
Object dialog displays.

2. Enter a name for the business object in the Business Object Name field.

3. Click OK. The business object displays in the Design Navigation Tree under the
Common View node.

Creating Common Data Types
When creating the data associated with an event or a procedure, it is possible to
define the data once and reuse it for different integration points. Common data
types are used to define such data for reuse and is especially useful for defining
complex hierarchical data.

For example, a purchase order contains a header object and an array of line item
objects. In addition, the header object contains two address objects: Bill_To and
Ship_To. Therefore, the purchase order can be defined once and used for other
purchase order-related integration points such as Create_Purchase_Order,
Update_Purchase_Order, and Get_Purchase_Order. Moreover, Address can
be defined once and used in the Bill_To and Ship_To addresses.

See Also: Chapter 2, "Using iStudio"
Creating Applications, Common Views, and Business Objects 3-3

Common Views and Business Objects: An Overview
To create a common data type:

1. From the File menu select New, then select Common Data Type. The Create
Data Type window displays:

Enter a name for the common data type in the Common Data Type Name field.

The owner and version number of the common data type display next to the
common data type name. This field cannot be edited.

2. Specify the attributes for this common data type using one of the following
methods:

■ Add attributes one by one.

■ Import attributes from already existing application native data types or
APIs.
3-4 Oracle9iAS InterConnect User’s Guide

Common Views and Business Objects: An Overview
Adding Attributes
To add attributes:

1. On the Create Data Type dialog, click Add. A new entry displays in the
attribute list:

Specify the following by editing the information directly in the attribute list
entry.

■ Name—The name of the attribute.

■ Type—The type of the attribute. Select the type by clicking on the Type
column in the attribute entry. A dropdown list displays. The attribute can
be of primitive type (string, integer, float, double, date) or another common
data type used to build hierarchical data types.

■ Array—Check this box if it the attribute is a collection instead of a single
attribute.

■ Default—The default value of the field in case it is not populated at
runtime.

2. Click Save. Repeat the above steps for adding other attributes.
Creating Applications, Common Views, and Business Objects 3-5

Common Views and Business Objects: An Overview
Importing Attributes
To import attributes:

1. On the Create Data Type dialog, click Import. Attributes can be imported from
the following sources:

■ Common Data Types

■ Database

■ XML

■ D3L

The following example utilizes the Database import facility.

2. Click Database. The Database Login dialog displays:

3. Enter information in the following fields:

■ User Name—The database log in name.

■ Password—The database log in password.

■ URL—The machine name: port number: database SID.

■ Driver—The JDBC driver used to connect to the database.

See Also: Appendix B, "Using the Data Definition Description
Language"
3-6 Oracle9iAS InterConnect User’s Guide

Common Views and Business Objects: An Overview
■ Save settings as default—Check this box to save the settings for the
workspace.

4. Click Login.

After logging in, the database tables and arguments display in the Database
Browser Window.

Select the fields to add. To select a range of fields, press Shift when clicking the
mouse button. To select multiple items, press Control while clicking the mouse
button.
Creating Applications, Common Views, and Business Objects 3-7

Common Views and Business Objects: An Overview
5. Click Done to import the attributes into the common data type. The selected
attributes display on the Create Data Type dialog:

Deleting and Clearing Attributes
To delete a selected attribute:

■ On the Create Data Type dialog, select the attribute to be deleted and click
Delete.

To clear all attributes:

■ On the Create Data Type dialog, click Clear.
3-8 Oracle9iAS InterConnect User’s Guide

Using Events in iS
4

Using Events in iStudio

This chapter describes using iStudio to create, publish, and subscribe to events. This
chapter discusses the following topics:

■ Events: An Overview

■ Creating Events

■ Publishing and Subscribing to an Event
tudio 4-1

Events: An Overview
Events: An Overview
An event is an integration point used to model the Publish/Subscribe paradigm. An
event has associated data that is the common view of all the data to be exchanged
through this event. In other words, the data associated with an event in the
common view must be a superset of the data of participating applications.

For example, App1 and App2 publish customer names and App3 subscribes to it. If
App1 publishes First Name, Last Name, and Middle Initial, and App2
publishes First Name, Last Name, Prefix, and Suffix, the event could be
defined as follows:

New Customer Event
Prefix
First Name
Last Name
Middle Initial
Suffix

Event Maps
Event maps allow application data to be mapped to an Oracle9iAS InterConnect
event without the application having to know about the Oracle9iAS InterConnect
event itself. For example, if an application is publishing a Create_Customer
event, it doesn't have to explicitly say that the message it is publishing corresponds
to an Oracle9iAS InterConnect Create_Customer event. Instead, using iStudio,
certain fields in the application view can be associated to help Oracle9iAS
InterConnect determine which event the message maps.

In addition, if an application publishes exactly the same structure of data for two or
more events, event maps help Oracle9iAS InterConnect distinguish which message
corresponds to which event. For example, an application publishes the same
Customer Application Data Type regardless of whether it is a Create_Customer
or an Update_Customer event. Through event map, Oracle9iAS InterConnect can

Note: Standard application-independent definitions can be used
for event-associated data in the common view such as Open
Applications Group XML business object definitions.

See Also: "How the Hub-and-Spoke Methodology Works" on
page 1-9
4-2 Oracle9iAS InterConnect User’s Guide

Creating Events
determine which messages correspond to Create_Customer and Update_
Customer.

Creating Events
To create an event:

1. From the File menu, click New, then select Event. The Create Event dialog
displays:

Enter the information in the following fields:

■ Business Object—The name of the category to which the event belongs.
Select a category from the drop down list.

■ Event Name—The name of the event. Only alphanumeric characters can be
used.

■ OAI/V1—The owner and version number of the Business Object. This field
cannot be edited.
Using Events in iStudio 4-3

Publishing and Subscribing to an Event
2. Add or import attributes to this event.

3. Click Save.

Publishing and Subscribing to an Event
The publish/subscribe paradigm is an existing technology for exchanging
information between a provider (publisher) and a set of users (subscriber). This
paradigm is one of the most common ways for adapters to communicate with each
other through the hub.

See Also:

■ "Adding Attributes" on page 3-5

■ Appendix B, "Using the Data Definition Description Language"

■ "Deleting and Clearing Attributes" on page 3-8
4-4 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
Publishing an Event
Publishing an event in an application in iStudio involves using the Publish Wizard.
To start the Publish Wizard:

1. In the Design Navigation tree, expand the Application node. Select and expand
the Application node to display the Published Events leaf. Right-click Published
Events and select Publish. The Publish Wizard displays:

a. Enter information in the following fields:

* Application—The name of the application that is publishing the event.

* Message Type—This field specifies the mode of communication
between Oracle9iAS InterConnect and the application. Select from the
following message types:

Database—Oracle9iAS InterConnect communicates with the applica-
tion using the database.

Generic—Oracle9iAS InterConnect communicates with application
using a user-defined bridge.
Using Events in iStudio 4-5

Publishing and Subscribing to an Event
XML—Oracle9iAS InterConnect communicates with the application
using XML data described through a DTD using the FTP, SMTP, HTTP,
MQ Series, or user-defined adapters.

AQ—Oracle9iAS InterConnect communicates with the application
through Oracle Advanced Queues using the Advanced Queue adapter.
The payload can be Oracle Objects where fields may be XML or RAW
XML.

D3L—The adapter communicates with the application using D3L.

b. Select the event name.

c. Click Next.

2. Define Application View Page

After clicking Next on the Select Event page, the Define Application View page
displays:

Once an event is selected to publish, the application view is defined. The
application view page is initially an empty table. Define the attributes using
Add, or import the definitions from a database or an API Repository using
Import.
4-6 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
a. Add or import attributes by clicking Add or Import.

b. To import an XML DTD, a file dialog is displayed when the Import button
is pressed and XML is selected:

c. Select a DTD file and click Open. The Choose Root Element dialog displays:

See Also:

■ "Adding Attributes" on page 3-5

■ "Importing Attributes" on page 3-6

■ "Deleting and Clearing Attributes" on page 3-8

■ Appendix B, "Using the Data Definition Description Language"
Using Events in iStudio 4-7

Publishing and Subscribing to an Event
d. Select a root DTD element and click OK.

e. If this is a XML type message, the Event Map button is enabled. To define
the event map, click Event Map.

The Event Map dialog displays:

f. Click Add to add an event map attribute. The New Event Map dialog
displays:
4-8 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
g. Expand the tree and select an attribute and enter a value in the Value field.

h. Click OK on the Add Event Map dialog to return to the Event Map dialog.

i. Click OK to return to the Publish Event Wizard.

j. Click Next.

3. Define Mapping Page

Mapping involves copying the individual fields or simple shape-change
transformations. After clicking Next on the Define Application View page, the
Define Mapping page displays:
Using Events in iStudio 4-9

Publishing and Subscribing to an Event
4-10 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
Click New to define new mappings. The Mapping Parameters dialog displays:

To map fields in the application view to fields in the common view, use a
transform. For example, to map fields in the FirstName and LastName in the
common view to Name in the application view, use the ExpandFields
transform.

4. Click OK to return to the Publish Event Wizard.

5. Click Finish.

See Also:

■ "Invoking a Procedure" on page 5-5 for detailed instructions using the
Mapping dialog

■ "Adding Custom Transformations" on page 6-11 for more information
on creating custom transformations
Using Events in iStudio 4-11

Publishing and Subscribing to an Event
Subscribing to an Event
Subscribing to an event in an application in iStudio involves using the Subscribe
Wizard. To subscribe to an event in an application:

1. In the Design Navigation tree, expand the Application node. Select and expand
the Application node to display the Subscribed Events leaf. Right-click
Subscribed Events and select Subscribe. The Subscribe Wizard displays:

a. Use this page to enter information in the following fields:

* Application—The name of the application subscribing to the event.

* Message Type—This field specifies the mode of communication
between Oracle9iAS InterConnect and the application. Select from the
following message types:

Database—Oracle9iAS InterConnect communicates with the applica-
tion using the database.

Generic—Oracle9iAS InterConnect communicates with application
using a user-defined bridge.
4-12 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
XML—Oracle9iAS InterConnect communicates with the application
using XML data described through a DTD using the FTP, SMTP, HTTP,
MQ Series, or user-defined adapters.

AQ—Oracle9iAS InterConnect communicates with the application
through Oracle Advanced Queues using the Advanced Queue adapter.
The payload can be Oracle Objects where fields may be XML or RAW
XML.

D3L—The adapter communicates with the application using D3L.

b. Select the event to subscribe to and click Next.
Using Events in iStudio 4-13

Publishing and Subscribing to an Event
2. Define Application View Page

After selecting the event to subscribe to, the Define Application View page
displays:

Once an event is selected to subscribe to, the application view is defined. The
application view page is initially an empty table. Define the attributes using
Add or import the definitions from a database or an API Repository using
Import.

a. Add or import attributes by clicking Add or Import.

See Also:

■ "Adding Attributes" on page 3-5

■ "Importing Attributes" on page 3-6

■ "Deleting and Clearing Attributes" on page 3-8

■ Appendix B, "Using the Data Definition Description Language"
4-14 Oracle9iAS InterConnect User’s Guide

Publishing and Subscribing to an Event
b. To populate and look up cross reference tables, click Cross Reference... The
Cross Reference dialog displays. When finished, click OK to return to the
Subscribe Wizard.

c. Click Next.

3. Define Mapping Page

Mapping can either involve copying the individual fields or simple shape
change transformations. After clicking Next on the Define Application View
page, the Define Mappings page displays:

a. Click New to define mappings.

To map fields in the application view to fields in the common view, use a
transform. For example, to map fields in the FirstName and LastName in
the application view to Name in the common view, use the ExpandFields
transform.

b. Click Finish.

See Also: "Invoking a Procedure" on page 5-5
Using Events in iStudio 4-15

Publishing and Subscribing to an Event
4-16 Oracle9iAS InterConnect User’s Guide

Using Procedures in iS
5

Using Procedures in iStudio

This chapter describes using iStudio to create, invoke, and implement procedures.
This chapter discusses the following topics:

■ Using Procedures

■ Invoking and Implementing a Procedure

■ Exporting Stored Procedures
tudio 5-1

Using Procedures
Using Procedures
A procedure is an integration point used to model the Request/Reply paradigm.
This is a modeling paradigm only, no actual procedures are called. An application
can either invoke a procedure to model sending a request and receiving a reply, or
implement a procedure to model receiving a request and sending a reply. Similar to
events, a procedure has associated data. While an event is only associated with one
data set, a procedure has two data sets—one for the request or IN data and one for
the reply or OUT data.

For example, if a Get_Address procedure is defined so that the request contains
the social security number, SSN, for a person and the reply contains the address in
four fields—Street, City, Zip, State, then the procedure is defined as follows:

get Address Procedure
SSN IN
Street OUT
City OUT
Zip OUT
State OUT

Procedures can be used to implement both synchronous and asynchronous
Request/Reply.

Note: Standard application-independent definitions can be used
for procedure-associated data in the common view such as Open
Applications Group XML business object definitions.

See Also: "How the Hub-and-Spoke Methodology Works" on
page 1-9
5-2 Oracle9iAS InterConnect User’s Guide

Using Procedures
Creating a Procedure
To create a procedure:

1. From the File menu, select New, then select Procedure. The Create Procedure
dialog displays:

Enter information in the following fields:

■ Business Object Name—The name of the category to which the procedure
belongs. Select from the drop down list.

■ Procedure Name—The name of the procedure. Only alphanumeric
characters can be used.

■ OAI/V1—The owner and version number of the procedure. This field
cannot be edited.
Using Procedures in iStudio 5-3

Invoking and Implementing a Procedure
2. Add or import attributes to this procedure.

3. Click Save.

Invoking and Implementing a Procedure
An adapter can activate a procedure which is developed by a user or provided as
part of an adapter package, as part of the processing of an integration event or
common view.

A common view procedure is an event that can be invoked or implemented through
the use of a request/reply paradigm, also know as synchronous invokation. The
procedure is modeled as an integration business event with the parameter for the
invokation and return of the result once the procedure has been executed.

The following example describes how to model an integration event or common
view as a procedure.

See Also:

■ "Adding Attributes" on page 3-5

■ "Importing Attributes" on page 3-6

■ "Deleting and Clearing Attributes" on page 3-8

■ Appendix B, "Using the Data Definition Description Language"
5-4 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
Invoking a Procedure
Invoking a procedure in iStudio involves using the Invoke Wizard. To start the
Invoke Wizard:

1. In the Design Navigation tree, expand the Application node. Select and expand
the Application node to display the Invoked Procedures leaf. Right-click Invoke
Procedures and select Invoke. The Invoke Wizard displays:

a. Use this page to enter information for the following fields:

* Application—The name of the application invoking the procedure.
Select an application from the drop down list.

* Message Type—This field specifies the mode of communication
between Oracle9iAS InterConnect and the application. Select from the
following message types:

Database—Oracle9iAS InterConnect communicates with the applica-
tion using the database.

Generic—Oracle9iAS InterConnect communicates with the application
using a user-defined bridge.
Using Procedures in iStudio 5-5

Invoking and Implementing a Procedure
XML—Oracle9iAS InterConnect communicates with the application
using XML data described through a DTD using the FTP, SMTP, HTTP,
MQ Series, or user-defined adapters.

AQ—Oracle9iAS InterConnect communicates with the application
through Oracle Advanced Queues using the Advanced Queue adapter.
The payload can be Oracle Objects where fields may be XML or RAW
XML.

D3L—The adapter communicates with the application using D3L.

b. Select the procedure to invoke in the Select a Procedure box.

c. Click Next.

2. Define Application View Page

After clicking Next on the Select a Procedure page, the Define Application View
page displays:

Once a procedure is selected to invoke, the application view is defined. The
application view page is initially an empty table. Define the attributes using
5-6 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
Add or import the definitions from a database or an API Repository using
Import.

a. Add or import attributes by clicking Add or Import.

b. Check the Synchronous box if this is a synchronous invoke. For example, if
the request will block until a reply is recieved.

c. To specify IN arguments to be returned, click Returned In Args. The Please
Select In Arguments dialog displays:

See Also:

■ "Adding Attributes" on page 3-5 for more information on adding
attributes

■ "Importing Attributes" on page 3-6 for more information on importing
attributes

■ "Deleting and Clearing Attributes" on page 3-8 for more information
on deleting attributes

■ Appendix B, "Using the Data Definition Description Language"
Using Procedures in iStudio 5-7

Invoking and Implementing a Procedure
d. Select the input and output arguments to be returned. Use the left mouse
button to select multiple arguments. Only non user-defined input
arguments are shown for selection.

e. Click OK to return to the Define Application View page.

f. Click Next.

3. Define Mapping IN Arguments Page

Mapping arguments involves copying the individual fields or simple
shape-change transformations. After clicking Next on the Define Application
View page, the Define Mapping IN Arguments page displays:
5-8 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
a. Click New to define mappings. The Mapping Parameters page displays:

To map fields in the application view to fields in the common view, use a
transform. For example, to map fields in the FirstName and LastName in the
common view to Name in the application view, use the ExpandFields
transform.

The following steps illustrate this example:

1. Select fields to map from in the application view. Use the left mouse button
to select multiple fields in a view.

2. Select the transformation, for example, ExpandFields.

See Also:

■ "Invoking a Procedure" on page 5-5 for detailed instructions using the
Mapping dialog

■ "Adding Custom Transformations" on page 6-11 for more information
on creating custom transformations
Using Procedures in iStudio 5-9

Invoking and Implementing a Procedure
3. Select the fields to map to in the common view. Use the left mouse button to
select multiple fields in a view.

4. Click Apply to confirm selection and continue specifying additional
mappings.

5. When all mappings have been made, click OK.

The transformation may have parameters. If the Apply button is clicked,
the Mapping Parameters dialog displays:

In the Parameters field, enter the values for the transformation parameters.
For example, a blank value indicates a value for the separator parameter.

b. Click Next.

See Also: "Adding Custom Transformations" on page 6-11
5-10 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
4. Define Mapping OUT Arguments Page

Mapping arguments involves copying the individual fields or simple
shape-change transformations. Use this page to map the common view return
arguments to the application view return arguments.

a. Click New to define mappings.

b. Click Finish.

See Also: "Define Application View Page" on page 5-6
Using Procedures in iStudio 5-11

Invoking and Implementing a Procedure
Implementing a Procedure
Implementing a procedure in iStudio involves using the Implement Wizard. To start
the Implement Wizard:

1. In the Design Navigation tree, expand the Application node. Select and expand
the Application node to display the Implemented Procedures leaf. Right-click
Implememted Procedures and select Implement. The Implement Wizard
displays:

Use this page to select a procedure to implement.

a. Select information for the following fields:

* Application—The name of the application implementing the
procedure. Select an application from the drop down list.

* Message Type—This field specifies the mode of communication
between Oracle9iAS InterConnect and the application. Select from the
following message types:
5-12 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
Database—Oracle9iAS InterConnect communicates with the applica-
tion using the database.

Generic—Oracle9iAS InterConnect communicates with the application
using a user-defined bridge.

XML—Oracle9iAS InterConnect communicates with the application
using XML data described through a DTD using the FTP, SMTP, HTTP,
MQ Series, or user-defined adapters.

AQ—Oracle9iAS InterConnect communicates with the application
through Oracle Advanced Queues using the Advanced Queue adapter.
The payload can be Oracle Objects where fields may be XML or RAW
XML.

D3L—The adapter communicates with the application using D3L.

b. Select the procedure to invoke.

c. Click Next.
Using Procedures in iStudio 5-13

Invoking and Implementing a Procedure
2. Define Application View Page

After selecting the procedure to implement, the Define Application View page
displays:

Initially, this page is an empty table, used to define the application view.
Attributes can be defined by using Add. Attribute definitions can be imported
from a database or an API Repository by using Import.

a. Add or import attributes by clicking Add or Import.

b. Click Cross Reference... to populate cross reference tables.

See Also:

■ "Adding Attributes" on page 3-5

■ "Importing Attributes" on page 3-6

■ "Deleting and Clearing Attributes" on page 3-8

■ Appendix B, "Using the Data Definition Description Language"
5-14 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
c. Click Next.

3. Define Mapping IN Arguments Page

Mapping may involve copying individual fields, or simple shape-change
transformations. After clicking next on the Define Application View page, the
Define Mapping IN Arguments page displays:

Use this page to define mapping IN arguments.

a. Click New to define mappings.

b. Click Next.

See Also: "Populating Cross Reference Tables" on page 6-8

See Also: "Define Application View Page" on page 5-6
Using Procedures in iStudio 5-15

Invoking and Implementing a Procedure
4. Define Mapping OUT Arguments Page

After clicking Next on the Define Mapping IN Arguments page, the Define
Mapping OUT Arguments page displays:

Use this page to define mapping OUT arguments.

a. Click New to define mappings.

b. Click Next.

See Also: "Define Application View Page" on page 5-6
5-16 Oracle9iAS InterConnect User’s Guide

Invoking and Implementing a Procedure
5. Define Stored Procedure Page

After clicking Next on the Define Mapping OUT Arguments page, the Define
Stored Procedure page displays:

If the message type selected was database, the data is received by a stored
procedure. In this stored procedure, the action performed when the values are
returned to the application can be specified. The adapter invokes the stored
procedure at runtime with the appropriate data.

The following arguments will be returned:

■ All OUT arguments.

■ All IN arguments specified to be returned as part of the reply.

a. Select a generated procedure from the SQL code for drop down list.

b. Click Finish.
Using Procedures in iStudio 5-17

Exporting Stored Procedures
Exporting Stored Procedures
iStudio generates stored-procedure stubs to enable an application to interface with
the Oracle9iAS InterConnect run-time easily. These stubs are exported to a file using
the export functionality.

To export stored procedures:

1. Select File from the menu bar, then select Export. The Export Application dialog
displays:

2. Select the messages to export stored procedures. Messages can be filtered as
follows:

■ Export all messages—Select Applications at the top of the directory.

■ Export all messages of a certain type for all applications—Check All
Applications, then select one or more types of messages to export.

■ Export all messages for a specific application—Select the application name.

■ Export all messages of a certain type for a specific application—Select the
type under the application name in the directory.

■ To export specific messages—Select the messages by name. To select more
than one message or class of messages click the application.
5-18 Oracle9iAS InterConnect User’s Guide

Exporting Stored Procedures
3. Enter the name of the file to contain the exported stored procedures in the File
Prefix field. The name generates multiple files.

To view the directory page, click Browse.

4. Click OK. The stored procedure is now exported.
Using Procedures in iStudio 5-19

Exporting Stored Procedures
5-20 Oracle9iAS InterConnect User’s Guide

Enabling Infrastru
6

Enabling Infrastructure

This chapter describes the enabling infrastructure tasks in iStudio. This chapter
discusses the following topics:

■ Enabling Infrastructure

■ Working with Content-Based Routing

■ Working with Cross Reference Tables

■ Working with Domain Value Mappings
cture 6-1

Enabling Infrastructure
Enabling Infrastructure
The following topics discuss concepts related to the Enabling Infrastructure branch
of the Design Navigation tree.

Content-Based Routing
Messages routed to specific applications based on business rules or message
content.

Cross Reference Tables
Creating a cross reference table correlates a unique key in one application with a
corresponding key in the common view. In this process, three separate events are
addressed:

■ Inserting a record.

■ Updating a record.

■ Deleting a record.

Domain Value Maps
Creating a domain value map correlates a value in one application to a value in a
second application. In this process, two separate events are addressed:

■ Inserting a record.

■ Updating a record.

Working with Content-Based Routing
Messages are routed to specific applications based on business rules or message
content. For example, a procurement system can route fulfillment requests to
different fulfillment centers based on originating location or item requested.

Modifying Content-Based Routing
To modify content based routing for an event or procedure:

1. Right-click the event or procedure under the Content-Based Routing node in
the Design Navigation tree, then click Edit. The Content Based Routing Rules
dialog displays.
6-2 Oracle9iAS InterConnect User’s Guide

Working with Content-Based Routing
2. Click New to display the Content Based Routing Wizard. This wizard provides
a series of pages to follow for editing content based routing.

3. Choose Source Page

When the Content Based Routing Wizard starts, the Choose Source page
displays:

Choose the source event attribute and click Next.
Enabling Infrastructure 6-3

Working with Content-Based Routing
4. Choose Operator Page

After the source event is selected, the Choose Operator page displays:

Select an operator from the drop-down list and click Next.

5. Choose Value Page

After selecting an operator, the Choose Value page displays:

a. Use the Enter Value field to compare a value in an attribute to a literal.
Enter a value in the text field.

Use Select Attribute to compare one value in an attribute to another. Select
an attribute from the navigation tree.

b. Click Next.
6-4 Oracle9iAS InterConnect User’s Guide

Working with Content-Based Routing
6. Additional Condition Page

After entering a value or selecting an attribute, the Additional Condition page
displays:

a. Select Add to Condition to have complex evaluations, such as Age > 30,
Salary <= 2,000 and State = CA.

Select Condition Complete to continue to the next page.

b. Click Next.

Depending on which radio button is selected, the Choose Source page or
Select Destination Application page displays.
Enabling Infrastructure 6-5

Working with Content-Based Routing
7. Select Destination Application Page

In this example, the Select Destination page is used:

Select an application from the Select Destination Application box and click
Finish.

The Content Based Routing Rule is created and displays on the Content Based
Routing dialog.

8. Click OK.
6-6 Oracle9iAS InterConnect User’s Guide

Working with Cross Reference Tables
Working with Cross Reference Tables
Keys for corresponding entities created in different applications can be correlated
through cross referencing in iStudio. For example, a purchase order created in a
procurement system has a native id PurchaseOrder. It is then routed to a
fulfillment system. The purchase order is created in the fulfillment system with
native id Order_ID. PurchaseOrder and Order_ID must be cross referenced so
Oracle9iAS InterConnect can correlate communication about this same logical
entity in two different systems without each system knowing the native ids of the
other.

Creating Cross-Reference Tables
Creating a cross reference in iStudio creates a table in the repository schema. To
create a cross reference table:

1. From the File menu, click New, then select Cross Reference Tables. The Create
Cross Reference Table dialog displays.

2. Enter a name for the cross reference table in the Table Name field and click OK.

Adding Applications to Cross Reference Tables
To add applications to the cross reference table:

1. In the Design Navigation tree, select the appropriate cross reference table and
right-click to display the context menu.

2. From the context menu, select Add App. The Add Application to Cross
Reference Table dialog displays.

3. From the drop down list, select an application name.

4. Click OK.

Removing Applications From Cross Reference Tables
To remove applications from a cross reference table:

1. In the Design Navigation tree, select the appropriate cross reference table and
right-click to display the context menu.

2. From the context menu, select Remove App. The Remove Application from
Cross Reference Table dialog displays.
Enabling Infrastructure 6-7

Working with Cross Reference Tables
3. From the drop down list, select an application name.

4. Click OK.

Populating Cross Reference Tables
To populate the cross reference tables, returned arguments must first be defined.
Returned arguments are the arguments returned by the subscribe or implement
code for populating the cross reference table.

Use the Subscribe Wizard to access the correct page for populating cross reference
tables.

To populate cross reference tables:

1. Click Cross Reference... on the Define Application View page on the
appropriate wizard. The XRef dialog displays:

The Application Returned Arguments box displays the returned arguments.
This information is initially populated with any OUT arguments from the
application view.

See Also: "Subscribing to an Event" on page 4-12
6-8 Oracle9iAS InterConnect User’s Guide

Working with Domain Value Mappings
2. Click Modify Return Arguments to modify the returned arguments list.

3. Select the corresponding attributes in the Application Returned Arguments For
XRef and Common View windows, then click Map.

4. Specify the Cross Reference Table name to be populated using these attributes’
values and click OK.

Working with Domain Value Mappings
Code tables can be mapped across systems using domain value mapping in iStudio.
For example, a purchase order in a procurement system has a purchase order status
field with possible domain values of Booked and Shipped. The corresponding
field in a fulfillment system has the domain value set of 1 and 2. Oracle9iAS
InterConnect creates mappings such as booked=1 and shipped=2 so these values
can be correlated at runtime without each system knowing the domain value set of
the other.

Creating a Domain Value Mapping Table
To create a domain value mappings table:

1. Select File menu from the menu bar, select New, then select Domain Value
Mapping. The Create Domain Value Mapping dialog displays.

2. Enter a name for the domain value map in the Map Name field and click OK.

Adding Applications to Domain Value Mappings
To add applications to domain value mappings:

1. In the Design Navigation tree, select a domain value mapping and right-click to
display the context menu.

2. From the context menu, select Add App. The Add Application to Domain Value
Map dialog displays.

3. Select an application name from the drop down list and click OK.

Removing Applications From Domain Value Mappings
To remove applications from the domain value mappings:

1. In the Design Navigation tree, select a domain value mapping and right-click to
display the context menu.
Enabling Infrastructure 6-9

Working with Domain Value Mappings
2. From the context menu, select Remove App. The Remove Application from
Domain Value Mapping dialog displays.

3. Select the Application Name to remove from the drop down list and click OK.

Modifying Domain Value Mappings
To modify data domain value mappings:

1. In the Design Navigation tree, select a domain value mapping and right-click to
display the context menu.

2. From the context menu, select Edit Domain Value Map. The Edit Domain Value
Map dialog displays.

3. Click Add to add mappings or Import to import mappings.

4. Click OK.

Deleting Domain Value Mappings
To delete a selected domain value mapping:

■ Select the domain value mapping to delete and click Delete.

Deleting Domain Value Mapping Tables
To delete the domain value mapping table:

1. Select the domain value mapping table to be deleted and right-click to display
the context menu.

2. From the context menu, select Delete.

3. In the Confirm Delete dialog, click Yes.
6-10 Oracle9iAS InterConnect User’s Guide

Working with Domain Value Mappings
Modifying Attribute Mappings
To modify a selected attribute mapping, use the Define Mapping page on the
Publish Wizard:

1. Select a mapping and click Edit.

2. Edit the appropriate fields and click OK.

Removing Attribute Mappings
In the Publish Wizard, use the Define Mapping page to remove attribute mappings.

■ To remove a mapping, delete the attribute and click Remove.

■ To remove all mappings, click Clear.

Adding Custom Transformations
Use the Define Mapping page of the Publish Wizard to create custom
transformations.

To create custom transformations:

1. Click Custom Transformations on the Mapping dialog. The Transformations
dialog displays:

2. To add user-defined transformations, click Add.

3. Click OK.

See Also: "Publishing an Event" on page 4-5

See Also: "Publishing an Event" on page 4-5
Enabling Infrastructure 6-11

Working with Domain Value Mappings
Deleting Custom Transformations
Using the Transformation dialog, you can delete custom transformations. To delete
a selected transformation:

1. Select the transformation to delete and click Delete.

2. Click OK on the Transformation dialog.

Adding Mapping Variables
To add mapping variables, use the Mapping dialog.

1. On the Mapping dialog, click Variables. The Variables dialog displays.

2. Click Add to add a variable. The New Variable dialog displays:

3. Enter a name for the variable in the Variable Name field.

4. Select a data type from the drop down list and click Choose. The data type for
the variable must be previously defined.
6-12 Oracle9iAS InterConnect User’s Guide

Cross Reference Table Walk-Through
5. Click OK to return to the New Variable dialog.

6. Click OK on the New Variable dialog.

Deleting a Mapping Variable
To delete a mapping variable, use the Mapping dialog:

1. Select the mapping variable to delete and click Delete.

2. Click OK.

Cross Reference Table Walk-Through
The following set of steps is a walk-through involving cross-reference tables.

1. Create a cross reference table using iStudio. Creating a cross reference node
creates a table in the repository schema.

2. Add applications to the cross reference table. This defines the cross reference.

3. Create a cross reference in the mapping in the subscribing application. This step
involves the Subscribe Wizard.

4. Define the return argument(s) for the key using the XRef dialog. The code must
return the new key from the subscribing application. This key and the
publishing application key will then be inserted into the cross reference table.

5. Map the common view key to the application key using a transformation in the
subscribing application.

6. Set the table name and options after the mapping is applied.

7. Define syntax for the mapping.

8. Define a stored procedure.

9. Map the common view key to the application key using a transformation in the
subscribing application.

10. Set the table name after the mapping is applied.

See Also: "Creating Cross-Reference Tables" on page 6-7

See Also: Chapter 4, "Using Events in iStudio"
Enabling Infrastructure 6-13

Domain Value Mappings Walk-Through
Domain Value Mappings Walk-Through
The following set of steps is a walk-through involving domain value mappings.

1. Create the domain value mapping.

2. Add applications and values to the mapping.

3. Create a mapping using a transformation in the subscribing application.

4. Set the table name and options after the mapping is applied.

5. Define syntax for the mapping.

See Also: Chapter 6, "Enabling Infrastructure"

See Also: Chapter 4, "Using Events in iStudio"
6-14 Oracle9iAS InterConnect User’s Guide

Using Oracle Wo
7

Using Oracle Workflow

This chapter discusses using Oracle Workflow to apply business logic to an
integration. Topics include:

■ Oracle Workflow Overview

■ Oracle9iAS InterConnect Integration with Oracle Workflow

■ Using Oracle Workflow to Apply Business Logic

■ Design Business Process
rkflow 7-1

Oracle Workflow Overview
Oracle Workflow Overview
Oracle Workflow is integrated with Oracle9iAS InterConnect and is used for
business process collaborations across two or more applications. A business process
collaboration is defined as the conversation between two or more applications in
the context of a business process.

Oracle9iAS InterConnect leverages the robust design time and runtime Oracle
Workflow business process definition and execution support to make business
processes explicit and manageable.

Oracle Workflow Solves Common Business Problems
The following are some of the common business problems that can be solved using
Oracle Workflow.

Error Management
If there is a problem in a conversation between two or more applications, the errors
arising from this problem can be centrally managed and appropriate remedial
actions can be defined. For example, it may be required to keep the data of an order
entry system in sync with a backend ERP system. Consider that a new purchase
order is created in the order entry system but the ERP system is down at the time
the purchase order is created. At a later time, the ERP system comes back up and an
attempt is made to create a corresponding new purchase order through messaging
using Oracle9iAS InterConnect. This attempt fails. To deal with this scenario, the
integrator can utilize Oracle Workflow to send a compensating message to the order
entry system to undo the creation of the purchase order and notify the user who
created the order.

In the example above, Oracle9iAS InterConnect and Oracle Workflow can be used
to model the following for every purchase order that is over $50,000:

■ Send a notification to a named approver and wait for approval.

■ If approved, send the message to the ERP system. Otherwise send a message to
the order entry system to rollback the order creation.

Note: Knowledge of Oracle Workflow, its tools, and its Business
Event System is required to utilize Oracle9iAS InterConnect and
Oracle Workflow for business process collaboration. For more
information on Oracle Workflow, see the Oracle Workflow Guide.
7-2 Oracle9iAS InterConnect User’s Guide

Oracle Workflow Overview
Message Junctions
Fan-in and fan-out of messages can be effectively modeled using Oracle9iAS
InterConnect and Oracle Workflow. Fan-in messages involve combining two or
more messages into one. Fan-out messages involve splitting one message into two
or more.

For an example of fan-in messaging, consider the following. A global organization
has a centralized Human Resources ERP application in the United States. Each
country has one or more local systems that capture local employee information. If a
new employee joins the Japanese branch of this organization, data is entered into a
local HR application and a local Benefits application. Each entry launches a message
for adding this information to the centralized system. However, the centralized
system needs data from both systems combined and will only commit the data if it
was entered successfully in both the local systems. Using Oracle Workflow, this
process can be modeled so that Oracle9iAS InterConnect routes messages from both
local systems to Oracle Workflow, Oracle Workflow waits until it receives both
messages, combines the data, and launches a single message to be delivered by
Oracle9iAS InterConnect to the centralized HR system.

Stateful Routing
Oracle9iAS InterConnect provides extensive support for stateless routing through
event-based and content-based routing features. Using Oracle Workflow, stateful
routing can be accomplished. In other words, the decision to route can be based on
more than the event or the content of the message.

Composite Services
Combining all of the examples, an internal (organization focused) or external
(customer/partner focused) service can be built through a well-defined set of
business processes involving communication between two or more applications.
For example, a brick-and-mortar retail company wants to provide an on-line
procurement service to their customers. Behind the user interface are several
business processes controlling communication across several internal applications
to deliver a robust, performant service to the customer.

Note: The ability to define explicit business process collaborations
is a feature, not a requirement for completing integrations. It is not
necessary to utilize Oracle Workflow for integration if the business
process definition is simple enough to be implicitly captured in the
messaging through the core functionality in iStudio.
Using Oracle Workflow 7-3

Oracle9iAS InterConnect Integration with Oracle Workflow
Oracle9iAS InterConnect Integration with Oracle Workflow
The following describes how Oracle9iAS InterConnect and Oracle Workflow are
integrated.

Design Time Tools
During design time, business process and event definitions in iStudio can be
deployed to Oracle Workflow. Consequently, Oracle Workflow tools can be
launched from within iStudio to graphically create process diagrams in the context
of enterprise integration through Oracle9iAS InterConnect.

Using iStudio, the following tools can be launched:

■ Oracle Workflow Builder—Use this tool to complete business process
definitions defined and deployed through iStudio. This is accomplished by
using Oracle Workflow Builder to create process diagrams.

Figure 7–1 Oracle Workflow Builder

■ Oracle Workflow Home Page—Use this tool for centralized access to the
web-based features of Oracle Workflow. The Business Event System
management and administration is the most important feature exposed through
this home page.
7-4 Oracle9iAS InterConnect User’s Guide

Oracle9iAS InterConnect Integration with Oracle Workflow
For more information on the Business Event System, see the Oracle Workflow
Guide.

Figure 7–2 Oracle Workflow Home Page
Using Oracle Workflow 7-5

Oracle9iAS InterConnect Integration with Oracle Workflow
Runtime
At runtime, Oracle9iAS InterConnect integrates with the Business Event System of
Oracle Workflow. The Business Event System is an application service that uses the
Advanced Queueing infrastructure to communicate business events between
systems. Oracle9iAS InterConnect registers itself as an external system in Business
Event System so the following conditions exist:

■ Messages can flow from applications through Oracle9iAS InterConnect, in the
common view format, to the Business Event System. This will either trigger or
continue Oracle Workflow business processes as defined using iStudio
(Business Processes) and described using Oracle Workflow Builder (Process
Diagrams).

■ Messages can flow from the Business Event System to Oracle9iAS InterConnect
in the common view format to applications to either continue or end Oracle
Workflow business processes.

At runtime, Oracle Workflow is integrated with Oracle9iAS InterConnect at the hub.
Messages are passed back and forth between Oracle9iAS InterConnect and the
Business Event System of Oracle Workflow via Advanced Queues. The Oracle9iAS
InterConnect Oracle Workflow Communication Infrastructure facilitates this
communication.

At design time, to keep the integration methodology consistent, iStudio reuses the
messaging paradigms of publish/subscribe and request/reply to specify
communication between Oracle9iAS InterConnect and Oracle Workflow. Therefore,
for messages inbound into Oracle Workflow, the iStudio user can specify, in the
context of a business process, which events Oracle Workflow is subscribing to and
which procedures Oracle Workflow is implementing. For outbound messages,
events that Oracle Workflow can publish and procedures it can invoke can be
specified.

See Also: "Using Oracle Workflow to Apply Business Logic" on
page 7-7
7-6 Oracle9iAS InterConnect User’s Guide

Using Oracle Workflow to Apply Business Logic
Using Oracle Workflow to Apply Business Logic
This section describes using Oracle9iAS InterConnect with Oracle Workflow. There
are three broad steps:

1. Install Oracle Workflow Components

2. Design Business Process

3. Deploy Business Processes for Runtime

Install Oracle Workflow Components
To install the following Oracle Workflow components, see the Oracle9iAS Installation
Guide.

■ On the iStudio machine, install the following:

■ Oracle Workflow Builder

■ On the hub machine install the following:

■ Oracle9iAS InterConnect Oracle Workflow Communication Infrastructure

■ Oracle HTTPS Server

■ Oracle Workflow Server

In addition, follow the Oracle Workflow-related post installation steps as described
in the Oracle9iAS Installation Guide.

Design Business Process
To deploy the business process:

■ Design process bundles using iStudio.

■ Deploy process bundles from iStudio to a .wft file.

■ Complete process diagrams in Oracle Workflow Builder by launching Oracle
Workflow Builder from iStudio and using the deployed .wft file.

Deploy Business Processes for Runtime
To deploy business processes for runtime:

■ Deploy events to the Business Event System from iStudio.
Using Oracle Workflow 7-7

Design Business Process
■ Deploy a process diagram from a file to the database using Oracle Workflow
Builder.

Design Business Process
The following concepts discuss how iStudio and Oracle Workflow work together in
Oracle9iAS InterConnect. In addition, these topics discuss how to use iStudio and
Oracle Workflow step by step during design time for business process
collaborations across applications.

Process Bundle
A process bundle is a set of logically related business processes. This maps
one-to-one with an Oracle Workflow item.

Business Process
A business process is a set of Oracle9iAS InterConnect common view events or
procedures that must be routed to and from Oracle Workflow in one Oracle
Workflow business process. These events and procedures manifest themselves as
Oracle Workflow business events and can be used to define a process diagram in
Oracle Workflow Builder. This maps one-to-one with an Oracle Workflow business
process.

Activity
Activities in iStudio allow the user to define the common view events and
procedures that must be a part of an Oracle Workflow business process. The
following are types of activities in iStudio:

■ Publish Event—Oracle Workflow publishes an Oracle9iAS InterConnect
common view event. At deployment time, a business event corresponding to
the common view event is created in the Business Event System.

■ Subscribe Event—Oracle Workflow subscribes to an Oracle9iAS InterConnect
common view event. At deployment time, a business event corresponding to
the common view event is created in the Business Event System.

■ Invoke Procedure—Oracle Workflow invokes an Oracle9iAS InterConnect
common view procedure. At deployment time, two business events

See Also: "Business Process" on page 7-8
7-8 Oracle9iAS InterConnect User’s Guide

Design Business Process
corresponding to the common view procedure are created in the Business Event
System: one event for sending the request and one for receiving the reply.

■ Implement Procedure—Oracle Workflow implements an Oracle9iAS
InterConnect common view procedure. At deployment time, two business
events corresponding to the common view procedure are created in the
Business Event System: one event for receiving the request and one for sending
the reply.

The following table describes how iStudio and Oracle Workflow concepts are
mapped.

iStudio Concept Oracle Workflow Concept Mapping

Process Bundle Item One-to-one.

Business Process Business Process One-to-one.

Common View Event Business Event One-to-one.1

1 Only for all events that are part of a business process in iStudio. Events that are part of the common
view but not part of a business process are not instantiated as Oracle Workflow business events. All
common view events need not be part of business processes. In other words, depending on the
integration, some common view events could be exchanged directly between applications without
involving Oracle Workflow using the core functionality of Oracle9iAS InterConnect. Other events
may need to be part of an explicit business process. It is the latter set of events that become business
events in Oracle Workflow. The same is true for common view procedures.

Common View
Procedure

Business Event Two business events per
procedure.

Publish Activity Send Event Activity One-to-one.

Subscribe Activity Receive Event Activity One-to-one.

Invoke Activity Send Event Activity (for the
request)

Receive Event Activity (for
the reply)

Implement Activity Receive Event Activity (for
the request)

Send Event Activity (for the
reply)
Using Oracle Workflow 7-9

Design Business Process
Creating a Process Bundle
To create a process bundle using iStudio:

1. From the project tree, click Workflow and expand the subtree.

2. Right-click on Process Bundles and select New. The Create Process Bundle
dialog displays.

3. Enter the name of the process bundle in the Process Bundle Name field and
click OK.

Creating a Business Process
To create a business process:

1. From the project tree, expand the process bundle for which the business process
is to be created.

2. Right-click on Business Processes and select New. The Create Business Process
dialog displays.

3. Enter a name for the business process in the Business Process Name field and
click OK.

Populating a Business Process with Activities
To populate a business process with activities:

1. From the project tree, select the business process to populate.

2. Right-click the business process and in the context menu, select the activity to
be part of the business process. Choose from the following activities:

■ New Publish Activity—Oracle Workflow sends a message to Oracle9iAS
InterConnect in the context of the business process.

■ New Subscribe Activity—Oracle Workflow receives a message from
Oracle9iAS InterConnect.1

■ New Invoke Activity—Oracle Workflow sends a request message to
Oracle9iAS InterConnect and receives a reply.

■ New Implement Activity—Oracle Workflow receives a request from
Oracle9iAS InterConnect and sends a reply.

1 This example is used for explaining the steps. The steps are similar regardless of the
selection.
7-10 Oracle9iAS InterConnect User’s Guide

Design Business Process
The Subscribe Activity Wizard displays.

3. Select an event for the activity.

4. Click Finish.

Repeat these steps for adding other activities to the process.

Note: When you create multiple activities under a business
process, the list of activities is unordered, i.e. the order in which the
activities are added is not important. The order can be later decided
in Oracle Workflow Builder through a process diagram.
Using Oracle Workflow 7-11

Design Business Process
Deploying to Oracle Workflow
After populating business processes with activities, this information must be
deployed to Oracle Workflow to graphically model a business process. To deploy
this information to Oracle Workflow:

1. On the Deploy tab in iStudio, right click on Workflow and select Deploy.

The Deploy dialog displays:

2. There are two sets of information that need to be deployed. They can be done
independently or together:

■ Oracle Workflow Business Events—Business Events need to be created in
the Business Event System of Oracle Workflow. This is a requirement for
runtime only. Using Oracle Workflow Builder, users can decide to not
deploy these until all design time work, including modeling the business
process, is complete.

To check if events have been deployed, launch the Oracle Workflow Home
page.

Note: iStudio checks if an event is already deployed before
deploying it. Therefore, users can safely decide to re-deploy all
events at anytime. However, deploying events after all the design
time work has been completed saves you the effort of redeploying
events repeatedly.
7-12 Oracle9iAS InterConnect User’s Guide

Design Business Process
■ Oracle Workflow Process Definitions through .wft file
generation—Information about business processes captured in iStudio
provides a foundation for building process diagrams in Oracle Workflow
Builder. Deploying process definitions is required for design time.

By default, both choices are selected. The dialog also allows the following to be
automatically launched:

■ Oracle Workflow Builder—Defines business process diagrams.

■ Oracle Workflow Home Page—Verifies Business Event deployment.

By default, these choices are unselected. Choose to launch these tools with
deployment or complete this task at a later time on the Design tab.

3. Select the appropriate choices and click OK.

See Also: "Launching the Oracle Workflow Home Page" on
page 7-15 for more information on the Oracle Workflow Home
page.

Note: When deploying process definitions, iStudio prompts for a
filename. If an existing file is specified, iStudio will overwrite the
file. Therefore, if there are existing process definitions in a file
modified using Oracle Workflow Builder, do not select that
filename as the target, otherwise all modifications made will be lost.

See Also: "Launching Oracle Workflow Tools" on page 7-15
Using Oracle Workflow 7-13

Design Business Process
If deploying event definitions to the Oracle Workflow Business Event System is
selected, the following dialog displays:

4. Enter the required information based on the selections made during Oracle
Workflow installation and click OK.

If Deploying Process Definitions to a .wft file was selected, a file dialog
displays:
7-14 Oracle9iAS InterConnect User’s Guide

Design Business Process
5. Enter the name and location of the file to create and click OK.

Launching Oracle Workflow Tools
The following topics discuss how to launch Oracle Workflow tools in iStudio.

Launching the Oracle Workflow Home Page
To launch the Oracle Workflow Home page:

1. On the Design tab in iStudio, right click on Workflow and select Launch WF
Home Page. The Oracle Workflow Home Page dialog displays:

2. Make sure the URL is correct and click on OK.

Note: When deploying process definitions, iStudio prompts for a
filename. If an existing file is specified, iStudio will overwrite the
file. Therefore, if there are existing process definitions in a file
modified using Oracle Workflow Builder, do not select that
filename as the target, otherwise all modifications made will be lost.
Using Oracle Workflow 7-15

Design Business Process
The Username and Password Required dialog displays:

3. Enter the login information for the Oracle Workflow Home Page and click OK.

The Oracle Workflow Home page is launched using the default browser.

Launching Oracle Workflow Builder
To launch Oracle Workflow Builder:

1. On the Design tab in iStudio, right click on the process bundle to view in Oracle
Workflow Builder and select Launch Workflow Builder. The Deploy dialog
displays:
7-16 Oracle9iAS InterConnect User’s Guide

Design Business Process
2. In the Deploy dialog, select an existing .wft file name to load into Oracle
Workflow Builder.

Oracle Workflow Builder is launched depending on which process definition
file is selected.

Modifying Existing Oracle Workflow Processes
When modifying existing Oracle Workflow processes, do not add, modify, or
remove Oracle9iAS InterConnect event activities directly in Oracle Workflow
Builder. Always make all event-related process changes in iStudio, redeploy to the
file, and import in Oracle Workflow Builder.

For example, the following steps were completed to create an integration-related
Oracle Workflow business process:

1. Create a process bundle in iStudio and create business processes with some
activities.

2. Deploy to the my_process_bundle.wft file.

3. Import the file into Oracle Workflow Builder.

4. Make non-event related modifications to the process in Oracle Workflow
Builder, such as adding other activities like notifications and decision functions
to complete the business process.

5. Save the modified process to my_process_bundle.wft.

Now, some event related modifications to the business process need to be made. For
example, two new events need to be added to the business process. The following
steps complete this task:

6. Using iStudio, make the additions to the particular business process.

Note: The assumption is that a process definition has already been
deployed to a file.

Note: To launch Oracle Workflow Builder outside of a specific
Oracle9iAS InterConnect process bundle, right-click on Workflow
and select Launch Workflow Builder.
Using Oracle Workflow 7-17

Design Business Process
7. Deploy to a different file such as changes_to_my_process_bundle.wft.
Do not deploy to my_process_bundle.wft because any non-event-related
modifications made through Oracle Workflow Builder will be lost.

8. Launch Oracle Workflow Builder and import both my_process_bundle.wft
and changes_to_my_process_bundle.wft.

9. Drag the required modifications from the process representing changes_to_
my_process_bundle.wft to the process representing my_process_
bundle.wft.

10. Save the modified process to my_process_bundle.wft.

The my_process_bundle.wft file now contains the updated process
definition with both the event and the non-event modifications.
7-18 Oracle9iAS InterConnect User’s Guide

Runtime System Concepts and Com
8

Runtime System Concepts and Compents

This chapter describes the runtime concepts, components and processes of
Oracle9iAS InterConnect.

This chapter discusses the following topics:

■ Integration Architecture

■ Features

■ Components
pents 8-1

Integration Architecture
Integration Architecture
Oracle9iAS InterConnect runtime is an event-based distributed messaging system.
An event is any action that initiates communication through messaging between
two or more applications integrated through Oracle9iAS InterConnect. The
messaging system can be deployed both within an enterprise or across enterprise
boundaries.

The runtime enables inter-application communication through hub and spoke
integration. This methodology keeps the applications decoupled from each other by
integrating them to a central hub rather than to each other directly. The applications
are at the spokes of this arrangement and are unaware of the applications with
which they are integrating with. To them, the target of a message (or the source) is
the hub. Since each application integrates with the hub, translation of data between
the application and hub (in either direction) is sufficient to integrate two or more
applications.

Features
The Oracle9iAS InterConnect runtime features are as follows:

■ Messaging Paradigms

■ Message Delivery

■ Message Retention

■ Routing Support

■ Error Management

■ Scalability and Load Balancing

Messaging Paradigms
Oracle9iAS InterConnect runtime supports three major messaging paradigms:

■ Publish/Subscribe

■ Request/Reply (synchronous and asynchronous)

■ Point-to-Point

These paradigms can be configured on a per integration point basis.

See Also: Chapter 1, "Getting Started with Oracle9iAS
InterConnect"
8-2 Oracle9iAS InterConnect User’s Guide

Features
Message Delivery

Guaranteed delivery All messages are guaranteed to be delivered from the source
application(s) to the destination application(s).

Exactly once delivery The messages are neither lost nor duplicated. The destination
application(s) will receive each sent message exactly once.

In order delivery The messages are delivered in the exact same order as they were
sent.

Message Retention
Messages remain in the runtime system until they are delivered. Advanced Queues
in the hub provide the message retention. The messages are deleted when each
application that is scheduled to receive a specific message has received that
message. For auditing purposes, you can configure the system to retain all messages
even after they have been delivered successfully to each application.

Routing Support
The current version of Oracle9iAS InterConnect has significant improvements over
the previous releases for configuring your routing needs. Routing is a function of
the Advanced Queues in the hub. By default, there is only one multiconsumer
Advanced Queue configured to be the persistent store for all messages for all
applications—oai_hub_queue. This will handle all your standard as well as
content based routing needs. Morever, this queue is created automatically when you
install the repository in the hub. The only reason to change this configuration is if
Advanced Queues becomes a performance bottleneck. For most scenarios, this is
unlikely because most of the message processing is done in the adapters, not in the
hub.

Content-Based Routing
Content-based routing allows you to route messages to specific destination
applications based on message content. For example, an electronic funds transaction
settlement application is designed to transmit bank transactions with a specific
bank code to identify the destination bank system. When the electronic funds
transfer application publishes each message at runtime, the Oracle Application

See Also: "Scalability and Load Balancing" on page 8-4
Runtime System Concepts and Compents 8-3

Features
InterConnect runtime component determines the BankCode value based on objects
stored in the repository, and routes the message to the appropriate recipient system.

Error Management
This release has significant improvements to deal with error conditions in your
integration environment:

■ Central Logging—If there is an error in the system, it is logged centrally in the
repository.

■ Central Monitoring—These errors can be monitored through the runtime
management console.

Resubmission
You can resubmit errored-out messages again into your integration environment for
processing after modifying them (if required) using the runtime management
console.

Tracing
You can modify the .ini files of adapters to turn up the tracing level to
troubleshoot errors. You can view the tracing logs by opening up log files through
the runtime management console.

Tracking
Messages can be tracked by specifying tracking fields using iStudio. The runtime
system checkpoints state at certain pre-defined points so that you can monitor
where the message is currently in the integration environment. This tracking
capability can be utilized through the runtime management console.

Scalability and Load Balancing
At runtime, it is possible that the adapter attached to a particular application
becomes a performance bottleneck. You can detect this by monitoring the message
througput information through the runtime console.

Oracle9iAS InterConnect addresses adapter scalability through a well-defined
methodology.

See Also: Chapter 9, "Runtime Management"
8-4 Oracle9iAS InterConnect User’s Guide

Features
Multiple adapters can be attached to one application to share the message load. This
can be done in several ways depending upon the needs of your integration
environment. For example, Application A publishes three different kinds of
events—EventA, EventB, and EventC. Three potential scenarios should be
examined to determine how one or more adapters should be attached to the
application to meet performance objectives:

Scenario 1
■ Requirement

The order in which the messages are sent by Application A must be adhered to
strictly for the life of all messages. For example, if Application A publishes
messages in a specific order, they must be received by the subscribing
applications in the exact same order across all the different event types.

■ Solution

In this case, you cannot add more than one adapter to Application A for load
balancing.

Scenario 2
■ Requirement

The order in which messages are sent by Application A must be adhered to but
not across different event types. For example, Application A publishes the
following messages in order: M1_EventA, M2_EventB, M3_EventA. M1 and M3
must be ordered with respect to each other because they correspond to the same
event type. However, M2 has no ordering restrictions with respect to M1 and M3.
In addition, EventA messages are transformation/size/computation heavy and
EventB and EventC messages are very light.

■ Solution

In this case, you can create message partitions in the Message Capability
Matrix. Partition1 can process EventA messages, and Partition2 can process
EventB and EventC messages. When you install the adapters, you specify not
only the application it is attached to but also the partition it uses. These
message partitions can be used to effectively load balance message processing.

See Also: Chapter 1, "Getting Started with Oracle9iAS
InterConnect"
Runtime System Concepts and Compents 8-5

Components
Scenario 3
■ Requirement

There is no message order dependency, even within the same event type.

■ Solution

Since there are no ordering restrictions, two approaches for load balancing can
be employed:

■ No message partitions are created. One or more adapters are added
utilizing the entire Message Capability Matrix. This means that at runtime
any one of the adapters would be available to receive any message, though
only one of them would actually receive the message. Which adapter
receives the message will be determined solely by which adapter is the first
to request the next message for processing.

■ Message Partitions can be created based on projections of the number of
messages for a particular event type. For example, if there will be three
times as many EventA messages than EventB or EventC messages, you
could create two partitions—one for handling EventA messages, and the
other for handling the other two event types.

Components
There are four major components in the runtime system:

■ Adapters

■ Repository

■ Advanced Queues

■ Oracle Workflow

Adapters
Prepackaged adapters help re-purpose applications at runtime to participate in the
integration without any programming effort.
8-6 Oracle9iAS InterConnect User’s Guide

Components
Agent and Bridge Combination
Adapters are the run-time component for Oracle9iAS InterConnect. Adapters have
the following responsibilities:

■ Application Connectivity—Connect to applications to transfer data between the
application and Oracle9iAS InterConnect. The logical sub-component within an
adapter that handles this responsibility is called a bridge. This is the
protocol/application-specific piece of the adapter that knows how to
communicate with the application. For example, the database adapter is capable
of connecting to an Oracle database using JDBC and calling SQL APIs. This sub
component does not know which APIs to call, only how to call them.

■ Transformations—Transform data from the application view to common view
and vice versa as dictated by the repository metadata. In general, adapters are
responsible for carrying out all the runtime instructions captured through
iStudio as metadata in the repository. Transformations are an important subset
of these instructions. The logical sub component within an adapter that handles
the runtime instructions is called an agent. This is the generic runtime engine in
the adapter that is independent of the application to which the adapter
connects. It focuses on the integration scenario based on the integration
metadata in the repository. There is no integration logic coded into the adapter
itself; all integration logic is stored in the repository. The repository contains the
metadata that drives this sub component. In the database adapter example, this
is the sub-component that knows which SQL API’s to call, but not how to call
them. All adapters have the same agent code. It is the difference in metadata
that each adapter receives from the repository that controls and differentiates
the behavior of each adapter.

Adapters can be configured to cache the metadata at runtime to address
performance needs. There are three settings for caching metadata:

■ No Caching—For each message, the adapter will query the repository for
metadata. This setting is recommended for an early or unstable integration
development environment.

■ Demand Caching—The adapter will query the repository only once for each
message type and then cache that information. For subsequent messages of the
same type, it will use the information from the cache. This setting is
recommended for a stable integration development environment.

■ Full Caching—At start-up time, the adapter will cache all its relevant metadata.
This setting is recommended for a production environment.
Runtime System Concepts and Compents 8-7

Components
The following adapters are available with Oracle9iAS InterConnect:

■ Oracle Database Adapter—Allows you to communicate to an Oracle database
using JDBC. The database adapter is certified against Oracle database version
7.x to 8.1.7.

■ Oracle Advanced Queue Adapter—Allows you to communicate to an
Advanced Queue with Raw, XML, and ADT payloads. This adapter can work
on Oracle database version 8.1.6 and 8.1.7.

■ HTTP Adapter—Allows you to communicate across firewalls with an HTTP/S
server using XML payloads.

■ FTP Adapter—Enables an Oracle FTP Application to be integrated with other
applications using Oracle Applications InterConnect. This adapter is useful in
all enterprise application integration scenarios involving the FTP transport
protocol or local file system. The Advanced Queuing adapter can monitor
incoming messages which are in the form of FTP files placed in a remote FTP
server or on local file systems. The Advanced Queuing adapter is also capable
of sending messages to remote FTP servers via proxy host. The payload for this
adapter can be XML data or D3L data.

■ MQ Series Adapter—Enables Oracle Applications InterConnect to send
messages to and receive messages from the MQ Series queues and topics. This
allows an application that uses IBM’s MQ Series as its messaging technology to
be integrated with other applications using Oracle Applications InterConnect.
Therefore, the Advanced Queuing adapter is useful in all enterprise application
integration scenarios involving MQ Series-based applications.

■ SMTP Adapter—The SMTP adapter enables an SMTP application to be
integrated with other applications using Oracle9iAS InterConnect. This adapter
is useful in all enterprise application integration (EAI) environments where
e-mail uses the Internet Message Access Protocol 4 (IMAP4) and SMTP
transport protocols.

■ PeopleSoft 7.5x and 8 Adapter

■ SAP R/3 Adapter

■ CICS Adapter

■ Siebel 2000 Adapter

■ JDEdwards Adapter
8-8 Oracle9iAS InterConnect User’s Guide

Components
Repository
The repository consists of two components:

■ Repository Server—A Java application that runs outside the database. It
provides CORBA services to create/modify/delete metadata at design time
using iStudio and query during runtime using adapters. Both adapters and
iStudio act as CORBA clients to communicate with the repository server.

■ Repository Database—The repository server stores metadata in database tables.
The server communicates to the database using JDBC.

Adapters have the ability to cache metadata. If the repository metadata is modified
after adapters have cached metadata, those adapters are automatically notified by
the repository server to purge their caches and re-query the new metadata.

Advanced Queues
Advanced Queues provide the messaging backbone for Oracle9iAS InterConnect in
the hub. In addition to being the store and forward unit, they provide message
retention, auditing, tracking, and guaranteed delivery of messages. For more
information on Advanced Queues, see the Oracle Database Application Developer’s
Guide
Runtime System Concepts and Compents 8-9

Components
Oracle Workflow
Oracle Workflow facilitates integration at the business process level through its
Business Event System. Oracle9iAS InterConnect and Oracle Workflow are
integrated to leverage this facility for business process collaborations across
applications.
8-10 Oracle9iAS InterConnect User’s Guide

Runtime Manage
9

Runtime Management

This chapter describes how to manage Oracle9iAS InterConnect components using
the Oracle Enterprise Manager Console.

This chapter discusses the following topics:

■ Introduction to Runtime Management

■ Features
ment 9-1

Introduction to Runtime Management
Introduction to Runtime Management
The Runtime Management Console is an Oracle Enterprise Manager based tool that
allows you to manage your integration components at runtime. The Oracle9iAS
InterConnect components that can be managed through the Console are as follows:

■ Adapters

■ Repository Server

To be able to manage your integration components, you must

■ Install the Enterprise Manager Server on your hub machine. When the
management server is started it detects the repository in the hub and all
associated adapters.

■ Install the Enterprise Manager Console on the machine you wish to manage
your integration components from (instructions in the install guide).

For more information on installation, see the Oracle9iAS InterConnect Installation
Guide.

Starting Oracle Enterprise Manager
To start the Oracle Enterprise Manager:

1. Start Oracle Enterprise Manager. The following dialog displays:

See Also: Oracle9iAS Installation Guide or
9-2 Oracle9iAS InterConnect User’s Guide

Introduction to Runtime Management
2. Enter the management server you want to connect to, the username, and the
password. Click OK. The console displays:
Runtime Management 9-3

Features
When the Oracle9iAS InterConnect subtree is expanded, a list of adapters and
the repository associated with the particular Oracle9iAS InterConnect hub
displays:

To utilize any of the features, right click the adapter or repository to manage.

Features
The following are runtime features for adapters and the repository.

Common Features for Adapters and the Repository
The following features are provided for both adapters and repository:

■ Get State—Shows the component's state. Red indicates the component is
stopped. Green indicates the component is running. Yellow indicates the
component state is unknown.
9-4 Oracle9iAS InterConnect User’s Guide

Features
■ Start—Start the component.

■ Stop—Stop the component.

■ Alert On Shutdown—Allows you to send a page or email if that particular
component goes down. Refer to the Oracle Enterprise Manager Guide for setting
up the alert.

■ Get Ini File—Allows you to browse and modify the .ini file for that particular
component. If you make changes, the tool prompts you to restart the
component. You must restart the component for the changes to take effect.

■ Get Log File—Allows you to browse the log files for a particular component.
Repositories have one log file each. Adapters have multiple log files. This
feature allows you to select the log file you want to view.

■ Get Alive Time—Gets the duration that the component has been up for since it
was last started.

■ Remove—Removes the component from the list of manageable components for
this session of the Oracle Enterprise Manager Console.

Repository Specific Features
■ Get Repo Sessions—Gets a list of all components connected to the repository --

adapters and iStudio.

Adapter Specific Features
■ Get Throughput—Monitor the adapter throughput in terms of

messages/second. The steps to get throughput information are as follows:

1. Right-click the adapter for which to get throughput information and select
Get Throughput.

2. On the dialog that displays, click Get Throughput. Throughput information
is displayed for inbound and outbound message separately. At startup time
the adapter starts recording throughput information by default. To record
throughput information in a particular interval, click disable timer, then
click enable timer. This restarts the recording process and allows new
throughput information to be available by clicking Get Throughput.

■ Track Messages—Track particular messages at runtime. During design time, in
iStudio, you can specify fields in the application view for publish event or
invoke procedure with which to track the message. For example, a customer
related message could be tracked by an application view field, such as social
Runtime Management 9-5

Features
security number. The following steps utilize this functionality in the runtime
management console:

1. Right-click on any adapter attached to the application that is publishing the
event or invoking the procedure to track. On the context menu, select Track
Messages. A list of trackable events and procedures is displayed.

2. Select the event or procedure to track.

3. A dialog displays asking for the value(s) of the selected tracking field(s) for
that particular event or procedure in iStudio. Therefore, in the customer
related message example, the dialog asks for the social security number.

■ Get Errors—Displays all errors associated with the adapter. Certain errors have
a message payload associated with them. These errors are marked with a yes in
the Editable column. To modify and resubmit a message:

1. Double-click the description field for such an error. Depending on the
processing state at which the error occurred, a dialog displays an XML
message in the application or common view.

2. If necessary, edit the message. If this is not necessary, go to the next step.

3. Click Resubmit. The message now re-enters the integration system for
reprocessing.
9-6 Oracle9iAS InterConnect User’s Guide

Integration Sce
A

Integration Scenario

This appendix provides an integration scenario and model based on a fictitious
company, Acme, Inc. using Oracle9iAS InterConnect. This appendix discusses the
following topics:

■ Integration Scenario Overview

■ Modeling the Integration

■ Implementing the Scenario

■ Modeling Business Logic in Oracle Workflow

■ Deployment

■ Conclusion
nario A-1

Integration Scenario Overview
Integration Scenario Overview
Each division of Acme, Inc. has multiple Order Fulfillment Systems which are a
legacy from various mergers and acquisitions. Maintaining the parts of these
systems such as platforms, software, training, etc. is costly and time consuming for
Acme. In addition, the lack of integration between the systems prevents business
analysis on the enterprise level.

Acme has created a new centralized system and the first phase of the integration
project is to synchronize one of the legacy systems with the new system. The first
test is to synchronize the Purchase Order information, where all purchase orders
from the legacy system are to be reflected in the new system.

The New Centralized System
This new order fulfillment system operates on an Oracle9i database and uses the
Oracle9iAS InterConnect Database Adapter to communicate with this system.

The Legacy System
The legacy order fulfillment system operates on an Oracle8i database and uses the
Oracle9iAS InterConnect Advanced Queueing Adapter to communicate with this
system.

On the Purchase Order table in this system a database trigger queues the changed
records. Oracle9iAS InterConnect is configured to listen to that queue to accomplish
this integration.

Note: There are many methods available to capture changes to in
a system. These methods include but are not limited to database
triggers, a batch process using interface tables, and the use of
database log files.
A-2 Oracle9iAS InterConnect User’s Guide

Integration Scenario Overview
The Integration Scenario
Figure A–1 illustrates the integration scenario:

Figure A–1 Integration Scenario

The question mark above is the task at hand:

How can we accomplish this task?

The first step in any integration scenario is to model the integration.

■ Legacy System

■ Any changes to the Purchase Order table in the Legacy application are
published via a database trigger. An administrator must approve all
changes such as insert, update, & delete before they are applied to the
Order Fulfillment System

■ Order Fulfillment System

■ If a change is approved, it is sent to the Order Fulfillment System. If a
change is rejected, then a cancellation notification is sent back the Legacy
system.

■ Additional Issues

■ The process must be non intrusive, the user cannot alter the structure of
either system.
Integration Scenario A-3

Modeling the Integration
■ Synchronization of the primary keys of each system must be maintained by
the integration platform.

■ The integration must be scalable and support addition of systems.

Modeling the Integration
Figure A–2 illustrates how Oracle9iAS InterConnect integrates with the scenario in
Figure A–1.

Figure A–2 Integration Modeling

Now that the integration scenario has been defined:

How are we going to accomplish this task?

1. The Legacy Application publishes the insert, update, and delete messages onto
a queue. To receive or send messages onto that queue, the Oracle9iAS
InterConnect Advanced Queueing adapter is used.

The Order Fulfillment Application is a standard Oracle database and uses the
Oracle9iAS InterConnect Database adapter.

2. All messages are routed to Oracle Workflow to apply user-defined logic.
A-4 Oracle9iAS InterConnect User’s Guide

Modeling the Integration
Integration Modeling using iStudio
The following list of steps outlines the process to accomplish this integration.

1. Review Legacy System Database Trigger

2. Create a Project

3. Create the Common View Business Object

4. Create Business Object Events

5. Create Applications

6. Create a Cross Reference Table

7. Create Publish Events

8. Subscribing to Events

9. Create Content Based Routing

10. Create an Oracle Workflow Process Bundle

11. Deploy the Process Bundle to Oracle Workflow

12. Creating Objects in Oracle Workflow for Modeling

13. Deployment

14. Creating Objects in Oracle Workflow for Modeling

15. Modeling Business Logic in Oracle Workflow

16. Deployment

■ Setting Queues

■ Pushing Metadata

■ Exporting and Installing Code
Integration Scenario A-5

Implementing the Scenario
Implementing the Scenario
The following sections describe implementing the integration scenario.

Review Legacy System Database Trigger
The source system uses Oracle8i Advanced Queueing to publish changes to the
purchase order table. To be non-intrusive, the user creates a database trigger on the
purchase order table. When a record is updated, inserted, or deleted and then
committed, the trigger enqueues the appropriate payload. The Oracle9iAS
InterConnect Advanced Queueing Adapter is configured to listen on this queue.

The following code is for the database trigger.

CREATE OR REPLACE TRIGGER AQAPP.ENQUEUE_PO
 AFTER INSERT OR DELETE OR UPDATE ON AQAPP.PURCHASE_ORDER FOR EACH ROW
DECLARE
 qname VARCHAR2(20) := ’OUTBOUND_QUEUE’;
 enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 msgid RAW(16);
 recip_agent SYS.AQ$_AGENT;
 raw_payload RAW(32767);
 payload VARCHAR2(256);
BEGIN
 IF INSERTING THEN
 payload := ’<?xml version="1.0" standalone="no"?>’ ||
 ’<PO_Insert>’ ||
 ’<id>’ || :new.id || ’</id>’ ||
 ’<action>’ || ’I’ || ’</action>’ ||
 ’<item>’ || :new.item || ’</item>’ ||
 ’<amount>’ || :new.amount || ’</amount>’ ||
 ’<quantity>’ || :new.quantity || ’</quantity>’ || ’</PO_Insert>’;

ELSIF DELETING THEN
 payload := ’<?xml version="1.0" standalone="no"?>’ ||
 ’<PO_Delete>’ ||
 ’<id>’ || :old.id || ’</id>’ ||
 ’<action>’ || ’D’ || ’</action>’ || ’</PO_Delete>’;
ELSIF UPDATING THEN
 payload := ’<?xml version="1.0" standalone="no"?>’ ||
 ’<PO_Update>’ ||
 ’<id>’ || :old.id || ’</id>’ ||
 ’<action>’ || ’U’ || ’</action>’ ||
 ’<item>’ || :new.item || ’</item>’ ||
 ’<amount>’ || :new.amount || ’</amount>’ ||
 ’<quantity>’ || :new.quantity || ’</quantity>’ ||
 ’<last_updated>’|| :new.last_updated|| ’</last_updated>’|| ’</PO_Update>’;
A-6 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
END IF;

raw_payload := UTL_RAW.CAST_TO_RAW(payload);

DBMS_AQ.ENQUEUE(queue_name => qname
 ,enqueue_options => enqueue_options
 ,message_properties => message_properties
 ,payload => raw_payload
 ,msgid => msgid);
EXCEPTION
 WHEN OTHERS THEN NULL;
END;
Integration Scenario A-7

Implementing the Scenario
Create a Project
A project is a container for the integration logic pertaining to an integration
scenario. The following steps describe creating the PO_Integration project using
iStudio.

1. From the File menu, select New Project. The Create Project dialog displays.

2. Enter PO_Integration in the Project Name field and click OK. The
Repository Information dialog displays.

3. Enter the correct repository information and click OK.

Figure A–3 Creating a Project

See Also: "Creating a New Project" on page 2-15
A-8 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Create the Common View Business Object
Each application has its own semantics and syntax. In order to integrate the data
from multiple sources, a common view that is semantically compatible is required.
The common views are either events or procedures and are grouped in a business
object, located under the Common Views node in iStudio. In this scenario, all events
are grouped under the Purchase_Order business object.

The following steps describe creating the Purchase_Order business object.

1. From the File menu select New, then select Business Object. The Create Business
Object dialog displays.

2. Enter Purchase_Order in the Business Object Name field and click OK.

See Also: "Creating Business Objects" on page 3-3
Integration Scenario A-9

Implementing the Scenario
Create Business Object Events
In order to integrate data between two or more systems, a semantically compatible
view, or common view, is required. In this scenario, the insert, updated, delete, and
cancel events are grouped under the Purchase_Order business object. The
following four events must be created:

■ PO_Cancel

■ PO_Insert

■ PO_Update

■ PO_Delete

The following steps describe creating the PO_Insert event using an XML DTD
(eXtensible Markup Language Data Type Definition). The user can also use the
database or other common data type to describe the structure of the event.

1. From the File menu, click New, then select Event. The Create Event dialog
displays.

2. Select Purchase_Order as the Business Object.

3. Enter PO_Insert in the Event Name field.

4. Click Import and select XML.

5. Select the predefined file, PO_Insert_CV.dtd in the Open dialog and click
Open.

6. Select PO_Insert in the Choose Root Dialog and click OK to return to the
Create Event dialog.

7. Click OK.

Use the same steps for the PO_Update, PO_Delete, and PO_Cancel events,
substituting the following correct XML DTD for each event. The PO_Cancel, PO_
Delete, PO_Insert, and PO_Update events appear in the Design Object
Navigator under the Events node as shown in Figure A–4.

Note: When an event is created, a Common Data Type
representing its structure is automatically created. This common
data type can then be reused to define the structure of other events.

See Also: "Creating Events" on page 4-3
A-10 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
DTD Code
Each event has its own XML DTD. The following code is listed for each event.

■ PO_Cancel

<!ELEMENT PO_Cancel (id, action, item, amount, quantity)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT action (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ELEMENT amount (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>

■ PO_Update

<!ELEMENT PO_Update (id, action, item, amount, quantity, last_updated)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT action (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ELEMENT amount (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT last_updated (#PCDATA)>

■ PO_Delete

<!ELEMENT PO_Delete (id, action)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT action (#PCDATA)>

■ PO_Insert

<!ELEMENT PO_Insert (id, action, item, amount, quantity)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT action (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ELEMENT amount (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
Integration Scenario A-11

Implementing the Scenario
Figure A–4 Completed Event Node in iStudio

Note: The Business Object and Events display in the Object
Navigator under node Common Views as shown in Figure A–4.
A-12 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Create Applications
An application in iStudio represents an instance of an adapter communicating with
an application. When the user installs an adapter, a unique name is supplied and, in
iStudio, this name is used as the name of the application. This scenario
demonstrates creating the AQAPP and DBAPP applications.

The following steps describe creating the AQAPP application using iStudio.

1. From the File menu, select New, then select Application. The Create Application
dialog displays.

2. Enter AQAPP in the Application Name field and click OK.

Complete the same steps to create the DBAPP application. The AQAPP and DBAPP
applications appear in the Design Object Navigator under the Applications node as
shown in Figure A–5.

Figure A–5 AQAPP and DBAPP Applications in iStudio

See Also: "Creating an Application" on page 3-2
Integration Scenario A-13

Implementing the Scenario
Create a Cross Reference Table
Each system has its own unique identifier or primary key. In most cases, an
administrator does not allow any changes to the structure of their systems.
Therefore, using a cross reference table, the keys of both systems can be maintained
and cross referenced for subsequent updates and deletes.

The following steps describe creating the PO_XREF cross reference table using
iStudio. The table is automatically created in the repository schema and is
referenced by the subscribing application. The WORKFLOW and DBAPP applications
are added to the table, as the publisher and subscriber respectively.

1. From the File menu, click New, then select Cross Reference Tables. The Create
Cross Reference Table dialog displays.

2. Enter PO_XREF in the Table Name field and click OK.

3. Right click on the PO_XREF in the Navigator and add the WORKFLOW and
DBAPP applications. The PO_XREF cross reference table appears in the Design
Object Navigator under the Cross Reference Tables node as shown in
Figure A–6.

Figure A–6 PO_XREF Cross Reference Table in iStudio

See Also: "Creating Cross-Reference Tables" on page 6-7
A-14 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Create Publish Events
The database trigger in the Legacy Application, AQAPP, publishes messages when
records are inserted, updated, or deleted on the purchase order table. This process
happens outside the Oracle9iAS InterConnect environment. The Oracle9iAS
InterConnect Advanced Queueing adapter is configured to read these messages.
The publish events under the iStudio application will:

■ Map the application view to the common view.

■ Perform transformations.

■ Publish the new event to subscribers in the Oracle9iAS InterConnect
environment.

The following steps describe how the message received from the Legacy
Application queue is processed.

Step 1 Starting the Publish Wizard
To start the Publish Wizard:

1. Expand the Applications node in the Design Object Navigator.

2. Select and expand the AQAPP application.

3. Select the published events node.

4. Right-click Published Events and select New. The Publish Wizard displays.

Step 2 Using the Publish Wizard to Publish the PO_Insert Event
When the Publish Wizard starts the following pages display.

1. Select an Event Page

a. Enter information in the following fields:

* Application—Select AQAPP for the application.

* Message Type—Select XML for the message type.

b. Expand the Business Objects tree in the Select an Event box and drill down
to PO_Insert.

c. Select PO_Insert and click Next.

See Also: "Publishing an Event" on page 4-5
Integration Scenario A-15

Implementing the Scenario
Figure A–7 Publish Wizard—Select an Event page

2. Define Application View Page

a. Import Attributes

Import attributes from the common view by clicking Import and select
Common View. The structure of the PO_Insert common view event
displays. If the application view is different from the common view, use the
database or an XML DTD to define the structure.

b. Create an Event Map

An event is received and converted into a common view to which any
application can map. If the structure of one or more events is identical, then
routing becomes an issue. An event map is used to distinguish the routing
in this situation. The Action field in the application view contains an I for
insert, a U for update, or a D for delete. Complete the following steps to
create an event map:

* Click Event Map, then click Add.

* Select the Action field and enter I.

* Click Add.

c. Click Next.
A-16 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
3. Define Mapping Page

Use the Define Mapping page to map fields from the AQAPP View to the
common view using transformations. In this scenario the structure is identical,
therefore, the ObjectCopy transformation is used to map all the fields at once.
To define new mappings:

a. Click New. The Mapping Parameters dialog displays.

b. Expand the PO_Insert tree and select the PO_Insert node in the AQAPP
View box.

c. Select ObjectCopy in the Transformations box.

d. Expand the PO_Insert tree and select the PO_Insert node in the
Common View box.

e. Click OK. The new mapping displays in the Summary box of the Define
Mapping page.

f. Click Finish.

Figure A–8 Publish Wizard—Mapping Parameters
Integration Scenario A-17

Implementing the Scenario
To create the PO_Update and PO_Delete publish events, repeat the same steps,
using the following values for steps 2 and 3.

■ PO_Update

■ Use the PO_Update common view.

■ The event map value is U.

■ Use the ObjectCopy transformation and map to PO_Update.

■ PO_Delete

■ Use the PO_Delete common view.

■ The event map value is D.

■ Use the ObjectCopy transformation and map to PO_Delete.
A-18 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Subscribing to Events
The DBAPP application subscribes to the following three events:

■ PO_Insert

■ PO_Update

■ PO_Delete

The AQAPP application subscribes only to the PO_Cancel event.

DBAPP Application Subscriptions

Step 1 Starting the Subscribe Wizard
1. In the Design Object navigator, expand the Application node.

2. Select and expand the Application node to display the Subscribed Events node.

3. Right-click Subscribed Events and select New. The Subscribe Wizard displays.

Step 2 Using the Subscribe Wizard to Subscribe to the PO_Insert Event
1. Select an Event Page

a. Enter information in the following fields:

* Application—Select DBAPP.

* Message Type—Select Database.

b. Expand the Business Objects node in the Select an Event box and drill down
to PO_Insert.

c. Select PO_Insert and click Next.

See Also: "Subscribing to an Event" on page 4-12
Integration Scenario A-19

Implementing the Scenario
Figure A–9 Subscribe Wizard—Select an Event page

2. Define Application View Page

a. Import attributes from the database:

* Click Import and select Database. The Database Login dialog displays.

* Enter the correct information to login to the database and click Login.
The Oracle Database Browser dialog displays.

* In the Browser dialog, expand the Tables/Views node and select
DBAPP.PO.

* Click Done.
A-20 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Figure A–10 Subscribe Wizard—Oracle Database Browser

b. Create a cross reference.

In "Create a Cross Reference Table" on page A-14, the PO_XREF cross
reference table was created. This table synchronizes the primary keys on the
source and target systems.

* Click Cross Reference and select PO_XREF. The XRef dialog displays.

* Select POID in the Application Returned Arguments For XRef box.

* Select id in the Common View box.

* Click Map.

* Click OK.
Integration Scenario A-21

Implementing the Scenario
Figure A–11 Subscribe Wizard—Cross Reference

c. Click Next.

3. Define Mapping Page

a. Define a new mapping:

* Click New. The Mapping Parameters dialog displays.

* Expand the PO_Insert tree and the PO_Insert node in the Common
View box. Map the following:

* Click OK.

Common View Transformation DBAPP View

item CopyFields POITEM

amount CopyFields PRICE

quantity CopyFields QUANTITY
A-22 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Figure A–12 Subscribe Wizard—Mapping Parameters

b. Click Next.

4. Define Stored Procedure Page

a. Select sub_PO_Insert_OAI_V1 from the SQL code drop down list. The
SQL code displays in the box.
Integration Scenario A-23

Implementing the Scenario
b. Add the following code:

PROCEDURE sub_PO_Insert_OAI_V1(POID IN OUT LONG,
 POITEM IN LONG,
 PRICE IN LONG,
 QUANTITY IN NUMBER,
 LAST_UPDATED IN DATE)
AS
 v_poid NUMBER;

 BEGIN
 SELECT PO_SEQ.NEXTVAL INTO v_poid FROM dual;
 POID :=v_POID;

 INSERT INTO PO VALUES
 (v_POID, POITEM, PRICE, QUANTITY, SYSDATE);
 COMMIT;
END sub_PO_Insert_OAI_V1;

c. Click Finish.

Step 3 Create the Subscribed PO_Update Event
The wizard steps have been abbreviated:

1. Select an Event Page

Select the PO_Update event.

2. Define Application View Page

Import the Common View.

3. Define Mapping Page

a. Map the same parameters as described in PO_Insert.

b. In addition, map the following:

* Expand the PO_Update tree and node in the Common View box and
select id.

* Select the LookupXref transformation.

* Expand the PO_Update tree and select POID in the Application View
box.
A-24 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
* Click Apply. The Mapping dialog displays.

* Select the Req. checkbox for table listed in the Parameters column and
click OK.

c. Click Next.

4. Define Stored Procedure Page

a. Select sub_PO_Update_OAI_V1 for the SQL code for field. The code
displays in the box.

b. Add the following code:

PROCEDURE sub_PO_Update_OAI_V1(POID IN NUMBER,
 POITEM IN LONG,
 PRICE IN LONG,
 QUANTITY IN NUMBER,
 LAST_UPDATED IN DATE)
AS
 v_poid NUMBER :=poid;
 v_poitem LONG :=poitem;
 v_price LONG :=price;
 v_quantity NUMBER :=quantity;
BEGIN
 UPDATE PO SET poitem = v_poitem, price = v_price
 quantity = v_quantity, last_updated = sysdate
 WHERE poid = v_poid;
 COMMIT;

EXCEPTION
 WHEN OTHER THENS NULL;

END sub_PO_Update_OAI_V1;

c. Click Finish.

Step 4 Create the Subscribe PO_Delete Event
The wizard steps have been abbreviated:

1. Select an Event Page

Select the PO_Delete event.

2. Define Application View Page

Import the Common View.
Integration Scenario A-25

Implementing the Scenario
3. Define Mapping Page

a. Map the same parameters as described in PO_Insert.

b. In addition, map the following:

* Expand the PO_Delete tree and node in the Common View box and
select id.

* Select the DeleteXref transformation.

* Expand the PO_Delete tree and select POID.

* Click Apply. The Mapping dialog displays.

* Select PO_XREF from the values column and click OK.

c. Click Next.

4. Define Stored Procedure Page

a. Select sub_PO_Delete_OAI_V1 for the SQL code for field. The code
displays in the box.

b. Add the following code:

PROCEDURE sub_PO_Delete_OAI_V1(POID IN NUMBER,
 POITEM IN LONG,
 PRICE IN LONG,
 QUANTITY IN NUMBER,
 LAST_UPDATED IN DATE)
AS
 v_poid NUMBER :=poid;
BEGIN
 DELETE FROM WHERE PO v_poid = poid;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN NULL;

END sub_PO_Update_OAI_V1;

c. Click Finish.
A-26 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
AQAPP Application Subscriptions
The AQAPP subscribes to the PO_Cancel event.

1. Select an Event Page

a. Enter information in the following fields:

* Application—Select AQAPP.

* Message Type—Select AQAPP.

b. Select PO_Cancel and click Next.

2. Define Application View Page

a. Import attributes from the common view and click Next.

3. Define Mapping Page

a. Define a new mapping:

* Click New and map the following:

Id Copyfields Id

* Click OK.

b. Click Finish.
Integration Scenario A-27

Implementing the Scenario
Create Content Based Routing
When an event is published, it is automatically routed to any subscriber to that
event by default. If the routing of an event needs to be based on a value in the
payload (message or message header) then Content Based Routing is required. in
this scenario all changes to the purchased orders must be approved and therefore
must be routed to Oracle Workflow to apply our business logic.

The logic to be applied for the Events PO_Insert, PO_Update & PO_Delete is:

If the source application is AQAPP then route to destination application
WORKFLOW. The Wizard steps are:

■ Source Page: Select OAI_Header.SendingApplication

■ Chose Operator Page: Select =

■ Chose Value Page: Enter AQAPP

■ Addition Condition Page: Select Radio Button Complete & press Finished

■ Destination Page: Select WORKFLOW

If the source application is WORKFLOW, then route to destination application
DBAPP. The Wizard steps are:

■ Source Page: Select OAI_Header.SendingApplication

■ Choose Operator Page: Select =

■ Chose Value Page: Enter WORKFLOW

■ Addition Condition Page: Select Radio Button Complete & press Finished

■ Destination Page: Select DBAPP

Repeat for events: PO_Update and PO_Delete
A-28 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Figure A–13 Completed Content Routing in iStudio
Integration Scenario A-29

Implementing the Scenario
Create an Oracle Workflow Process Bundle
A process bundle enables related business processes to be grouped and transferred
to the Oracle Workflow environment where user-defined business logic is applied.

Each business process enables related publish, subscribe, invoke, and implement
activities to be grouped and placed in the Oracle Workflow Business Event System.

Step 1 Create a Process Bundle
The following steps describe creating the PO process bundle using iStudio:

1. From the project tree, expand the Workflow node and drill down to Process
Bundle.

2. Right click on Business Processes and select New. The Create Process Bundle
dialog displays.

3. Enter PO in the Process Bundle Name field and click OK.

Step 2 Create Business Process
The following steps describe creating the PO business process using iStudio:

1. Expand the Process Bundle node on the project tree and drill down to Business
Processes.

2. Right click on Business Processes and select New. The Create Business Process
dialog displays.

3. Enter PO in the Business Process Name field and click OK.

Step 3 Create the Subscribe and Publish Activities
The Oracle Workflow business process uses the common view therefore,
transformation and mapping is not required. The following lists the types of
activities:

■ Subscribe—Oracle Workflow receives a message from Oracle9iAS
InterConnect.

■ Publish—Oracle Workflow sends a message to Oracle9iAS InterConnect.

■ Invoke—Oracle Workflow sends a request message to Oracle9iAS InterConnect
and receives a reply.

■ Implement—Oracle Workflow receives a request from Oracle9iAS InterConnect
and sends a reply.
A-30 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
In this scenario, the PO_Insert, PO_Update, and PO_Delete messages are routed
to Oracle Workflow to apply business logic. Based on this logic, messages are either
sent to the Order Fulfillment Application or the PO_Cancel message is sent to the
Legacy Application. Oracle Workflow must:

■ Subscribe to PO_Insert and publish PO_Insert.

■ Subscribe to PO_Update and publish PO_Update.

■ Subscribe to PO_Delete and publish PO_Delete.

■ Publish PO_Cancel.

Step 4 Create Subscribe Activity: PO_Insert, PO_Update, and PO_Delete
The following steps describe creating the subscribe activity using iStudio:

1. From the project tree, expand the Workflow node and drill down to Business
Processes.

2. Right click on PO business process and select New Subscribe Activity. A right
click on any item displays a pop-up box.

3. Select Event PO_Insert and click OK.

Repeat these steps for the PO_Update and PO_Delete events, substituting the
correct values where necessary.

Step 5 Create Publish Activity: PO_Insert, PO_Update, PO_Delete, and PO_
Cancel
The following steps describe creating the publish activity using iStudio:

1. From the project tree, expand the Workflow node and drill down to Business
Processes.

2. Right click on PO business process and select New Publish Activity. A right
click on any item displays a pop-up box.

3. Select Event PO_Insert and click OK.

Repeat these steps for the PO_Update, PO_Delete, and PO_Cancel events,
substituting the correct values where necessary. The subscribe and publish events
appear in the Design Object Navigator under the PO node as shown in Figure A–14.
Integration Scenario A-31

Implementing the Scenario
Figure A–14 Subscribe and Publish Activities in iStudio
A-32 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Deploy the Process Bundle to Oracle Workflow
Deploying the Oracle Workflow process bundle accomplishes the following:

■ Places the event definitions in the Oracle Workflow Business Event System.

■ Creates a default Oracle Workflow file (.wft).

■ Launches the Oracle Workflow Builder and Monitor.

The following steps describe deploying the process bundle to Oracle Workflow:

1. Right click the Workflow node on the Deploy tab in iStudio and select Deploy.
The Deploy dialog displays.

2. Select Event Definitions to Workflow Business Event System, then Process
Definitions for File in the Deploy to Workflow box and click OK. The Workflow
BES Login dialog displays.

3. Log in to Oracle Workflow using the correct username, password, and URL.
Click OK. The Deploy dialog displays.

4. Enter a file name for the Oracle Workflow file such as InterConnect_
Demo.wft in the File Name field and click Open. Oracle Workflow is started
with InterConnect_Demo.

See Also: Chapter 7, "Using Oracle Workflow"
Integration Scenario A-33

Implementing the Scenario
Figure A–15 Completed Deployment in Oracle Workflow
A-34 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
Creating Objects in Oracle Workflow for Modeling
Lets’ review the original requirement.

"An administrator must approve all changes such as insert, update, & delete before
they are applied to the Order Fulfillment System. If a change is approved, it is sent
to the Order Fulfillment System. If a change is rejected, then a cancellation
notification is sent back the Legacy system."

This Business Logic can be implemented in Oracle Workflow. The Oracle Workflow
components require are:

■ An Item Type equivalent to a Project

■ An Attribute An object to hold the message in the event

■ A Process To model the Business Logic

■ Events For the modeling in the process.

■ A Notification To notify the administrator in the Oracle Workflow Monitor.

Components transferred from iStudio.

■ Item Type: OAI Process Bundle: PO

■ Attribute: OAI Message

■ Process: OAI Business Process: PO

■ Events:

■ Publish Purchase_Order.PO_Cancel

■ Publish Purchase_Order.PO_Insert

■ Publish Purchase_Order.PO_Update

■ Publish Purchase_Order.PO_Delete

■ Subscribe Purchase_Order.PO_Insert

■ Subscribe Purchase_Order.PO_Update

■ Subscribe Purchase_Order.PO_Delete

Oracle Workflow components are required to create a Notification.

Message
The message a notification activity will send.
Integration Scenario A-35

Implementing the Scenario
Lookup Type
A static list of values that can be referenced various object. For example a message
attribute can reference a lookup type as a means of providing a list of possible
responses to the performer of a notification.

Notification
When the workflow engine reaches a notification activity, it issues a Send() API call
to the Notification System to send the message to an assigned performer. When a
performer responds to a notification activity, the Notification System processes the
response and informs the workflow engine that the notification activity is complete.

What Oracle Workflow provides.
Oracle Workflow has a set of pre-defined item types with standard functionality
The Standard item type contains generic activities that can be copied in a users item
type. In this scenario we will be using the Lookup Type Approval.

Copy Lookup Type (Approval)
As described, the user must create a Oracle Workflow Notification. The notification
has two dependent objects, A lookup Type and a Message. The Lookup Type
(Approval) can be copied from the standard item type.

Create an Oracle Workflow Message
The following steps describe creating a new Oracle Workflow message called
Insert_Message

1. In the Object Navigator right click on the Message Node and select New to
launch the property sheet. In each tab add the following entries:

2. Message Tab

■ Internal Name: Insert_Message

■ Display Name: Insert Message

■ Description: Insert Message

3. Body Tab:

■ Subject: Insert Message

■ Text Body: A record has been Inserted in the Purchase Order Table.
A-36 Oracle9iAS InterConnect User’s Guide

Implementing the Scenario
4. Result Tab:

■ Display Name: Insert_Message

■ Description: Insert_Message

■ Lookup Type: Approval (From Lookup Type)

5. Click OK

Using the default Copy and Paste functionality create the following messages using
message Insert_Message as the template:

■ Update_Message—Repeat the above steps and use the same setting, changing
all references to insert to update.

■ Delete_Message—Repeat the above steps and use the same setting, changing all
references to insert to Delete.

Create an Oracle Workflow Notification
The following steps describe creating a new Oracle Workflow Notification.

1. In the Object Navigator right click on the Notification Node and select New to
launch the property sheet. In each tab add the following entries:

2. Activity Tab:

■ Internal Name:Insert_Notification

■ Display Name: Insert_Notification

■ Description: Insert_Notification

■ Message: Insert_Message (Created previous step)

■ Result Type: Approval (From Lookup Type)

3. Click OK

Using the default Copy and Paste functionality create the following notifications
using notification Insert_Notification as the template:

■ Update_Notification—Repeat the above steps and use the same setting,
changing all references to insert to update.

■ Delete_Notification—Repeat the above steps and use the same setting,
changing all references to insert to delete.
Integration Scenario A-37

Implementing the Scenario
Figure A–16 Completed Oracle Workflow Notifications
A-38 Oracle9iAS InterConnect User’s Guide

Modeling Business Logic in Oracle Workflow
Modeling Business Logic in Oracle Workflow
Now that all of the required objects have been created, the business logic can be
modeled. The following steps describe this process.

1. In the Oracle Workflow Object Navigator, expand the OAI Process Bundle: PO
item type.

2. Expand the Processes node.

3. Right click on OAI Business Process: PO and select Process Details.

Another way to display the process details is to double-click on OAI Business
Process: PO.

4. Drag and drop the following from the Oracle Workflow Object Navigator to the
Oracle Workflow Workspace:

■ Insert_Notification

■ Update_Notification

■ Delete_Notification

5. Rearrange the items as shown in Oracle Workflow Builder.
Integration Scenario A-39

Modeling Business Logic in Oracle Workflow
Figure A–17 Items Arranged in Oracle Workflow Builder

6. The subscribe events are the entry point into this process, therefore, the
Start/End Property for each event must be edited and set to START. To launch
the property sheet of each object by Double clicking on the object. The
Start/End property is Under the Node tab.

■ Subscribe event Purchase_Order.PO_Insert

■ Subscribe event Purchase_Order.PO_Update

■ Subscribe event Purchase_Order.PO_Delete

7. The publish events are the exit point from this process, therefore, the Start/End
Property for each event must be edited and set to END. To launch the property
sheet of each object Double click on the object. The Start/End property is under
the Node tab.

■ Publish Event Purchase_Order.PO_Insert

■ Publish Event Purchase_Order.PO_Update

■ Publish Event Purchase_Order.PO_Delete

■ Publish Event Purchase_Order.PO_Cancel
A-40 Oracle9iAS InterConnect User’s Guide

Modeling Business Logic in Oracle Workflow
8. The notifications must be assignment to a performer in order for that person to
receive the notification in the Oracle Workflow Monitor. The Performer value
property should be set to SYSADMIN for each notification. To launch the
property sheet of each object by Double clicking on the object. The Performer
Value field is under the Node tab.

■ Notification: Insert_Notification

■ Notification: Update_Notification

■ Notification: Delete_Notification

9. Mapping lines need to be drawn between the object to define the process flow.
Line are drawn by right click and drag fro one object to another

a. Draw a mapping line from Subscribe Purchase_Order.PO_Insert to Insert_
Notification.

b. Draw a mapping line from Insert_Notification to Publish Purchase_
Order.PO_Insert and select Approve from the pop-up that will
automatically launch when the line is drawn.

c. Draw a mapping line from Insert_Notification to Publish Purchase_
Order.PO_Cancel and select Reject from the pop-up that will automatically
launch when the line is drawn.

d. Repeat steps for Update & Delete objects.

10. Save work to the database.
Integration Scenario A-41

Modeling Business Logic in Oracle Workflow
Figure A–18 Completed Business Process in Oracle Workflow Builder
A-42 Oracle9iAS InterConnect User’s Guide

Deployment
Deployment
The Oracle Workflow item type OAI Process Bundle:PO is validated when saved to
the database. The next step is to deploy the Oracle9iAS InterConnect objects.

Setting Queues
The AQAPP application in iStudio corresponds to the Advanced Queuing adapter
that communicates with the legacy application. The legacy application, through a
database trigger, places inserted, updated, and deleted records onto a queue using
Oracle Advanced Queuing. To communicate to and from the Oracle9iAS
InterConnect environment, the adapter must be configured to send and receive on
those external queues.

The following steps describe this task.

1. On the Deploy tab in iStudio, expand the Applications tree and drill down to
AQAPP.

2. Expand the AQAPP node and drill down to the Routing node.

3. Expand the Routing node and select Application Queues. The Application
Queues property sheet displays on the right side of the iStudio window.

4. Select Edit from the Edit menu on the menu bar. This will launch the Edit
Application Queue dialog

5. Add the application Queue name to each event:

6. Click OK.

Queue Name Event

INBOUND_QUEUE PO_Cancel

OUTBOUND_QUEUE PO_Insert, PO_Update, and PO_Delete
Integration Scenario A-43

Deployment
Figure A–19 Application Queues in iStudio

Pushing Metadata
Each adapter has different cache settings to minimize communication to the
repository and to improve performance. Pushing metadata synchronizes the
adapter and repository metadata. The following steps describe this task:

1. Select File from the menu bar, then Push Metadata. The Push Metadata dialog
displays.

2. Select the applications to which to push metadata and click OK.

Exporting and Installing Code
Depending on the adapter type, there is code that must be exported to a file and
installed in the target application database. The following steps describe exporting
the code using the Export Application dialog in iStudio.

1. Select File from the menu bar, then select Export. The Export Application dialog
displays.

2. Select the application(s) to export code.

3. Enter the file prefix in the File Prefix field and click OK.

The resulting text files are a SQL*Plus script that is executed on the target schema.

See Also: "Exporting Stored Procedures" on page 5-18
A-44 Oracle9iAS InterConnect User’s Guide

Deployment
Example
The following example helps to explain the exporting and installing code task. This
example is based on the following:

■ Adapter type—Database Adapter

■ iStudio application—DBAPP

■ Subscribe event—PO_Delete

PROCEDURE sub_PO_Delete_OAI_V1 (POID IN NUMBER,
 POITEM IN LONG,
 PRICE IN LONG,
 QUANTITY IN NUMBER,
 LAST_UPDATED IN DATE,)
AS
 v_poid NUMBER :=poid;
BEGIN DELETE FROM PO WHERE v_poid = poid;
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN NULL;

END sub_PO_Delete_OAI_V1;
Integration Scenario A-45

Conclusion
Conclusion
The final step in this scenario is to test the integration.

■ A record should be inserted into the Legacy System.

1. The legacy system’s database trigger enqueues the record onto its
OUTBOUND_QUEUE.

2. Oracle9iAS InterConnect received the message, performs transformations,
converts data to a common view and routes the message to Oracle Workflow.

3. Oracle Workflow applies the business logic and issues a notification.

4. The SYSADMIN:

■ Logs on to Oracle Workflow Monitor

■ Receives the Insert_notification.

■ Approves the record.

5. Oracle9iAS InterConnect received the message, performs transformations, cross
references the primary keys, converts data to the application View, and routes
the message to Order Fulfillment System

6. The deployed code receives the message and inserts the record into the Order
Fulfillment system

7. Oracle Enterprise Manager

■ The inserted record can be examined.

■ Integration throughput can be monitored.

This process should be repeated for Update & Delete.
A-46 Oracle9iAS InterConnect User’s Guide

Conclusion
Figure A–20 Oracle Workflow Home Page
Integration Scenario A-47

Conclusion
Figure A–21 Oracle Workflow Worklist and Notification Details
A-48 Oracle9iAS InterConnect User’s Guide

Using the Data Definition Description Lang
B

Using the Data Definition Description

Language

This appendix describes how to use the data definition description language (D3L)
in native format message-to-application view and application view-to-native format
message translations.

This appendix contains these topics:

■ About D3L

■ Native Format Message and D3L File Example

■ D3L File Structure

■ D3L Integration with Oracle9iAS InterConnect Technology Adapters

■ Installing D3L

■ Configuring D3L

■ D3L Use Case

■ Additional D3L Sample Files and DTD
uage B-1

About D3L
B-2 Oracle9iAS InterConnect User Guide

About D3L
This section contains these topics:

■ What Is D3L?

■ When Is D3L Used?

What Is D3L?
D3L is an XML-based message description language that describes the structure
that an application’s native, non-XML format message (known also as its native
view) must follow to communicate with Oracle9iAS InterConnect. Oracle
Corporation provides several transport adapters (known as Oracle9iAS
InterConnect Technology Adapters) that interact with the D3L message description
language:

■ FTP

■ HTTP(S)

■ MQ Series

■ SMTP

Oracle9iAS InterConnect Technology Adapters perform the following tasks:

■ Validate the D3L message description (XML) files during runtime initialization

■ Use the D3L translation engine (subcomponent of the bridge) to translate
messages from:

■ Native format message to application view

■ Application view to native format message

■ Transport message payload data between a participating application and
Oracle9iAS InterConnect

Note: Native format messages already in XML format are not
translated by Oracle9iAS InterConnect Technology Adapters if the
ota.type parameter is set to XML in the adapter.ini file.

See Also: "D3L Integration with Oracle9iAS InterConnect
Technology Adapters" on page B-14 for detailed information on
how D3L is integrated with Oracle9iAS InterConnect Technology
Adapters

About D3L
When Is D3L Used?
Not all applications use XML as their native message payload format. Applications
also use other native formats, which are best described as structured records of
bytes and/or characters. For these native formats to be successfully translated into a
format understood by other applications, the content of their messages must follow
a predefined, structured set of rules. This structured format can then be translated
into an application view, transformed into a common view, and understood by
other applications.

D3L provides both a predefined, structured set of rules and translation capabilities
for native format messages. Specifically, D3L provides:

■ An XML-based message description language that describes the contents of
native format messages

■ A translation engine that uses the instructions defined in the D3L file to
translate the native format message contents into an application view, or vice
versa

The D3L descriptions must comply with a syntax defined by the D3L document
type definition (DTD). D3L enables you to describe the record layout of binary,
string, structured, and sequence data. Use D3L only when the number of fields in
the underlying native format message is fixed and known. D3L is not suitable for:

■ Descriptions of arbitrarily-structured data (like regular XML)

■ Name-value pair data

■ Conditional data structures, which require token look-ahead to parse.

See Also:

■ "Native Format Message and D3L File Example" on page B-4

■ "Supported D3L Data Types" on page B-11

■ "D3L DTD" on page B-58
Using the Data Definition Description Language B-3

Native Format Message and D3L File Example
Native Format Message and D3L File Example
This section provides an example of how the contents of a native format message
are:

■ Described in a D3L file

■ Configured with the required D3L file

Satisfying both these requirements enables the native format message to be
successfully translated. This section contains the following topics:

■ Native Format Message Contents Description in a D3L File

■ Native Format Message Configuration with a D3L File

Native Format Message Contents Description in a D3L File
This example shows an application’s native format message (named price) that
contains payload data for updating the price of personal computer model number
2468 to 199.99. The native message uses the following format to describe this
payload data:

message ::= <action> <model> <price>

The payload data must strictly follow the structure defined in a D3L file (for this
example, price.xml) for the D3L translation engine (subcomponent of the bridge)
to successfully translate it into an application view. Figure B–1 shows how a D3L
file (price.xml) defines the structure that the native format message price must
follow to successfully define the three preceding elements of payload data.

Where... Is...

<action> UPDATE_PRICE

<model> 2468

<price> 199.99
B-4 Oracle9iAS InterConnect User Guide

Native Format Message and D3L File Example
Figure B–1 Native Format Message Payload Data and D3L File Syntax

All three payload data elements are defined as strings with different delimiters for
separating their data.

Native Format Message Configuration with a D3L File
When the D3L translation engine receives a native format message (for example,
price), it must determine the exact D3L file to use to verify the native format
message contents (for example, price.xml). This section describes the methods for
configuring the correct D3L file with the native format message:

■ adapter.ini Parameter File Setting

■ Message Header Attributes

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d31.dtd">
<message name="changePrice" object="Product"
 type="priceCommand">
<struct id="priceCommand">
 <field name="action"><limstring delimiter="*"/>
 </field>
 <field name="model"><limstring delimiter=" "/>
 </field>
 <field name="price"><limstring delimiter="|"/>
 </field>
</struct>

D3L File price.xml Syntax:

<action>message ::=Native Format Message: <model> <price>

"*UPDATE_PRICE*Native Format Message Payload Data: 2468 |199.99|"
Using the Data Definition Description Language B-5

Native Format Message and D3L File Example
adapter.ini Parameter File Setting
The ota.d3ls parameter in the %ORACLE_
HOME%\oai\9.0.2\adapters\application\adapter.ini file enables you to
define the D3L file to use with the native format message. For example:

ota.d3ls=price.xml

This setting enables price.xml in Figure B–1 to be configured with the native
format message price. When the D3L translation engine receives the native format
message from the bridge, it retrieves the correct D3L file based on this parameter
setting. Multiple D3L files can also be defined, for example:

ota.d3ls=price.xml,emp.xml,booking.xml

The D3L translation engine compares the data structure in the native format
message to each D3L file until it finds the correct one to use for translation, unless
one of the methods described in "Message Header Attributes" is used.

Message Header Attributes
The D3L file includes message header attributes that guide the D3L engine in
choosing the correct D3L file for translating a native format message to an
application view. The values for these message header attributes match with the
same settings in the native format message.

Message header attribute values override the approach of comparing each D3L file
defined with the ota.d3ls parameter in the adapter.ini file with a native
format message.

Two message header attribute setting methods are available:

■ Name/Value Pair Message Header Attributes

■ Magic Value Message Header Attribute

Both methods enable the D3L translation engine to use the correct D3L file for
translation after receiving the native format message.

When the correct D3L file is selected (and a successful translation has taken place),
the <message> element attributes name and object in the D3L file define the
Oracle9iAS InterConnect event name and business object, respectively.

Name/Value Pair Message Header Attributes Oracle9iAS InterConnect Technology
Adapters such as the HTTP adapter make their protocol level transport properties
available to the D3L translation engine, including custom properties added by a
sending application (for example, an HTTP client). The D3L file <message>
element enables the user to specify two attributes, header and value, that match
the protocol level headers in a received native format message.
B-6 Oracle9iAS InterConnect User Guide

Native Format Message and D3L File Example
For example, a third-party application uses the custom transport header
D3L-Header to communicate to the D3L translation engine which D3L file to use
to translate an incoming native format message. The following steps must be
performed:

■ Set the D3L-Header parameter in the transport message header to a value that
matches the value attribute setting of the <message> element in the D3L file.

■ Set the header attribute of the <message> element in the D3L file to
D3L-Header to match the D3L-Header parameter name in the transport
message header.

Figure B–2 provides an example using the HTTP adapter where D3L-Header and
price are the header name and header value, respectively. Each are used to match
a native format message with the correct D3L file:

Figure B–2 Name/Value Pair Message Header Attributes

The D3L translation engine retrieves the correct D3L file based on these settings.

Magic Value Message Header Attribute You can set the magic attribute of the
<message> element in the D3L file to match the first n bytes of payload data in a
native format message. This feature enables you to define the D3L file to use with
the native format message. When a native format message is received by the D3L
translation engine, the magic values of all D3L files are compared against the first n
bytes of the native format message. The magic values must be long enough to be
unique across all registered D3Ls for a given adapter instance.

POST /oai/servlet/transportServlet HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: acme.com:8888
Content-Length: 28
D3L-Header: price

Transport Message Header of Native Format Message:

<message name="modify" object="Employee" type="modifyCommand"
 header="D3L-Header" value="price">

Name/Value Pair Message Header Attributes of D3L File:
Using the Data Definition Description Language B-7

Native Format Message and D3L File Example
Figure B–3 provides an example where *UPDATE_PRICE is the value that
configures the native format message with the correct D3L file:

Figure B–3 Magic Value Message Header Attribute

The D3L translation engine retrieves the correct D3L file based on these settings.

See Also:

■ "Native Format Message to Common View Incoming Message
Translations" on page B-15 for additional information on
message header attributes

■ "Additional D3L Sample Files and DTD" on page B-52 for
additional D3L file examples

POST /oai/servlet/transportServlet HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: acme.com:8888
Content-Length: 28
D3L-Header: price

"*UPDATE_PRICE* 2468 |199.99|"

Payload Data of Native Format Message:

<message name="modify" object="Employee" type="modifyCommand"
 magic="*UPDATE_PRICE">

D3L File Magic Value Message Header Attribute:
B-8 Oracle9iAS InterConnect User Guide

D3L File Structure
D3L File Structure
This section describes the contents of a sample D3L file named book_reply.xml.

1 <?xml version="1.0" encoding="US-ASCII"?>
2 <!DOCTYPE message SYSTEM "d3l.dtd">
3 <message name="replyFlight" type="BookingReplyType" object="Booking"
4 header="D3L-Header" value="replyOptions">
5 <unsigned4 id="u4" />
6 <unsigned2 id="u2" />
7 <struct id="DateTimeRecord">
8 <field name="DateInfo">
9 <date format="MMDDYY">
10 <pfxstring id="datstr" length="u4" />
11 </date>
12 </field>
13 <field name="TimeHour"><limstring delimiter="*" /></field>
14 <field name="TimeMinute"><limstring delimiter="*" /></field>
15 </struct>
16 <struct id="ItinRecord">
17 <field name="DepartureTime"><typeref type="DateTimeRecord" /></field>
18 <field name="ArrivalTime"><typeref type="DateTimeRecord" /></field>
19 </struct>
20 <pfxarray id="ItinArray" length="u2">
21 <typeref type="ItinRecord" />
22 </pfxarray>
23 <struct id="BookingReplyType">
24 <field name="AirportCodeFrom"><limstring delimiter="*" /></field>
25 <field name="AirportCodeTo"><limstring delimiter="*" /></field>
26 <field name="Itineraries"><typeref type="ItinArray" /></field>
27 </struct>
28 </message>

Lines 1 through 2
These lines define standard information, such as the Prolog and Document Type
Declaration (DTD) that must always be these values (for example, specifying
d3l.dtd as the DTD).
Using the Data Definition Description Language B-9

D3L File Structure
Lines 3 through 4
These lines define the following:

■ Message element attribute name (value replyFlight), which must
correspond to the associated Oracle9iAS InterConnect application view event
name defined in iStudio. The D3L file can also be imported in iStudio when
defining the message attributes of an event (the name of which must match the
name attribute of the D3L <message> element).

■ Message element attribute type (value BookingReplyType) names a
structure that is defined in subsequent lines of this D3L file.

■ Message element attribute object (value Booking), which must match the
Oracle9iAS InterConnect business object defined in iStudio.

■ Message element attribute header (value D3L-Header), which is identified in
the set of protocol level transport message headers associated with a native
format message.

■ Message element attribute value (value replyOptions), which must match
the actual value of the corresponding protocol level transport message header
(defined through the header attribute).

Lines 5 through 6
These lines define an unsigned, four-byte integer and unsigned, two-byte integer.
These data type declarations are named u4 and u2, respectively, so they can be
referred to later.

Lines 7 through 15
These lines define the fields of a structure named DateTimeRecord:

■ Field DateInfo defines a date format of MMDDYY and length prefixed by an
unsigned four-byte integer.

■ Field TimeHour defines a string delimited by the character *.

■ Field TimeMinute defines a string delimited by the character *.

See Also:

■ "Creating Business Objects" on page 3-3

■ "Creating Events" on page 4-3

■ "Name/Value Pair Message Header Attributes" on page B-6

■ "Task 6: Import a D3L File in iStudio" on page B-23
B-10 Oracle9iAS InterConnect User Guide

D3L File Structure
Lines 16 through 19
These lines define the fields of the structure named ItinRecord:

■ Fields DepartureTime and ArrivalTime both consist of the
DataTimeRecord structure defined in "Lines 7 through 15" on page B-10.

Lines 20 through 22
These lines define a length-prefixed array named InitArray, where each array
element is of type ItinRecord.

Lines 23 through 28
These lines define the fields of the message structure BookingReplyType (which
satisfies the BookingReplyType type declaration in the message document
element, as shown in "Lines 3 through 4"):

■ Field AirportCodeFrom is a string delimited by the character *.

■ Field AirportCodeTo is a string delimited by the character *.

■ Field Itineraries is a field of type ItinArray (which is an array of
ItinRecord).

Supported D3L Data Types
D3L supports use of the following data types and declarations in a D3L file:

■ Signed or Unsigned Integers

■ Floating Point Numbers

■ Strings

■ Structures

■ Sequences

■ Data Padding

Signed or Unsigned Integers
D3L supports signed or unsigned integers that can be one, two, four, or eights octets
in size, and in big or little endian octet ordering.
Using the Data Definition Description Language B-11

D3L File Structure
Floating Point Numbers
D3L supports single and double-precision, IEEE format, floating-point data. Single
precision floating point numbers (known as floats) take up four bytes/octets,
whereas double precision floating point numbers (known as doubles) take up eight
bytes/octets.

Strings
D3L supports the following string types:

■ Constant length strings (without delimiters, and with optional padding to fill
out empty spaces)

■ Delimited strings (can be delimited by an arbitrary delimiter character)

■ Length-prefixed strings (where the length prefix is a numeric type). Numeric
types are one of the binary integer types described in "Signed or Unsigned
Integers" on page B-11 or are a number stored as a string.

■ Four date formats: MMDDYY, DDMMYY, MMDDYYYY, DDMMYYYY, where the
information is stored as a string in one of these formats with any separator
character between month, date, and year (for example, 12!24=01).

■ Numbers not defined as binary data, but as strings. Any one of the three string
formats can define a number (either an integer or a floating-point entity). In
iStudio, a D3L field of type number is handled as a double.

Structures
D3L supports structured types; that is, ordered records containing other data types
(predefined or user defined). Types can be nested to arbitrary depth. This means
you can use structures of sequences of structures of sequences [...] to any finite
depth. Recursive, self referencing, data structures, however, are not supported in
D3L.

All data fields in a message format description must be named. These names are
used as Oracle9iAS InterConnect message attribute names.
B-12 Oracle9iAS InterConnect User Guide

D3L File Structure
Sequences
D3L supports sequences (for example, arrays) of various types. These include:

■ Delimited arrays (with arbitrary separator and terminator characters)

■ Length-prefixed arrays (where the length is one of the numeric types)

■ Fixed-length arrays

■ Implicit-length arrays (This data type uses all remaining data in the native
format message to the end of the buffer.)

The data being sequenced can be any other D3L type (predefined or user defined).

Data Padding
D3L supports data padding. Pads are unnamed gaps in a native format message
that satisfy alignment constraints of the underlying native system. Pads are
discarded in the Oracle9iAS InterConnect application view message.

The following D3L example defines a number as a left-aligned string, right padded
with blanks to a field width of 10:

<field name="Quantity">
 <number>
 <padstring length="10" padchar=' ' padstyle="tail" />
</number>

The following native byte (character) stream satisfies this format:

9876.5____
Using the Data Definition Description Language B-13

D3L Integration with Oracle9iAS InterConnect Technology Adapters
D3L Integration with Oracle9iAS InterConnect Technology Adapters
This section provides information on how the D3L files and D3L translation engine
are integrated in runtime events and message translations with the Oracle9iAS
InterConnect Technology Adapter agent and bridge subcomponents. This section
contains these topics:

■ Runtime Initialization

■ Native Format Message to Common View Incoming Message Translations

■ Common View to Native Format Message Outgoing Messages Translations

Runtime Initialization
The Oracle9iAS InterConnect Technology Adapter agent reads .ini files (such as
adapter.ini) at runtime to access each Oracle9iAS InterConnect Technology
Adapter’s configuration information. The Oracle9iAS InterConnect Technology
Adapter bridge initializes itself and the common transport layer with configuration
information provided by the Oracle9iAS InterConnect Technology Adapter agent.
At the completion of a successful initialization, the Oracle9iAS InterConnect
Technology Adapter bridge knows:

■ The Oracle9iAS InterConnect application name and its default endpoint
(message destination)

■ The various Oracle9iAS InterConnect events to be handled by the Oracle9iAS
InterConnect Technology Adapter bridge

■ The D3L files that describe each of these events

■ The D3L files that are accessible and valid. If a file is invalid, the Oracle9iAS
InterConnect Technology Adapter cannot start.

See Also:

■ Chapter 1, "Getting Started with Oracle9iAS InterConnect" for
additional information on bridges and agents

■ Chapter 2, "Using iStudio" for additional information about
events
B-14 Oracle9iAS InterConnect User Guide

D3L Integration with Oracle9iAS InterConnect Technology Adapters
Native Format Message to Common View Incoming Message Translations
When the Oracle9iAS InterConnect Technology Adapter common transport layer
detects an incoming message from an application, it receives the message in its
native format. The common transport layer passes it to the Oracle9iAS InterConnect
Technology Adapter bridge. The bridge:

■ Uses the D3L translation engine to translate the native format message into an
application view (an Oracle9iAS InterConnect message object) using the D3L
file with which it is configured.

■ Raises an application view event

The agent transforms the application view event into a common view event and
passes it on for further routing and processing. Table B–1 describes the data flow
sequence if D3L message header attributes are used.

Table B–1 Message Header Attributes

If The... Then...

Name/value
pair message
header
attributes are
used

If the incoming native event:

■ Contains transport message headers/properties (made available to the
bridge by the transport layer)

■ Has a transport message header parameter name (for example,
D3L-Header) that matches the header attribute of the <message>
element in the D3L file (header="D3L-Header")

■ Has a transport message header value (for example, D3L-Header:
price) that matches the value attribute of the <message> element in
the D3L file (value="price")

the bridge assumes the matching D3L describes the incoming native event.
Any conflicting header and value settings are detected and rejected by the
bridge at initialization time. Oracle9iAS InterConnect Technology Adapter
operations are logged by Oracle9iAS InterConnect logging and tracing APIs
for debugging, performance analysis, and business intelligence functions.

See Also: Figure B–2 on page B-7 for complete syntax examples
Using the Data Definition Description Language B-15

D3L Integration with Oracle9iAS InterConnect Technology Adapters
Magic value
message
header
attribute is
used

If a magic value is:

■ Specified for the D3L file (length = n bytes)

■ The first n bytes of payload data in an incoming native event (for
example, *UPDATE_PRICE) match the magic attribute of the
<message> element in the D3L file (for example, magic="*UPDATE_
PRICE">

the bridge assumes the native event must be processed using the matching
D3L. If multiple D3Ls specify magic values that may match the same native
event, the bridge randomly picks a D3L; this can lead to undesirable bridge
behavior (the resulting application view event raised may not be the correct
one).

See Also: Figure B–3 on page B-8 for complete syntax examples

Table B–1 Message Header Attributes

If The... Then...
B-16 Oracle9iAS InterConnect User Guide

D3L Integration with Oracle9iAS InterConnect Technology Adapters
Figure B–4 shows the data flow sequence.

Figure B–4 Native Format Message to Common View Incoming Messages

See Also:

■ "Message Header Attributes" on page B-6

■ "Task 4: Configure a Native Format Message with a D3L File"
on page B-22

Local
IMAP Server

Remote
FTP Server

Local
HTTP

Servlet

HTTP
Listener

Oracle9iAS
InterConnect
Application

View Message

Oracle9iAS
InterConnect

Native Format Message
(byte stream)

Common
View

Message

Agent

Common
Transport

Bridge

MQSeries
Queue

Manager

D3L
Translation

Engine

Runtime
Repository

Runtime Logs / Traces /
D3L Files / adapter.ini File

(adapter.ini identifies the D3L file
to retrieve that describes the native

format message contents)

Oracle9iAS InterConnect
Technology Adapter

D3L
File

Retrieval
Using the Data Definition Description Language B-17

D3L Integration with Oracle9iAS InterConnect Technology Adapters
Common View to Native Format Message Outgoing Messages Translations
When a common view event is raised, the Oracle9iAS InterConnect Technology
Adapter agent subscribing to the event:

■ Receives the associated message

■ Transforms it to an Oracle9iAS InterConnect message object

■ Hands it to the Oracle9iAS InterConnect Technology Adapter bridge (as an
application view event)

The Oracle9iAS InterConnect Technology Adapter bridge queries the metadata
associated with the event to determine:

■ The D3L file for the D3L translation engine to use to translate the application
view event into a native format message

■ The application to which to send the native format message event. There are
two levels of rules to determine the application endpoint (the destination) of an
Oracle9iAS InterConnect event:

■ If the event contains metadata that specifies an endpoint (note that here, the
metadata itself names the endpoint; the content of the event is not
searched), the bridge uses this endpoint for this event. With the exception of
the MQ Series adapter, all Oracle9iAS InterConnect Technology Adapters
follow this rule.

■ If the message metadata did not specify an endpoint, the bridge uses its
default endpoint (that was specified at installation time, added to the
adapter.ini file, and made available to the bridge during initialization).

All Oracle9iAS InterConnect Technology Adapter operations are logged using the
Oracle9iAS InterConnect logging and tracing APIs for debugging, performance
analysis, and other business intelligence functions.
B-18 Oracle9iAS InterConnect User Guide

D3L Integration with Oracle9iAS InterConnect Technology Adapters
Figure B–5 shows the data flow sequence.

Figure B–5 Common View to Native Format Message Outgoing Messages

Bridge

Local
Firewall /

Proxy

Local
SMTP Server

Remote
FTP Server

MQSeries
Queue

Manager

Remote
HTTP

Servlet

Oracle9iAS InterConnect
Technology Adapter

D3L
Translation

Engine

Agent

Common
Transport Oracle9iAS

InterConnect
Application

View Message

Oracle9iAS
InterConnect

Runtime
Repository

Native Format Message
(byte stream)

Common
View

Message

Runtime Logs / Traces /
D3L Files / adapter.ini File

(adapter.ini identifies the D3L file
to retrieve that describes the native

format message contents)

D3L
File

Retrieval
Using the Data Definition Description Language B-19

Installing D3L
Installing D3L
D3L is automatically installed with Oracle9iAS InterConnect. See the Oracle9i
Application Server Installation Guide for information on installing Oracle9iAS
InterConnect.

Configuring D3L
After installation, perform the following tasks to configure D3L:

■ Task 1: Configure D3L with iStudio

■ Task 2: Create a Native Format Message

■ Task 3: Create a D3L File Describing the Native Format Message

■ Task 4: Configure a Native Format Message with a D3L File

■ Task 5: Configure D3L with Oracle9iAS InterConnect Technology Adapters

■ Task 6: Import a D3L File in iStudio

■ Task 7: Define Metadata Properties with Each Event (Optional)

Task 1: Configure D3L with iStudio
You must define D3L in the browsers.init file. This enables you to import D3L
files as attributes and select D3L as the message type in iStudio.

To integrate D3L with iStudio:

1. Use a text editor to open the %ORACLE_
HOME%\oai\9.0.2\iStudio\browsers.init file.

2. Add the following information:

D3L;oracle.oai.agent.adapter.technology.D3LBrowser;

3. Save your changes and exit the file.

See Also: Your Oracle9iAS InterConnect Technology Adapter
documentation for instructions on installing and configuring the
appropriate adapter to use with D3L

See Also: "Task 6: Import a D3L File in iStudio" on page B-23 for
the locations of D3L functionality in iStudio
B-20 Oracle9iAS InterConnect User Guide

Configuring D3L
Task 2: Create a Native Format Message
1. Create a native format message. The native format is typically predefined by

your third-party application. For example, this native format message updates
the salary of employee number 33201 to 55000:

UPDATE_EMPLOYEE_SALARY 33201 |55000|

Task 3: Create a D3L File Describing the Native Format Message
1. Use a text editor to create a D3L file (for example, named updemp.xml) that

describes the format of the native message. For example, the following D3L file
describes the contents of the native format message created in "Task 2: Create a
Native Format Message".

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d3l.dtd">
<message name="modify" object="Employee" type="modifyCommand"
 header="D3L-Header" value="employee">
 <struct id="modifyCommand">
 <field name="action"><limstring delimiter="*"/></field>
 <field name="EmployeeID"><limstring delimiter=" "/></field>
 <field name="newSalary"><limstring delimiter="|"/></field>
 </struct>
</message>

2. Store the D3L file (updemp.xml) in the %ORACLE_
HOME%\oai\9.0.2\adapters\application directory (for direct access at
deployment time).

Where... Is...

<action> UPDATE_EMPLOYEE_SALARY

<EmployeeID> 33201

<newSalary> 55000

See Also: The following sections for additional examples of D3L
files:

■ Figure B–1 on page B-5

■ Example B–1 on page B-29

■ "Additional D3L Sample Files" on page B-52
Using the Data Definition Description Language B-21

Configuring D3L
Task 4: Configure a Native Format Message with a D3L File
Configure a native format message with the correct D3L file. This enables the D3L
translation engine to use the correct D3L file to verify native format message
contents. For example, the D3L file created in "Task 3: Create a D3L File Describing
the Native Format Message" on page B-21 includes settings for name/value pair
message header attributes:

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d3l.dtd">
<message name="modify" object="Employee" type="modifyCommand"
 header="D3L-Header" value="employee">

These settings can match with the transport message header D3L-Header
parameter name and employee value of a native format message:

POST /oai/servlet/transportServlet HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: acme.com:8888
Content-Length: 38
D3L-Header: employee

Task 5: Configure D3L with Oracle9iAS InterConnect Technology Adapters
Define D3L in the following places in the adapter.ini file. The adapter.ini
file is read by the appropriate Oracle9iAS InterConnect Technology Adapter at
startup.

1. Use a text editor to open the %ORACLE_
HOME%\oai\9.0.2\adapters\application\adapter.ini file.

where application is the name of your application and the value of the
application parameter in the adapter.ini file.

2. Ensure that parameter ota.type is set to the following value:

ota.type=D3L

This defines D3L as the message type for the Oracle9iAS InterConnect
Technology Adapter to handle for both incoming and outgoing messages.

See Also:

■ Figure B–2 on page B-7

■ Table B–1 on page B-15
B-22 Oracle9iAS InterConnect User Guide

Configuring D3L
3. Add the following line to define the D3L files for the bridge and D3L
translation engine to use:

ota.d3ls=updemp.xml

where updemp.xml is an example of the D3L file created in "Task 3: Create a
D3L File Describing the Native Format Message" on page B-21. Each event
handled by the bridge must have its own D3L file. Whenever a new D3L file is
imported in iStudio for use by an application, this parameter must be updated
and the Oracle9iAS InterConnect Technology Adapter restarted.

4. Save your changes and exit the file.

Task 6: Import a D3L File in iStudio
iStudio enables you to import a D3L file for use with the following Oracle9iAS
InterConnect features:

■ Common data types

■ Application data types

■ Published/subscribed events

■ Invoked/implemented procedures

■ Business object events and procedures

When a D3L file is associated with Oracle9iAS InterConnect common data types,
application data types, events, or procedures, an iStudio Oracle9iAS InterConnect
Technology Adapter browser plug-in verifies that the file conforms to the syntax
and semantics of D3L. Table B–2 identifies the tasks and locations in iStudio where
you can import a D3L file as an attribute and select D3L as a message type.
Documentation references that describe how to perform these tasks are also
provided.

Table B–2 D3L Functionality in iStudio

For this D3L Functionality... Do This...

Common Data Type Tasks:

■ Create a common data type that imports a D3L
file as an attribute

See "Creating Common Data
Types" on page 3-3

Application Data Types Tasks:

■ Creating an application data type that imports a
D3L file as an attribute

Select File > New > Application
Data Type from the iStudio menu
Using the Data Definition Description Language B-23

Configuring D3L
Task 7: Define Metadata Properties with Each Event (Optional)
You can associate metadata with each event in iStudio by selecting the Modify
Fields buttons on the Subscribe Wizard - Define Application View dialog. The
Modify Fields button appears after you select D3L as the Message Type on the
preceding Subscribe Wizard - Select an Event dialog. Such metadata is used for
content-based routing, for example, of events at runtime.

Event Tasks:

■ Create an event that imports a D3L file as an
attribute

See "Creating Events" on page 4-3

■ Publish an event that uses D3L as the message
type and imports a D3L file as an attribute

See "Publishing an Event" on
page 4-5

■ Subscribe to an event that uses D3L as the
message type and imports a D3L file as an
attribute

See "Subscribing to an Event" on
page 4-12

Procedure Tasks:

■ Create a procedure that imports a D3L file as an
attribute

See "Creating a Procedure" on
page 5-3

■ Invoke a procedure that uses D3L as the message
type and imports a D3L file as an attribute

See "Invoking a Procedure" on
page 5-5

■ Implement a procedure that uses D3L as the
message type and imports a D3L file as an
attribute

See "Implementing a Procedure" on
page 5-12

Note: D3L functionality with procedures in iStudio is only
available with the MQ Series adapter.

Table B–2 D3L Functionality in iStudio

For this D3L Functionality... Do This...
B-24 Oracle9iAS InterConnect User Guide

Configuring D3L
The following application view event metadata is used by the Oracle9iAS
InterConnect Technology Adapters. The property name is prefixed by ota to
minimize namespace conflicts with user-defined metadata on application view
events. The property name is considered a keyword/reserved name, and is used by
both iStudio and the bridge (and must be kept consistent between these two
components).

Property Name Property Value Type Explanation

ota.d3lPath The D3L filename (string). This
is automatically set. Do not
modify this property.

The path name (relative or
absolute) of the file that contains
the D3L guidelines for this event.

ota.isD3L This value is always true
(boolean) and automatically
set. Do not modify this
property.

A flag indicating that this event is
based on D3L.

ota.send.endpoint The endpoint URL (string).
This is mandatory. For
example:

http://foo.com/servlet/
test

The actual endpoint to which this
message is sent. This setting must
match the type of Oracle9iAS
InterConnect Technology Adapter
that subscribes to the event.

http.sender.*
file.sender.*

See Chapter 2 of the
appropriate Oracle9iAS
InterConnect Technology
Adapter documentation for the
adapter being defined in the
ota.send.endpoint
parameter URL1). This is
optional. For example:

http.sender.timeout=500
0

1 The SMTP adapter does not define any smtp.sender properties. The MQ Series adapter does not
support multiple sending endpoints in this release.

The properties define the
transport layer configuration.

See Also:

■ "Subscribing to an Event" on page 4-12

■ "D3L Use Case" on page B-26
Using the Data Definition Description Language B-25

D3L Use Case
D3L Use Case
This section contains these topics:

■ D3L Use Case Overview

■ Creating Data Type Definitions for Application Views

■ Configuring the aqapp_pub and fileapp_sub Applications in iStudio

■ Installing the Advanced Queuing and FTP Adapters

■ Running the D3L Use Case

■ Using Other Adapters and XML Mode

D3L Use Case Overview
This use case provides an example of a minimal Oracle9iAS InterConnect
configuration and setup that uses D3L. This use case involves two applications
using Oracle9iAS InterConnect Technology Adapters:

■ aqapp_pub, which is based on the Advanced Queuing adapter

■ fileapp_sub, which is based on the FTP adapter running in D3L mode

These applications use a business object called Employee, which has one defined
event called newEmployee.

aqapp_pub publishes the newEmployee event, while fileapp_sub subscribes to
it. Table B–3 describes the attributes (message structure) of the newEmployee
event:

All these attributes are scalar (that is, there are no arrays). This message structure
represents the common view of the newEmployee event. For simplicity, the
application views for the two applications have the exact same structure as the
common view.

Table B–3 Common View Attributes

Attribute Name Attribute Type

EmpName String

EmpDept Integer

EmpHiredate Date

EmpSalary Double
B-26 Oracle9iAS InterConnect User Guide

D3L Use Case
In "Creating Data Type Definitions for Application Views", a DTD file and a D3L file
are created that match the common view attributes shown in Table B–3 on
page B-26. These files are used when the application views for the two applications
are defined.

Creating Data Type Definitions for Application Views
You must create data type definitions for the two application views.

This section contains these topics:

■ Task 1: Create a DTD File for the Advanced Queuing Adapter

■ Task 2: Create a D3L File for the FTP Adapter

Task 1: Create a DTD File for the Advanced Queuing Adapter
The application view for the Advanced Queuing adapter must be defined through a
DTD. The DTD enables the Advanced Queuing adapter to translate a received XML
(text) document into a runtime application view (Java) object. The agent component
of the Advanced Queuing adapter can then transform it to a common view object
before routing it to any application subscribers. A DTD is registered with (imported
to) the application while defining, for example, a publication in iStudio.

1. Create a DTD file that matches the common view message structure shown in
Table B–3 on page B-26:

<!ELEMENT NewEmpRec (EmpName, EmpDept, EmpHiredate, EmpSalary)>
<!ELEMENT EmpName (#PCDATA)>
<!ELEMENT EmpDept (#PCDATA)>
<!ELEMENT EmpHiredate (#PCDATA)>
<!ELEMENT EmpSalary (#PCDATA)>

2. Save this DTD in a text file named newemp.dtd. This file can be saved to any
location.

Note: This use case assumes that you have already installed and
configured Oracle9iAS InterConnect and iStudio.
Using the Data Definition Description Language B-27

D3L Use Case
Task 2: Create a D3L File for the FTP Adapter
When running in D3L mode, the FTP adapter must have its application view
defined by a D3L (XML) file. The D3L file enables a bidirectional translation
between the internal runtime application view (Java) object representation and an
external binary/native format message representation. The D3L file is registered
with (imported to) the application while defining, for example, a subscription in
iStudio.

Assume the external binary native format message of the newEmployee event is as
follows:

message ::= <empname> <empdept> <emphiredate> <empsalary>
empname ::= char[20] // left adjusted string, 20 chars wide, right padded with spaces
empdept ::= byte[2] // unsigned 2-byte integer, little endian
emphiredate ::= '|' + <month> + <anysep> + <day> + <anysep> + <year> + '|'
empsalary ::= '$' <number> '$'

Where... Is...

<month>, <day>, and
<year>

The date format elements MM, DD, and YYYY (all digits)

<anysep> Any single character

<number> Any decimal number using the character "." as a decimal
separator
B-28 Oracle9iAS InterConnect User Guide

D3L Use Case
1. Create a D3L file that describes the structure that the native format message
must follow to communicate with Oracle9iAS InterConnect. The native format
message can be expressed/mapped in the D3L XML definition as shown in
Example B–1:

Example B–1 D3L Sample File

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d3l.dtd">
<message type="NewEmpRec" name="newEmployee" object="Employee">

<!-- TYPE DECLARATIONS -->
<!-- string field 20 chars wide with trailing spaces -->
<padstring id="str20" padchar=" " padstyle="tail" length="20" />
<!-- unsigned 2-byte integer -->
<unsigned2 id="uword" endian="little" />
<!-- date format using pattern MM-DD-YYYY enclosed by '|' -->
<date id="date" format="MMDDYYYY"><limstring delimiter="|" />
</date>
<!-- decimal number format enclosed by '$' -->
<number id="number"><limstring delimiter="$" /></number>

<!-- MESSAGE STRUCTURE -->
<struct id="NewEmpRec">

<field name="EmpName"> <typeref type="str20" /> </field>
<field name="EmpDept"> <typeref type="uword" /> </field>
<field name="EmpHiredate"> <typeref type="date" /> </field>
<field name="EmpSalary"> <typeref type="number" /> </field>

</struct>
</message>

2. Save the D3L definition in Example B–1 to a file called newemp.xml.

3. Include a copy of this file on both the host computer where Oracle9iAS
InterConnect is installed and on the Windows computer where iStudio is
installed.

Note: newemp.xml is also copied to the FTP adapter application
directory in "Task 4: Copy the newemp.xml D3L File to the fileapp_
sub Adapter Directory" on page B-45.
Using the Data Definition Description Language B-29

D3L Use Case
The following example shows a native format message that can be translated by
the newemp.xml D3L file (The ? character means nonprintable):

Pos Bytes (in hexadecimal) Characters
0000000 4a6f 686e 2044 6f65 2020 2020 2020 2020 John Doe
0000020 2020 2020 4000 7c31 322f 3134 2f32 3030 @?|12/14/200
0000040 317c 2435 3432 3230 2e37 3524 1|54220.75

In "Configuring the aqapp_pub and fileapp_sub Applications in iStudio" on
page B-30, you complete all the steps necessary in iStudio, including defining
the common view, defining the application creation, and so on.

Configuring the aqapp_pub and fileapp_sub Applications in iStudio
This section describes the tasks to complete in iStudio.

This section contains these topics:

■ Task 1: Create a New Workspace and New Project

■ Task 2: Create the Employee Business Object

■ Task 3: Create the newEmployee Event

■ Task 4: Create the aqapp_pub Application

■ Task 5: Enable the aqapp_pub Application to Publish the newEmployee Event

■ Task 6: Define the Application Queue for the aqapp_pub Application

■ Task 7: Create the fileapp_sub Application

■ Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee
Event

Where... Is...

EmpName John Doe

EmpDept 64 (hex: 0x40)

EmpHiredate 12/14/2001

EmpSalary 54220.75
B-30 Oracle9iAS InterConnect User Guide

D3L Use Case
Task 1: Create a New Workspace and New Project
1. Start iStudio from the Windows NT Start menu.

When iStudio starts, the last used workspace is automatically loaded. For this
use case, define a new workspace and new Project.

2. Select File > New Workspace.

3. Enter d3l_tests for the Workspace Name and click OK.

4. Select File > New Project.

5. Enter d3l_test_ftp for the Project Name and click OK.

6. Enter the following values in the Hub Information dialog:

Task 2: Create the Employee Business Object
1. Select File > New > Business Object.

2. Enter Employee for the Business Object name and click OK.

For... Enter...

Hub database username oaihub

Hub database password oaihub (the default)

Hub database URL hubDB-host:hubDB-port:hubDB-SID

For example:

dlsun10:1521:V902

Note: The Employee Business Object name matches with the
value for the object attribute of the <message> element in the
D3L file created in "Task 2: Create a D3L File for the FTP Adapter"
on page B-28.
Using the Data Definition Description Language B-31

D3L Use Case
Task 3: Create the newEmployee Event
Define the newEmployee event as described in "D3L Use Case Overview" on
page B-26. Define the (common view) attributes of the event by importing the
newemp.xml D3L file defined in "Task 2: Create a D3L File for the FTP Adapter" on
page B-28. This D3L file defines the same data types as used by the common view.
(See Table B–3 on page B-26.)

1. Select File > New > Event.

2. Select Employee in the Business Object drop down list.

3. Enter newEmployee in the Event Name field.

4. Click Import.

5. Select D3L from the list that appears.

6. Locate and select the newemp.xml D3L file created in "Task 2: Create a D3L File
for the FTP Adapter" on page B-28. The contents of newemp.xml display in the
Attributes fields of the Create Event dialog. If you receive an error while
importing, check if the contents of the newemp.xml file on your iStudio
computer are identical to the text shown in Example B–1 on page B-29.

Note: The newEmployee Event Name matches with the value for
the name attribute of the <message> element in the D3L file
created in "Task 2: Create a D3L File for the FTP Adapter" on
page B-28.
B-32 Oracle9iAS InterConnect User Guide

D3L Use Case
The Create Event dialog looks as follows:

7. Click Save.

Task 4: Create the aqapp_pub Application
Now create the aqapp_pub application, which publishes the defined event
Employee.newEmployee.

1. Select File > New > Application.

2. Enter aqapp_pub for the Application Name and click OK.

See Also: "Creating Events" on page 4-3
Using the Data Definition Description Language B-33

D3L Use Case
Task 5: Enable the aqapp_pub Application to Publish the newEmployee Event
Use the Publish Wizard to publish the newEmployee event.

This section contains these topics:

■ Select the Event to Publish

■ Define the Application View

■ Define the Application View to Common View Mapping

Select the Event to Publish Select the event to publish with the Publish Wizard.

1. Select Event > Publish Event.

The Publish Wizard - Select an Event dialog appears.

2. Select aqapp_pub from the Application drop down list.

3. Select AQ from the Message Type drop down list. This choice means that the
aqapp_pub application is based on the Advanced Queuing adapter.

4. Click the newEmployee event in the Select an Event tree, which is a child of the
Employee business object.

5. Click Next.

The Publish Wizard - Define Application View dialog appears.
B-34 Oracle9iAS InterConnect User Guide

D3L Use Case
Define the Application View Define the application view for the Advanced Queuing
adapter-based application aqapp_pub in this dialog. This view was defined in
"Task 1: Create a DTD File for the Advanced Queuing Adapter" on page B-27 as an
XML DTD, which is a requirement of the Advanced Queuing adapter. Import this
DTD to define the application view.

1. Click the Import button.

2. Select XML from the list that appears.

3. Locate and select the newemp.dtd file, which you created in "Task 1: Create a
DTD File for the Advanced Queuing Adapter" on page B-27.

4. Select NewEmpRec in the Choose Root Element dialog.

5. Click OK.
Using the Data Definition Description Language B-35

D3L Use Case
The Publish Wizard - Define Application View dialog looks as follows:

6. Click Next.

The Publish Wizard - Define Mapping dialog appears.

Define the Application View to Common View Mapping Define the application view to
common view mapping on this dialog.

1. Click the New button.

The Mapping Parameters dialog appears.

2. Expand newEmployee and NewEmpRec (clicking the '+') in the aqapp_pub
View pane.

3. Expand newEmployee and NewEmpRec (clicking the '+') in the Common View
pane.

4. Click the EmpName attribute in both panes.

5. Select CopyFields in the Transformations list.
B-36 Oracle9iAS InterConnect User Guide

D3L Use Case
The Mapping Parameters dialog appears as follows:

6. Click OK.

7. Repeat Steps 4 through 6 for the remaining attributes EmpDept, EmpHiredate,
and EmpSalary.

When complete, the Publish Wizard - Define Mapping dialog appears as
follows:

There is one line for each attribute.

8. Click Finish.
Using the Data Definition Description Language B-37

D3L Use Case
The Publication for application aqapp_pub is complete. The navigation tree
pane on the left hand side of iStudio shows the following structure for the
aqapp_pub application:

Task 6: Define the Application Queue for the aqapp_pub Application
Since the aqapp_pub application publishes the newEmployee event and is based
on the Advanced Queuing adapter, you must define the (Oracle Advanced
Queuing) queue from which the Advanced Queuing adapter reads the event. When
an XML message, which complies with the DTD defined in "Task 1: Create a DTD
File for the Advanced Queuing Adapter" on page B-27, is enqueued onto the
outbound queue, the Advanced Queuing adapter:

■ Picks the message up

■ Translates the message to an application view event

■ Passes the message to the adapter agent for further transformation to the
common view representation

The following steps describe how to choose the queue name. The queue does not
have to exist physically at this point, as you create it in a later step. (See section
"Task 2: Create the Application Queue AQAPP_NEWEMP" on page B-43.)

1. Click the Deploy navigation tab on top of the iStudio navigation tree.

2. Expand the Applications node.

3. Expand the aqapp_pub node.

4. Expand the Routing node.

5. Right click the Application Queues node.
B-38 Oracle9iAS InterConnect User Guide

D3L Use Case
6. Select the Edit option from the list that appears.

The Edit Application Queues dialog appears.

7. Click in the empty field under the Queue Name column header, and enter the
chosen queue name, for example, AQAPP_NEWEMP:

8. Click OK.

Task 7: Create the fileapp_sub Application
Create the fileapp_sub application to subscribe to the defined event
Employee.newEmployee (which is published by aqapp_pub).

1. Select File > New > Application.

2. Enter fileapp_sub for the Application Name and click OK.
Using the Data Definition Description Language B-39

D3L Use Case
Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee
Event
Use the Subscribe Wizard to subscribe to the newEmployee event.

This section contains these topics:

■ Select the Event to which to Subscribe

■ Define the Application View

■ Define the Application View to Common View Mapping

Select the Event to which to Subscribe Select the event to which to subscribe with the
Subscribe Wizard.

1. Select Event > Subscribe Event.

The Subscribe Wizard - Select an Event dialog appears.

2. Select fileapp_sub from the Application drop down list.

3. Select D3L from the Message Type drop down list.

4. Click newEmployee (under Employee) in the Select an Event tree.

5. Click Next.

The Subscribe Wizard - Define Application View dialog appears.

Define the Application View Define the application view for the FTP adapter-based
application fileapp_sub in this dialog. This view was defined in "Task 2: Create a
D3L File for the FTP Adapter" on page B-28 as a D3L file. This is a requirement of
any Oracle9iAS InterConnect Technology Adapter operating in D3L mode. Import
this D3L file to define the application view.

1. Enter Employee as the business object name in the Object Name input field.

2. Click the Import button.

3. Select D3L from the list that appears.

4. Locate and select the newemp.xml file, which you saved in "Task 2: Create a
D3L File for the FTP Adapter" on page B-28.
B-40 Oracle9iAS InterConnect User Guide

D3L Use Case
The contents of newemp.xml display in the Attributes fields:

5. Click Next.

The Publish Wizard - Define Mapping dialog appears.

Define the Application View to Common View Mapping Define the application view to
common view mapping in this dialog.

1. Click the New button.

The Mapping Parameters dialog appears.

2. Expand newEmployee (clicking the '+') in the Common View pane.

3. Expand newEmployee (clicking the '+') in the fileapp_sub View pane.

4. Click the NewEmpRec node in both panes.

5. Select ObjectCopy in the Transformations list and click OK.

Note: You can choose ObjectCopy here because the common
view and application view are based on the same D3L file.
Using the Data Definition Description Language B-41

D3L Use Case
The Subscribe Wizard - Define Mapping dialog appears as follows:

6. Click Finish.

This completes the necessary setup steps in iStudio.

Installing the Advanced Queuing and FTP Adapters
Now that iStudio setup is complete, you must install one instance of each of the two
adapter types. This section contains these topics:

■ Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub

■ Task 2: Create the Application Queue AQAPP_NEWEMP

■ Task 3: Install the FTP Adapter for Application fileapp_sub

■ Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory

■ Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter
Initialization File
B-42 Oracle9iAS InterConnect User Guide

D3L Use Case
Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub
1. See "Advanced Queuing Adapter Installation" in Chapter 2 of the Oracle9iAS

InterConnect Adapter for AQ Installation and User’s Guide for installation
instructions. During installation, enter the following specific values when
prompted:

a. Enter aqapp_pub in the Application Name field of the Oracle9iAS
InterConnect AQ Adapter Configuration dialog.

b. Enter the database connection information to connect to the database
instance on the Application Spoke Database page. The AQAPP_NEWEMP
application queue defined in "Task 6: Define the Application Queue for the
aqapp_pub Application" on page B-38 is created here.

c. Enter the database username and password of the account and schema on
the Spoke Application Database AQ Username dialog, which owns the
Application Queue (AQAPP_NEWEMP). Select the schema name aqapp and
the password aqapp. Leave the Consumer Name field blank, as you are
creating the AQAPP_NEWEMP queue as a single consumer queue.

2. Complete adapter installation by providing appropriate responses when
prompted.

When installation is complete, the new adapter instance is located in the
following directory:

Task 2: Create the Application Queue AQAPP_NEWEMP
To create the Advanced Queuing AQAPP_NEWEMP application queue, you must first
create the queue table, create the queue, and start the queue.

1. Ensure that the database user issuing the commands in this section has been
granted these roles:

RESOURCE,CONNECT,AQ_ADMINISTRATOR_ROLE

2. Use SQL*Plus to log in to the database account specified in Steps 1b and 1c of
"Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub" on
page B-43.

Platform Directory

Windows %ORACLE_HOME%\oai\9.0.2\adapters\aqapp_pub

UNIX $ORACLE_HOME/oai/9.0.2/adapters/aqapp_pub
Using the Data Definition Description Language B-43

D3L Use Case
3. Create the queue table using the same name as the application queue:

SQL> EXECUTE dbms_aqadm.create_queue_table('AQAPP_NEWEMP', 'RAW');

4. Create the queue:

 SQL> EXECUTE dbms_aqadm.create_queue('AQAPP_NEWEMP', 'AQAPP_NEWEMP');

5. Start the queue:

 SQL> EXECUTE dbms_aqadm.start_queue('AQAPP_NEWEMP');

Task 3: Install the FTP Adapter for Application fileapp_sub
1. See "FTP Adapter Installation" in Chapter 2 of the Oracle9iAS InterConnect

Adapter for FTP Installation and User’s Guide for installation instructions. During
installation, enter the following specific values when prompted:

a. Enter fileapp_sub in the Application Name field of the Oracle9iAS
InterConnect FTP Adapter Configuration dialog.

b. Enter the following value in the URL field of the Oracle9iAS InterConnect
FTP Adapter Configuration Configure receiving endpoint information
dialog:

ftp://localhost/tmp/fileapp_sub/read

c. Enter the following value in the URL field of the Oracle9iAS InterConnect
FTP Adapter Configuration Configure sending endpoint information
dialog:

ftp://localhost/tmp/fileapp_sub/write

This places every newEmployee message received by the fileapp_sub
application (by way of its configured subscription created in "Task 8: Enable
the fileapp_sub Application to Subscribe to the newEmployee Event" on
page B-40) in the /tmp/fileapp_sub/write directory of the computer
where the FTP adapter is installed. Ensure that you create these directories
with global read and write permissions before starting the fileapp_sub
application (based on the FTP adapter), for example:

$ umask 0
$ mkdir -p /tmp/fileapp_sub/read
$ mkdir -p /tmp/fileapp_sub/write
B-44 Oracle9iAS InterConnect User Guide

D3L Use Case
2. Complete adapter installation by providing appropriate responses when
prompted.

When installation is complete, the new adapter instance is located in the
following directory:

Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory
1. Copy the newemp.xml D3L file defined in "Task 2: Create a D3L File for the

FTP Adapter" on page B-28 to the platform-specific directory mentioned in the
preceding Step 2 on page B-45.

Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter Initialization
File
Set the ota.d3ls and ota.type parameters in the adapter.ini adapter
initialization file for the FTP adapter. The adapter.ini file is located in the
platform-specific directory mentioned in the preceding Step 2 on page B-45.

1. Use a text editor to set the ota.d3ls parameter to newemp.xml in
adapter.ini:

ota.d3ls=newemp.xml

If the ota.d3ls parameter line already exists in adapter.ini, replace it with
this version.

2. Use a text editor to set the ota.type parameter to D3L in adapter.ini:

ota.type=D3L

Platform Directory

Windows %ORACLE_HOME%\oai\9.0.2\adapters\fileapp_sub

UNIX $ORACLE_HOME/oai/9.0.2/adapters/fileapp_sub
Using the Data Definition Description Language B-45

D3L Use Case
Running the D3L Use Case
Now that both the Advanced Queuing adapter instance aqapp_pub and the FTP
adapter instance fileapp_sub have been installed, use both to run the D3L use
case.

This section contains these topics:

■ Task 1: Start the Adapters

■ Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event

■ Task 3: Trigger the newEmployee Event

■ Task 4: Verify Receipt of newEmployee Event

Task 1: Start the Adapters

To Start the Adapters on UNIX: Follow these steps to start the adapters on UNIX:

To start the aqapp_pub (Advanced Queuing) adapter:

1. Change directories to where the aqapp_pub adapter is installed:

 $ cd $ORACLE_HOME/oai/9.0.2/adapters/aqapp_pub

2. Start the adapter as a background process:

 $ start &

To start the fileapp_sub (FTP) adapter:

1. Change directories to where the fileapp_sub adapter is installed:

 $ cd $ORACLE_HOME/oai/9.0.2/adapters/fileapp_sub

2. Start the adapter as a background process:

 $ start &

To Start the Adapters on Windows: Follow these steps to start the adapters on
Windows:

To start the aqapp_pub (Advanced Queuing) adapter:

1. Change directories to where the aqapp_pub adapter is installed:

cd %ORACLE_HOME%\oai\9.0.2\adapters\aqapp_pub
B-46 Oracle9iAS InterConnect User Guide

D3L Use Case
2. Start the adapter:

start

To start the fileapp_sub (FTP) adapter:

1. Change directories to where the fileapp_sub adapter is installed:

cd %ORACLE_HOME%\oai\9.0.2\adapters\fileapp_sub

2. Start the adapter:

start

Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event
The next task generates the native event (that is, triggers the newEmployee event).
As configured in iStudio, the aqapp_pub application publishes the newEmployee
event. It does so when it sees a new (XML) message on the AQAPP_NEWEMP queue
that conforms to the DTD defined in "Task 1: Create a DTD File for the Advanced
Queuing Adapter" on page B-27.

To generate the native event, you must enqueue a message on the application queue
(AQAPP_NEWEMP) for the application aqapp_pub. You do this through an
anonymous PL/SQL block.

1. Change directories to where the aqapp_pub application (of the Advanced
Queueing adapter) is installed, for example:

Note: You can also start adapters from the Windows Control
Panel. See your Oracle9iAS InterConnect Technology Adapter
documentation for instructions.

On... Go To...

UNIX $ cd $ORACLE_HOME/oai/9.0.2/adapters/aqapp_pub

Windows cd %ORACLE_HOME%\oai\9.0.2\adapters\aqapp_pub
Using the Data Definition Description Language B-47

D3L Use Case
2. Create a file (named newemp.sql in this example) with the contents shown in
Example B–2:

Example B–2 File newemp.sql

 DECLARE
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid RAW(16);
 raw_payload RAW(32767);
 payload varchar2(2000);
 BEGIN
 payload :=
 '<?xml version="1.0" standalone="no"?>
 <NewEmpRec>
 <EmpName>Scott Tiger</EmpName>
 <EmpDept>257</EmpDept>
 <EmpHiredate>05/01/2001</EmpHiredate>
 <EmpSalary>52308.75</EmpSalary>
 </NewEmpRec>';

 raw_payload := utl_raw.cast_to_raw(payload);
 dbms_aq.enqueue(queue_name => 'AQAPP_NEWEMP',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => raw_payload,
 msgid => msgid);
 commit;
 END;
 /

Note that the payload variable is being assigned a string value, which contains
a valid XML document that conforms to the DTD newemp.dtd defined in "Task
1: Create a DTD File for the Advanced Queuing Adapter" on page B-27.
B-48 Oracle9iAS InterConnect User Guide

D3L Use Case
Task 3: Trigger the newEmployee Event
Everything is now defined, created, and started. You must now trigger the
newEmployee event, which was prepared in "Task 2: Create PL/SQL Code to
Trigger the Native newEmployee Event" on page B-47.

As mentioned earlier, the event is triggered when you place an XML message on the
AQAPP_NEWEMP queue, which is what the newemp.sql script does.

Run the PL/SQL script to generate the event.

1. Log in to the database account aqapp where the AQAPP_NEWEMP queue was
defined. (See "Task 2: Create the Application Queue AQAPP_NEWEMP" on
page B-43.) For example, assuming no connect string is necessary:

sqlplus aqapp/aqapp

2. Execute the newemp.sql script:

SQL> START newemp.sql

The following message appears:

PL/SQL procedure successfully completed.

3. Exit SQL*Plus:

SQL> EXIT

Task 4: Verify Receipt of newEmployee Event
After some time (maybe several minutes depending on overall system
performance), a file appears in the /tmp/fileapp_sub/write directory, which
represents the sending endpoint for the FTP adapter. The file is named after the
pattern:

app-name-timestamp

1. Verify that the newEmployee event has been published and received by the
fileapp_sub application. On UNIX, for example, perform the following
commands:

 $ cd /tmp/fileapp_sub/write
 $ ls -l
 total 2

 -rw-rw-r-- 1 bstern svrtech 44 Dec 18 15:29 FILEAPP_SUB-1008718194783
Using the Data Definition Description Language B-49

D3L Use Case
The contents of the file can be displayed in different formats:

$ od -c FILEAPP_SUB-1008718194783
0000000 S c o t t T i g e r
0000020 001 001 | 0 5 / 0 1 / 2 0 0
0000040 1 | $ 5 2 3 0 8 . 7 5 $

or

$ od -x FILEAPP_SUB-1008718194783
0000000 5363 6f74 7420 5469 6765 7220 2020 2020
0000020 2020 2020 0101 7c30 352f 3031 2f32 3030
0000040 317c 2435 3233 3038 2e37 3524

2. Verify that this output corresponds to the D3L definition shown in "Task 2:
Create a D3L File for the FTP Adapter" on page B-28 and the data enqueued by
newemp.sql.

3. Repeat Step 2 on page B-49 to trigger and generate another event (file). The
second time you trigger the event, the new file in the /write directory appears
much faster (in approximately 3-4 seconds). This is because the adapter
allocated and initialized all connections and data structures after processing the
first message.

4. You have completed the use case.

Using Other Adapters and XML Mode
This section briefly describes how to use adapters other than the FTP adapter, and
how to run them in XML mode instead of D3L mode.

This section contains these topics:

■ Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode

■ Using XML Mode
B-50 Oracle9iAS InterConnect User Guide

D3L Use Case
Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode
Perform the following steps to use the D3L use case with a different Oracle9iAS
InterConnect Technology Adapter.

1. Enter another application name that indicates which adapter you are using in
"Task 7: Create the fileapp_sub Application" on page B-39 (for example,
smtpapp_sub).

2. Specify the parameters needed for the particular adapter in Steps 1b and 1c on
page B-44. See the installation documentation for the appropriate Oracle9iAS
InterConnect Technology Adapter.

3. In "Task 4: Verify Receipt of newEmployee Event" on page B-49, the verification
process depends entirely on the adapter type, or more specifically, the exact
sending endpoint defined.

4. Replace the fileapp_sub application name where ever it appears with the
new application name.

The remaining steps are the same.

Using XML Mode
Perform the following steps to use XML as the operational mode of the Oracle9iAS
InterConnect Technology Adapters.

1. Skip "Task 2: Create a D3L File for the FTP Adapter" on page B-28.

2. Define the following common view event attributes in Step 4 and Step 5 of
"Task 3: Create the newEmployee Event" on page B-32:

a. Manually create a common data type (right click + New) named
NewEmpRec that has the same attributes as shown in the Create Event
dialog on page B-33.

b. Import the common data type defined in Step 2a instead of importing a
D3L file.

3. Select XML instead of D3L in Step 3 of "Select the Event to which to Subscribe"
on page B-40.

4. Select to import XML and choose the file newemp.dtd in Step 4 of "Define the
Application View" on page B-40.

5. Perform Steps 2 through 4 in "Define the Application View to Common View
Mapping" on page B-41 like you did Steps 2 through 7 in "Define the
Application View to Common View Mapping" on page B-36.
Using the Data Definition Description Language B-51

Additional D3L Sample Files and DTD
6. Skip "Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter
Directory" on page B-45 and "Task 5: Set the D3L file and Payload Type in the
adapter.ini Adapter Initialization File" on page B-45.

Additional D3L Sample Files and DTD
This section contains these topics:

■ Additional D3L Sample Files

■ D3L DTD

Additional D3L Sample Files
This section provides several D3L sample files. These example files describe how to
use the D3L language to define the content of native format messages.

■ Example One: Sample File with Structure VehicleRegistration

■ Example Two: Sample File with Structure Hierarchy PersonRecord

■ Example Three: Sample File with Structure ProductRecord

Note: Replacement steps Steps 2a and 2b assume that you do not
have the D3L file. However, as a shortcut, you can still define the
common view event attributes as they were performed in Step 6 of
"Task 3: Create the newEmployee Event" on page B-32.
B-52 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
Example One: Sample File with Structure VehicleRegistration
Sample file msg-1.xml represents a structure named VehicleRegistration.
Table B–4 describes the file fields and Example B–3 shows msg-1.xml file contents.

Example B–3 Sample File msg-1.xml with Structure EmployeeRegistration

<?xml version="1.0" encoding="US-ASCII"?>
<message type="VehicleRegistration" name="Register" object="Vehicle">

<date format="MMDDYYYY" id="Date_T">
<padstring id="FixString10_T" length="10" padchar='' padstyle="none" />

</date>
<struct id="VehicleRegistration">

<!-- Width x Length x Height x Weight (inch/lb) -->
<field name="SizeWeight"><typeref type="ShortArray4_T" /></field>
<field name="ProductCode"><unsigned2 align="2" endian="big" /></field>
<field name="VIN"><unsigned8 align="2" endian="big" /></field>
<field name="PreviousOwners"><typeref type="StringArray_T" /></field>
<field name="Miles"><unsigned2 align="2" endian="big" /></field>
<field name="DateProduced"><typeref type="Date_T" /></field>

</struct>
<fixarray id="ShortArray4_T" length="4">

<unsigned2 align="2" endian="little" id="" />
</fixarray>
<unsigned1 align="2" endian="little" id="Short_T" />
<pfxarray id="StringArray_T" length="Short_T">

<typeref type="FixString10_T" />
</pfxarray>

</message>

Table B–4 msg-1.xml File Fields

Field Description

SizeWeight A fixed-length array of four signed, one-byte, little-endian integers,
each aligned on two-byte boundaries (implying a one-byte padding
between elements of the array)

ProductCode An unsigned, two-byte, big-endian integer aligned on two-byte
boundaries

VIN An unsigned, eight-byte, big-endian integer aligned on two-byte
boundaries

PreviousOwners A length-prefixed array of dates in the MMDDYYYY format (the length of
the array is a signed, one-byte, little-endian integer with a two-byte
alignment)

Miles An unsigned, two-byte, big-endian integer with a two-byte alignment

DateProduced A single date in the MMDDYYYY format
Using the Data Definition Description Language B-53

Additional D3L Sample Files and DTD
The following native format message examples show a hexadecimal and character
representation of the same message, which can be parsed by the msg-1.xml D3L
file:

■ Hexadecimal format:

0000000 4500 b200 3400 8a0b 30d9 0000 0000 0072
0000020 55ff 0200 4a6f 6e65 732c 502e 2020 536d
0000040 6974 682c 522e 2020 5208 3131 2532 3225
0000060 3139 3939

■ Character format:

0000000 E \0 262 \0 4 \0 212 013 0 331 \0 \0 \0 \0 \0 r
0000020 U 377 002 \0 J o n e s , P . S m
0000040 i t h , R . R \b 1 1 % 2 2 %
0000060 1 9 9 9

Example Two: Sample File with Structure Hierarchy PersonRecord
Sample file msg-2.xml demonstrates a structure hierarchy named
PersonRecord. Table B–5 describes the file fields and Example B–4 shows
msg-2.xml file contents.

Table B–5 msg-2.xml File Fields

Field Description

Name A string delimited by a comma

Age An unsigned, one-byte integer

DOB A date in MMDDYYYY format, length prefixed by a signed, four-byte integer

Phone An unsigned, four-byte integer

City A structure named CityRecord that consists of the following fields:
■ Name

A string delimited by *

■ State

A string delimited by *

■ Country

A string delimited by *

■ Population

An unsigned, four-byte integer
B-54 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
Example B–4 Sample File msg-2.xml with Structure PersonRecord

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE message SYSTEM "d3l.dtd">
<message type="PersonRecord">
 <signed4 id="s4" />
 <struct id="CityRecord">
 <field name="Name"><limstring delimiter="*" /></field>
 <field name="State"><limstring delimiter="*" /></field>
 <field name="Country"><limstring delimiter="," /></field>
 <field name="Population"><unsigned4 /></field>
 </struct>

 <struct id="StateRecord">
 <field name="Name"><limstring delimiter=" " /></field>
 <field name="Capital"><limstring delimiter=" " /></field>
 <field name="Population"><unsigned4 /></field>
 </struct>

 <struct id="PersonRecord">
 <field name="Name"><limstring delimiter="," /></field>
 <field name="Age"><unsigned1 /></field>
 <field name="DOB">
 <date format="MMDDYYYY">
 <pfxstring id="dobstr" length="s4" />
 </date>
 </field>
 <field name="Phone"><unsigned4 /></field>
 <field name="City"><typeref type="CityRecord" /></field>
 <field name="State"><typeref type="StateRecord" /></field>
 </struct>

</message>

State A structure named StateRecord that consists of the following fields:

■ Name

A string delimited by a space

■ Capital

A string delimited by a space

■ Population

An unsigned, four-byte integer

Table B–5 msg-2.xml File Fields

Field Description
Using the Data Definition Description Language B-55

Additional D3L Sample Files and DTD
The following is a combined hexadecimal and character representation of a native
message, which can be parsed by msg-2.xml:

000 2c4a 6f68 6e20 446f 652c 1e00 0000 000a ,John Doe,_.....
020 3131 2f32 352f 3139 3635 0000 002c a155 11/25/1965...,.U
040 2a50 6f72 746c 616e 642a 2a4f 522a 2c55 *Portland**OR*,U
060 5341 2c00 000f 4240 204f 7265 676f 6e20 SA,...B@_Oregon_
100 2053 616c 656d 2000 003d 0900 _Salem_..=..

Example Three: Sample File with Structure ProductRecord
Sample file msg-3.xml defines a structure named ProductRecord. Table B–6
describes the file fields and Example B–5 shows msg-3.xml file contents.

Table B–6 msg-3.xml File Fields

Field Description

Manufacturer A string delimited by a space

Weight A single-precision, floating-point number

Widgets A length-prefixed array of WidgetRecord structures. A WidgetRecord
consists of:

■ Name

A string delimited by a space

■ Color

A string delimited by a space

■ Weight

A single-precision, floating point number
B-56 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
Example B–5 Sample File msg-3.xml with Structure ProductRecord

<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE message SYSTEM "d3l.dtd">

<message type="ProductRecord">
 <unsigned1 id="u1" />
 <unsigned2 id="u2" />
 <number id="pfxnum">
 <padstring length="8" padchar="" padstyle="none" />
 </number>
 <pfxarray id="Unsigned1Tab" length="u1">
 <unsigned1 />
 </pfxarray>
 <pfxarray id="Signed4Tab" length="pfxnum">
 <unsigned4 />
 </pfxarray>
 <pfxarray id="StrTab" length="u1">
 <limstring delimiter=" " />
 </pfxarray>
 <struct id="WidgetRecord">
 <field name="Name"><limstring delimiter=" " /></field>
 <field name="Color"><limstring delimiter=" " /></field>
 <field name="Weight"><float /></field>
 </struct>
 <pfxarray id="WidgetTab" length="u2">
 <typeref type="WidgetRecord" />
 </pfxarray>
 <struct id="ProductRecord">
 <field name="Manufacturer"><limstring delimiter=" " /></field>
 <field name="Weight"><float /></field>
 <field name="Widgets"><typeref type="WidgetTab" /></field>
 </struct>

</message>
Using the Data Definition Description Language B-57

Additional D3L Sample Files and DTD
D3L DTD
Example B–6 shows the DTD to which D3L (XML) files must conform.

Example B–6 D3L DTD

<?xml version="1.0" encoding="US-ASCII"?>
<!-- == -->
<!ENTITY % Name "CDATA" >
<!ENTITY % Number "NMTOKEN" >
<!ENTITY % Comment "CDATA" >
<!-- == -->
<!ENTITY % GenericAttributes
 "
 name %Name; #IMPLIED
 comment %Comment; #IMPLIED
 id ID #IMPLIED
 "
>
<!ENTITY % FieldAttributes
 "
 name %Name; #REQUIRED
 comment %Comment; #IMPLIED
 id ID #IMPLIED
 "
>
<!ENTITY % NonTypeAttributes
 "
 name %Name; #IMPLIED
 comment %Comment; #IMPLIED
 "
>
<!-- == -->
<!ENTITY % StructAttributes
 "
 %GenericAttributes;
 "
>
<!-- == -->
<!ENTITY % Align
 "%Number;"
>
<!ENTITY % Endian
 "(big | little)"
>
<!ENTITY % IntegerAttributes
 "
 %GenericAttributes;
B-58 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
 endian %Endian; 'big'
 "
>
<!ENTITY % IntegerTypes
 " signed1 | unsigned1
 | signed2 | unsigned2
 | signed4 | unsigned4
 | signed8 | unsigned8
 "
>
<!ENTITY % FloatAttributes
 "
 %GenericAttributes;
 "
>
<!ENTITY % FloatTypes
 " float | double
 "
>
<!-- == -->
<!ENTITY % PadStyle
 "(head | tail | none)"
>
<!ENTITY % PadChar
 "CDATA"
>
<!ENTITY % DelimiterChar
 "CDATA"
>
<!ENTITY % StringAttributes
 "
 %GenericAttributes;
 "
>
<!ENTITY % PaddedStringAttributes
 "
 %StringAttributes;
 length %Number; #REQUIRED
 padchar %PadChar; #REQUIRED
 padstyle %PadStyle; #REQUIRED
 "
>
<!ENTITY % PrefixedStringAttributes
 "
 %StringAttributes;
 length IDREF #REQUIRED
 "
Using the Data Definition Description Language B-59

Additional D3L Sample Files and DTD
>
<!ENTITY % DelimitedStringAttributes
 "
 %StringAttributes;
 delimiter %DelimiterChar; #REQUIRED
 "
>
<!ENTITY % StringTypes
 "padstring | pfxstring | limstring"
>
<!-- == -->
<!ENTITY % DateFormat
 "(DDMMYY | DDMMYYYY | MMDDYY | MMDDYYYY)"
>
<!ENTITY % DateAttributes
 "
 %GenericAttributes;
 format %DateFormat; #REQUIRED
 "
>
<!-- == -->
<!ENTITY % NumberAttributes
 "
 %GenericAttributes;
 "
>
<!-- == -->
<!ENTITY % ArrayAttributes
 "
 %GenericAttributes;
 "
>
<!ENTITY % FixedArrayAttributes
 "
 %ArrayAttributes;
 length %Number; #REQUIRED
 "
>
<!ENTITY % PrefixedArrayAttributes
 "
 %ArrayAttributes;
 length IDREF #REQUIRED
 "
>
<!ENTITY % DelimitedArrayAttributes
 "
 %ArrayAttributes;
B-60 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
 contchar %DelimiterChar; #REQUIRED
 endchar %DelimiterChar; #REQUIRED
 "
>
<!ENTITY % ImplicitArrayAttributes
 "
 %ArrayAttributes;
 "
>
<!-- == -->
<!ENTITY % TypeElements
 " signed1 | unsigned1
 | signed2 | unsigned2
 | signed4 | unsigned4
 | signed8 | unsigned8
 | float | double
 | date | number
 | struct
 | padstring
 | pfxstring
 | limstring
 | fixarray
 | pfxarray
 | limarray
 | imparray
 "
>
<!-- == -->
<!ENTITY % FieldElements
 "%TypeElements;"
>
<!ENTITY % MessageElements
 "%TypeElements;"
>
<!ENTITY % StructElements
 "field | pad"
>
<!ENTITY % ArrayElements
 "%TypeElements;"
>
<!-- == -->
<!ELEMENT message (%MessageElements;)* >
 <!ATTLIST message
 %GenericAttributes;
 type IDREF #REQUIRED
 header CDATA #IMPLIED
 value CDATA #IMPLIED
Using the Data Definition Description Language B-61

Additional D3L Sample Files and DTD
 magic CDATA #IMPLIED
 endpoint CDATA #IMPLIED
 >
<!-- == -->
<!ELEMENT struct (%StructElements;)* >
 <!ATTLIST struct
 %StructAttributes;
 >
<!-- == -->
<!ELEMENT field (typeref | %FieldElements;) >
 <!ATTLIST field
 %FieldAttributes;
 >
<!-- == -->
<!ELEMENT signed1 EMPTY >
 <!ATTLIST signed1
 %IntegerAttributes;
 align %Align; "1"
 >
<!ELEMENT unsigned1 EMPTY >
 <!ATTLIST unsigned1
 %IntegerAttributes;
 align %Align; "1"
 >
<!ELEMENT signed2 EMPTY >
 <!ATTLIST signed2
 %IntegerAttributes;
 align %Align; "2"
 >
<!ELEMENT unsigned2 EMPTY >
 <!ATTLIST unsigned2
 %IntegerAttributes;
 align %Align; "2"
 >
<!ELEMENT signed4 EMPTY >
 <!ATTLIST signed4
 %IntegerAttributes;
 align %Align; "4"
 >
<!ELEMENT unsigned4 EMPTY >
 <!ATTLIST unsigned4
 %IntegerAttributes;
 align %Align; "4"
 >
<!ELEMENT signed8 EMPTY >
B-62 Oracle9iAS InterConnect User Guide

Additional D3L Sample Files and DTD
 <!ATTLIST signed8
 %IntegerAttributes;
 align %Align; "8"
 >
<!ELEMENT unsigned8 EMPTY >
 <!ATTLIST unsigned8
 %IntegerAttributes;
 align %Align; "8"
 >
<!-- == -->
<!ELEMENT float EMPTY >
 <!ATTLIST float
 %FloatAttributes;
 align %Align; "4"
 >
<!ELEMENT double EMPTY >
 <!ATTLIST double
 %FloatAttributes;
 align %Align; "8"
 >
<!-- == -->
<!ELEMENT padstring EMPTY >
 <!ATTLIST padstring
 %PaddedStringAttributes;
 >
<!ELEMENT pfxstring EMPTY >
 <!ATTLIST pfxstring
 %PrefixedStringAttributes;
 >
<!ELEMENT limstring EMPTY >
 <!ATTLIST limstring
 %DelimitedStringAttributes;
 >
<!-- == -->
<!ELEMENT fixarray (typeref | %ArrayElements;) >
 <!ATTLIST fixarray
 %FixedArrayAttributes;
 >
<!ELEMENT pfxarray (typeref | %ArrayElements;) >
 <!ATTLIST pfxarray
 %PrefixedArrayAttributes;
 >
<!ELEMENT limarray (typeref | %ArrayElements;) >
 <!ATTLIST limarray
 %DelimitedArrayAttributes;
Using the Data Definition Description Language B-63

Additional D3L Sample Files and DTD
 >
<!ELEMENT imparray (typeref | %ArrayElements;) >
 <!ATTLIST imparray
 %ImplicitArrayAttributes;
 >
<!-- == -->
<!ELEMENT date (typeref | %StringTypes;) >
 <!ATTLIST date
 %DateAttributes;
 >
<!-- == -->
<!ELEMENT number (typeref | %StringTypes;) >
 <!ATTLIST number
 %NumberAttributes;
 >
<!-- == -->
<!ELEMENT typeref EMPTY >
 <!ATTLIST typeref
 %NonTypeAttributes;
 type IDREF #REQUIRED
 >
<!-- == -->
<!ELEMENT pad EMPTY >
 <!ATTLIST pad
 %NonTypeAttributes;
 length %Number; #REQUIRED
 >
<!-- == -->
B-64 Oracle9iAS InterConnect User Guide

Transforma
C

Transformations

This appendix provides a list of the Oracle9iAS InterConnect transformations.
tions C-1

Copy Fields
Copy the source field(s) into the destination field(s).

Parameters:
None

Copy Object
Copy the source object into the destination object.

Parameters:
None

Concat Fields
Concatenate the source field(s) and copy into the destination fields.

Parameters:

Expand Fields
Expand the source field into the destination fields.

Parameters:

prefix An optional prefix to the concatenated string.

separator The separator, a string of characters, that separate source
fields in the concatenated string.

suffix An optional suffix to the concatenated string.

delimiter The delimiter or string of characters around which the source
field should be broken up.
C-2 Oracle9iAS InterConnect User’s Guide

Set Constant
Copy a constant into the destination fields.

Parameters:

True Conditional Lookup XRef
Finds the source field in a cross reference table. If condition is satisfied, copy it into
the destination field.

Parameters:

True Conditional Lookup DVM
Finds the source field in a domain value map table. If condition is satisfied, copy it
into the destination field.

Parameters:

constant The constant to be copied.

condition The condition for this parameter.

table The cross reference table.

pass through When there is no corresponding cross reference, and this
parameter is true, the destination field is set to the source
field. If this parameter is false, the destination field is set to
null.

condition The condition for this parameter.

table The domain value map table.

pass through When there is no corresponding domain value map and this
parameter is set to true, the destination field is set to the
source field. If this parameter is set to false, the destinations
field is set to null.
Transformations C-3

Conditional Copy
Copy the source field(s) into the destination field(s) if expression is satisfied.

Parameters:

True Conditional Copy
Copy the source field(s) into the destination field(s) if condition is satisfied.

Parameters:

True Conditional Concat
Concatenate the source field(s) into the destination field if the condition is satisfied.

Parameters:

expression The expression.

only copy on true If this parameter is set to true and the expression evaluates
to false, nothing is copied. If this parameter is set to false
and the expression evaluates to false, the second input
object is copied.

condition The condition for this parameter.

condition The condition for this parameter.

prefix An optional prefix to the concatenated string.

separator The separator, a string of characters, that separate source
fields in the concatenated string.

suffix An optional suffix to the concatenated string.
C-4 Oracle9iAS InterConnect User’s Guide

True Conditional To Number
Convert the sign, value, and precision source fields into a number and copy it into
the destination field if condition is satisfied.

Parameters:

False Conditional Copy
Copy the source field(s) into the destination field(s) if condition is NOT satisfied.

Parameters:

False Conditional Concat
Concatenate the source field(s) into the destination field if the condition is NOT
satisfied.

Parameters:

condition The condition for this parameter.

int length The number of digits before the decimal point excluding the
sign.

dec length The number of digits after the decimal point.

character The padding character.

DVM An optional domain value map to lookup decimal point
character.

condition The condition for this parameter.

condition The condition for this parameter.

prefix An optional prefix to the concatenated string.

separator The separator, a string of characters, that separate source
fields in the concatenated string.
Transformations C-5

False Conditional To Number
Convert the sign, value, and precision source fields into a number and copy it into
the destination field if condition is NOT satisfied.

Parameters:

To Number
Convert the sign, value, and precision source fields into a number and copy it into
the destination field.

Parameters:

Substring
Copy a substring of the source field into the destination field.

suffix An optional suffix to the concatenated string.

condition The condition for this parameter.

int length The number of digits before the decimal point excluding the
sign.

dec length The number of digits after the decimal point.

character The padding character.

DVM An optional domain value map to look up a decimal point
character.

int length The number of digits before the decimal point excluding the
sign.

dec length The number of digits after the decimal point.

character The padding character.

DVM An optional domain value map to look up a decimal point
character.
C-6 Oracle9iAS InterConnect User’s Guide

Parameters:

Char Replace
Replace characters in the source field and copy it into the destination field.

Parameters:

String Replace
Replace each occurrence of a string in the source field and copy it into the
destination field.

Parameters:

LTrim
Delete source field characters starting from the left until a character from the set is
found and copy the remaining string into the destination field.

Parameters:

begin index The index at which the substring begins.

length An optional length of the substring.

targets The string of characters to replace.

replacements The string of replacement characters.

targets The string of characters to replace.

replacements The string of replacement characters.

characters The string of characters to seek that stop the deletion.
Transformations C-7

RTrim
Delete source field characters starting from the right until a character from the set is
found and copy the remaining string into the destination field.

Parameters:

LPad
Pad source field starting from the left for a given length and copy it into the
destination field.

Parameters:

RPad
Pad source field starting from the right for a given length and copy it into the
destination field.

Parameters:

characters The string of characters to seek that stop the deletion.

length The padding length.

character An optional character to pad with, default is <space>.

length The padding length.

character An optional character to pad with, default is <space>.
C-8 Oracle9iAS InterConnect User’s Guide

Lookup XRef
Lookup the source field in a cross reference table and copy it into the destination
field.

Parameters:

Delete XRef
Delete the source field from a cross reference table.

Parameters:

Lookup DVM
Look up the source field in a domain value map table and copy it into the
destination field.

Parameters:

table The cross reference table.

pass through When there is no corresponding cross reference and this
parameter is set to true, the destination field is set to the
source field. If this parameter is set to false, the destination
field is set to null.

table The cross reference table.

table The cross reference table.

pass through When there is no corresponding domain value map and this
parameter is set to true, the destination field is set to the
source field. If this parameter is set to false, the destination
field is set to null.
Transformations C-9

Truncate
Truncate source field starting from the right for a given length and copy it into the
destination field.

Parameters:

Increment
Increment a counter and copy the incremented value into the destination field.

Parameters:

length The length to truncate.

start value The initial counter value.

counter Give this counter a name to distinguish it from other counters
that may be at different values at a given time and may have a
different step size.

step size The increment size.
C-10 Oracle9iAS InterConnect User’s Guide

Glossary

Advanced Business Application Programming

A programming language developed by SAP for application development
purposes.

adapter

Enables third-party applications and technology environments to participate in
application integration. An adapter has two major tasks:

■ Provide connectivity between an application and the hub.

■ Transform and route messages between the application and the hub.

adapter.ini file

An initialization parameter file that an adapter uses at startup to connect to an
application.

advanced queueing adapter

Enables an Oracle Advanced Queueing application to be integrated with other
applications using Oracle9iAS InterConnect.

agent

A subcomponent of an adapter that handles runtime instructions. The agent is
independent of the application to which the adapter connects. The agent focuses on
the integration scenario based on the integration metadata in the repository.
Glossary-1

application

A component integrated with Oracle9iAS InterConnect. Each application expresses
interest specific messages, what its internal data type is, and how the message
should be mapped to or from that internal type to the external world.

application view

A native view translated into the syntax used by an adapter. Each application has
its own application view of data that allows it to participate in the integration. The
application view of data uses transformations to map into the common view.

bridge

A subcomponent of an adapter that transfers data between the application and
Oracle9iAS InterConnect. The bridge is the protocol/application-specific piece of
the adapter that communicates with the application.

Business Application Programming Interface

Standardized programming interface that enables external applications to access the
business processes and data of the R/3 system. Defined in the Business Object
Repository as methods applied to SAP business objects, in order to perform specific
business tasks.

business object

A collection of logically related integration points.

cipher suites

A set of ciphers. SSL supports different cryptographic algorithms, or ciphers, for
tasks such as authenticating the server and client to each other, transmitting
certificates, and establishing session keys. Clients and servers support different
cipher suites depending on factors such as the SSL version supported, company
policies regarding permissible encryption strength, and government restrictions on
export of SSL-enabled software.

common view

A view (for example, creating a purchase order) that is syntactically and
semantically in the Oracle9iAS InterConnect format. The common view:

■ Identifies the list of integration points for applications. Applications participate
in integration by binding to one or more common view integration points (for
example, creating a purchase order, creating a new customer, and so on).
Glossary-2

■ Eliminates the complexity of multiple integration points between applications.
Instead, just one common view is required.

content-based routing

Messages routed to specific applications based on business rules or message
content.

cross-reference tables

Keys for corresponding entities created in different applications can be correlated
through cross referencing.

D3L

Data Definition Description Language. An XML-based message description
language that describes an application’s message information in its native format
(known as its native view).

database adapter

Enables an Oracle Application, typically PL/SQL-based, to be integrated with other
applications using Oracle9iAS InterConnect.

Data Definition Description Language (D3L)

design time

During the design phase, a business analyst uses iStudio to define the integration
objects, applications that participate in the integration, and the specifications of the
data exchanged between applications.

document type definition (DTD)

domain value maps

Code tables mapped across different systems.

DTD

Document Type Definition. A set of rules that defines the allowable structure of an
XML document. DTDs are text files that derive their format from SGML and are
either embedded within an XML document or referenced by an XML document.

See: D3L

See: DTD
Glossary-3

EAI

Enterprise Application Integration. The integration of applications and business
processes within the same company (known as an enterprise).

endpoints

The physical destination points for messages exchanged between Oracle9iAS
InterConnect and an application.

enterprise application integration (EAI)

event

An integration point used to pattern the publish/subscribe model. An event has
associated data that is the common view of all the data to be exchanged through
this event. An event can be published or subscribed by an application.

event map

Allows application data to be mapped to an Oracle9iAS InterConnect event without
the application having to know about the Oracle9iAS InterConnect event itself.

extensible markup language (XML)

extensible stylesheet language (XSLT)

FTP adapter

 Enables an Oracle FTP Application to be integrated with other applications using
Oracle9iAS InterConnect.

HTTP

Hypertext Protocol Transfer. The underlying format, or protocol, used by the Web to
format and transmit messages and determine what actions Web servers and
browsers should take in response to various commands. HTTP is the protocol used
between Oracle9i Application Server and clients.

See: EAI

See: XML

See: XSLT
Glossary-4

HTTP adapter

Enables an Oracle HTTP application to be integrated with other applications using
Oracle9iAS InterConnect. This adapter is useful in all EAI environments that use
the HTTP transport protocol.

hub

hypertext protocol transfer (HTTP)

IDoc Type

Indicates the SAP format used to transfer the data for a business transaction. An
IDoc is a real business process in the form of an IDoc type. An IDoc type is
described using the following components:

■ A control record is the format of the control record which is identical for all
IDoc types.

■ One or more data records consist of a fixed administration part and a data part
(segment). The number and format of the segments can be different for each
IDoc type.

■ Status records describe the processing stages which an IDoc can pass through
and have identical formats for each IDoc type.

invoke/implement model

An application invokes a procedure by sending data out to the Oracle9iAS
InterConnect hub and expects return of the result from an application
implementing the procedure. An application implements a procedure by receiving
data from the Oracle9iAS InterConnect hub and returns the result once the
procedure has been executed. In iStudio, a procedure is used to model this scenario.

IMAP4

Internet Message Access Protocol 4. IMAP4 is a standard protocol for accessing
e-mail from a local server. IMAP4 is a client/server protocol in which e-mail is
received and held for users by their Internet server. Users can view just the heading
and sender of the e-mail, and then decide whether to download the e-mail. Users
can also create and manipulate folders or mailboxes on the server, delete messages,

See: Oracle9iAS InterConnect

See: HTTP
Glossary-5

or search for certain parts or an entire note. IMAP requires continual access to the
server during the time that users work with their e-mail.

Internet Message Access Protocol 4 (IMAP4)

iStudio

A design time integration specification tool targeted at business analysts. This tool
helps business analysts specify the integration logic at a functional level, instead of
a technical coding level. iStudio exposes the integration methodology using simple
wizards and reduces, or eliminates, the need for writing code to specify the
integration logic. This reduces the total time required to complete an integration.

metadata

A definition or description of data (essentially, data about data).

MQ Series adapter

Enables Oracle9iAS InterConnect to send message to and receive messages from the
MQ Series queues and topics.

native view

An application’s message information in its native format (for example, SAP IDoc).
Native events are both syntactically and semantically in the native format of the
application, and are defined external to Oracle9iAS InterConnect.

Oracle Technology Adapter

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and server. Security credentials consist of a
public/private key pair, a certificate, and a trustpoint.

Oracle Workflow

Integrated with Oracle9iAS InterConnect and is used for business process
collaborations across two or more applications.

See: IMAP4

See: adapter
Glossary-6

Oracle9iAS InterConnect

The integration hub that coordinates the communication and transformation of
messages between two or more heterogeneous applications. Oracle9iAS
InterConnect defines business events, their associated data, and any
transformations required to map one application's view of a business object to
another's view.

payload

The data sent between applications. For example, the payload data for a purchase
order sent from one application to another application may include the product
name, the quantity ordered, and the price.

persistence

The ability to save data and restore it when needed.

procedure

An integration point used to pattern the invoke/implement model. A procedure
has associated data that is the common view of all the data to be exchanged through
this procedure. A procedure can be invoked or implemented by an application.

project

Encapsulates all the integration logic for one integration scenario.

proxy host

A server through which messages sent to remote Web servers must pass. A proxy
server also prevents users outside a company’s firewall from breaking into an
organization's private network.

publish/subscribe model

An application publishes an event when it sends data out to the Oracle9iAS
InterConnect hub without knowing the destination applications. Furthermore, data
is not expected in return. An application subscribes to an event if it receives the
data from the Oracle9iAS InterConnect hub regardless of who sent the data.
Furthermore, it does not send out any data in return. Events in iStudio are used to
model this scenario.

realm

Realms enable the protected resources on a server to be partitioned into a set of
protection spaces, each with its own authentication scheme and/or authorization
database.
Glossary-7

remote method invocation (RMI)

repository

The repository has the following functionality:

■ At design time, all integration logic defined in iStudio is stored in tables in the
repository as metadata.

■ At runtime, the repository provides access to this metadata for an adapter to
integrate applications.

The repository server is deployed as a stand-alone Java application running outside
the database. The repository schema is a set of tables in the Oracle9iAS
Infrastructure. Both the repository server and the database are on the hub
computer.

RMI

Remote Method Invocation. An interaction scheme for distributed objects written in
Java. It enables a Java program running on one computer to access the methods of
another Java program running on another computer.

runtime

For each application participating in a specific integration, Oracle9iAS InterConnect
attaches one or more adapters to it. At runtime, the adapters retrieve the metadata
from the repository to determine the format of messages, perform transformations
between the various data formats, and route the messages to the appropriate
queues in the Oracle9iAS InterConnect hub.

secure socket layer (SSL)

simple mail transfer protocol (SMTP)

SMTP

Simple Mail Transfer Protocol. A TCP/IP protocol for sending and receiving e-mail.
SMTP is typically used with one of two other protocols, Post Office Protocol 3
(POP3) or Internet Message Access Protocol (IMAP), that enable users to save

See: RMI

See: SSL

See: SMTP
Glossary-8

messages in a server mailbox and periodically download them. Users typically use
a program that uses SMTP for sending e-mail and either POP3 or IMAP for
receiving messages on their local server.

SMTP adapter

The SMTP adapter enables an SMTP application to be integrated with other
applications using Oracle9iAS InterConnect. This adapter is useful in all EAI
environments where e-mail uses the IMAP4 and SMTP transport protocols.

SSL

Secure Sockets Layer. SSL is a standard for the secure transmission of documents
over the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure
that transmitted data is not tampered with.

tracking fields

One or more application view fields in the context of a particular event. Used to
track the event instances at runtime.

wallet

A wallet is an abstraction used to store and manager security credentials for an
individual entity. It implements the storage and retrieval of credentials for use with
various cryptographic services.

workspace

Stores user settings and preferences such as application login credentials and last
opened project.

XML

eXtensible Markup Language. XML is a set of rules for defining data markup in a
plain text format.

XSLT

Extensible Stylesheet Language transformations. XSLT describes how to transform
the structure of an XML document into a differently-structured XML document.
XSLT is an extension of the Extensible Stylesheet Language (XSL). XSLT shows how
to reorganize the XML document into another data structure (that can then be
presented by following an XSL style sheet).
Glossary-9

Glossary-10

Index

A
activity

populating a business process with, 7-10
adapter.ini file

configuring for D3L, B-22
setting the ota.d3ls parameter, B-6, B-22, B-45
setting the ota.type parameter, B-22, B-45
specifying the default message endpoint, B-18

adapters, 1-3
agents, bridges, 8-7
common features, 9-4
D3L responsibilities, B-2
features, 9-5
integration, 1-12
sdk, 1-4

agents, 8-7
use with D3L, B-14

application data types, 3-2
importing a D3L file, B-23

application view, 3-2
applications, 2-3

application view, 3-2
creating, 3-2
overview, 3-2

attributes
adding to common data types, 3-5
deleting and clearing from common data

types, 3-8
importing for common data types, 3-6
modifying mappings, 6-11
removing mappings, 6-11

B
bridges, 8-7

use with D3L, B-14
browsers.init file

configuring for D3L, B-20
business objects, 2-3

creating, 3-3
defining in a D3L file, B-10
overview, 3-3

business process, 7-8
creating, 7-10
populating with activities, 7-10

C
common data types

adding attributes, 3-5
creating, 3-3
deleting and clearing attributes, 3-8
importing a D3L file, B-23
importing attributes, 3-6

common view, 2-3
defining, 3-3
overview, 3-3

components, 1-3
adapters, 1-3
management infrastructure, 1-4
oracle workflow, 1-5
oracle9ias interconnect hub, 1-3
repository, 8-9
sdk, 1-4

console monitors, 9-2
content-based routing, 2-6
Index-1

working with, 6-2
context menu, 2-13
cross reference tables, 2-6

adding applications, 6-7
populating, 6-8
removing applications, 6-7
working with, 6-7

custom transformations
adding, 6-11
deleting, 6-12

D
D3L. See Data Definition Description Language

(D3L)
Data Definition Description Language (D3L)

common view, B-26
common view to native format message outgoing

messages translations, B-18
configuration

configuring a native format message with a
D3L file, B-5, B-22

configuring the browsers.init file with
iStudio, B-20

configuring with Oracle9iAS InterConnect
Technology Adapters, B-22

creating a D3L file describing native format
messages, B-21

creating a native format message, B-21
defining metadata properties with each

event, B-24
importing a D3L file in iStudio, B-23

D3L DTD, B-58
D3L file examples, B-5, B-9, B-21, B-29, B-52,

B-54, B-56
defining business objects, B-10
defining events, B-10
definition, B-2
file structure example, B-9
installing, B-20
iStudio values in the D3L file, B-10
magic value message header attributes, B-7,

B-16
message header attributes, B-6
name/value pair message header

attributes, B-6, B-15, B-22
native format message examples, B-4, B-21,

B-28, B-54, B-56
native format message to common view

incoming message translations, B-15
runtime initialization, B-14
setting the ota.d3ls parameter in the adapter.ini

file, B-6
supported data types, B-11
unsuitable D3L formats, B-3
use case, B-26

configuring the aqapp_pub and fileapp_sub
applications in iStudio, B-30

creating a business object Employee, B-31
creating a D3L file for the FTP adapter, B-28
creating a DTD file for the Advanced Queuing

Adapter, B-27
creating a new workspace and new

project, B-31
creating the aqapp_pub application, B-33
creating the fileapp_sub application, B-39
creating the newEmployee Event, B-32
defining the application queue for the aqapp_

pub application, B-38
defining the application view, B-35, B-40
defining the application view to common

view mapping, B-36, B-41
enabling the aqapp_pub application to

publish the newEmployee event, B-34
installing the Advanced Queuing and FTP

adapters, B-42
making the fileapp_sub application subscribe

to the newEmployee event, B-40
overview of aqapp_pub and fileapp_sub

applications, B-26
running the use case, B-46
selecting the event to publish, B-34
selecting the event to which to

subscribe, B-40
using other adapters, B-50
using XML mode, B-50

when to use, B-3
XML mode, B-2

data types
supported by D3L, B-11
Index-2

deploy navigation tree, 2-12
deployment

to oracle workflow, 7-12
design navigation tree, 2-12
design time, 1-7
design time tools, 7-4
detail view, 2-13
development kit, 1-3
domain value mapping tables

deleting, 6-10
domain value mappings, 2-7

adding applications to, 6-9
creating, 6-9
deleting, 6-10
modifying data in, 6-10
removing, 6-9
working with, 6-9

E
edit menu, 2-10
enabling infrastructure, 6-2

content-based routing, 6-2
cross reference tables, 6-7
domain value mappings, 6-9

error management
resubmission, 8-4
tracing, 8-4
tracking, 8-4

event maps, 4-2
event menu, 2-10
events, 2-3

creating, 4-3
defining in a D3L file, B-10
importing a D3L file, B-23
overview, 4-2
publishing, 4-4, 4-5
subscribing, 4-12

F
features

adapter, 9-5
error management, 8-4
integration lifecycle management, 1-11

integration logic, platform functionality, 1-8
integration methodology, 1-9
message delivery, 8-3
message retention, 8-3
messaging paradigms, 8-2
repository, 9-5
routing support, 8-3
scalability and load balancing, 8-4
standard messaging, 1-5

H
help menu, 2-10
hub and spoke

how it works, 1-9

I
infrastructure

enabling, 6-2
installation

oracle workflow components, 7-7
integration

create a cross reference table, A-14
create a project, A-8
create an oracle workflow process bundle, A-30
create applications, A-13
create business object events, A-10
create common view business object, A-9
create content based routing, A-28
create publish events, A-15
creating objects in oracle workflow for

modeling, A-35
deploy the process bundle to oracle

workflow, A-33
deployment, A-43
dtd code, A-11
exporting and installing code, A-44
implementing the scenario, A-6
legacy system, A-2
legacy system database trigger, A-6
modeling business logic in oracle

workflow, A-39
modeling the integration, A-4
new centralized system, A-2
Index-3

overview, A-2
pushing metadata, A-44
setting queues, A-43
subscribing to events, A-19
the integration scenario, A-3
using adapters, 1-12
using istudio for modeling, A-5

integration architecture, 8-2
integration logic, 1-8
integration methodology, 1-9
integration process

design time, 1-7
overview, 1-7
runtime, 1-7

istudio, 1-3
activities, 7-8
adding applications to cross reference

tables, 6-7
adding applications to domain value

mappings, 6-9
adding custom transformations, 6-11
adding mapping variables, 6-12
application data types, 3-2
applications, 2-3
common views and business objects, 2-3
concepts, 2-2
content-based routing, 2-6, 6-2
context menu, 2-13
creating a business object, 3-3
creating a business process, 7-10
creating a new project, 2-15
creating a new workspace, 2-13
creating a procedure, 5-3
creating a process bundle, 7-10
creating an application, 3-2
creating an event, 4-3
creating common data types, 3-3
creating domain value mappings table, 6-9
cross reference tables, 2-6, 6-7
deleting custom transformations, 6-12
deleting domain value mapping tables, 6-10
deleting domain value mappings, 6-10
deleting mapping variables, 6-13
deploy navigation tree, 2-12
design navigation tree, 2-12

detail view, 2-13
domain value mapping, 2-7
domain value mappings, 6-9
event maps, 4-2
events, 2-3, 4-2
exporting stored procedures, 5-18
implementing a procedure, 5-12
invoking a procedure, 5-5
invoking and implementing a procedure, 5-4
launching oracle workflow builder, 7-16
launching oracle workflow tools, 7-15
launching the oracle workflow home page, 7-15
mapping, transformations, 2-4
menu bar, 2-9
metadata versioning, 2-5
modifying attribute mappings, 6-11
modifying data in domain value

mappings, 6-10
opening a project, 2-16
opening a workspace, 2-14
overview, 2-2
parts of the window, 2-8
populating cross reference tables, 6-8
procedures, 2-4, 5-2
projects, 2-14
publishing an event, 4-4, 4-5
removing applications from cross reference

tables, 6-7
removing applications from domain value

mappings, 6-9
removing attribute mappings, 6-11
routing, message capability matrix, 2-7
sdk, 1-4
starting, 2-7
subscribing to an event, 4-12
toolbar, 2-11
tracking fields, 2-6
workspaces, 2-13

M
mapping, 2-4
mapping and transformations, 2-4
mapping variables

adding, 6-12
Index-4

deleting, 6-13
menu bar, 2-9

edit menu, 2-10
event menu, 2-10
file menu, 2-9
help menu, 2-10
procedure menu, 2-10

message capability matrix, 2-7
messaging

standard, 1-5
supported paradigms, 1-6

metadata
defining for D3L, B-24

metadata versioning, 2-5

N
native format message

examples, B-4, B-21, B-28, B-54, B-56

O
oracle enterprise manager

starting, 9-2
Oracle Technology Adapters. See adapters
oracle workflow, 1-5, 7-2

apply business logic, 7-7
composite services, 7-3
deploy business process for runtime, 7-7
deployment, 7-12
design business process, 7-7, 7-8
design time tools, 7-4
error management, 7-2
installing components, 7-7
integration with oracle applications

interconnect, 7-4
launching oracle workflow builder, 7-16
launching the home page, 7-15
launching tools, 7-15
message junctions, 7-3
modify existing processes, 7-17
overview, 7-2
runtime, 7-6
solves business problems, 7-2
stateful routing, 7-3

oracle9ias interconnect
components, 1-3
management infrastructure, 1-4
overview, 1-2
sdk, 1-4
using oracle workflow, 7-7

oracle9ias interconnect components
development kit, 1-3

oracle9ias interconnect hub, 1-3
ota.d3ls parameter

setting in the adapter.ini file, B-6, B-22, B-45
ota.type parameter

setting in the adapter.ini file, B-2, B-22, B-45

P
platform functionality, 1-8
procedure menu, 2-10
procedures, 2-4

creating, 5-3
exporting stored procedures, 5-18
implementing, 5-12
importing a D3L file, B-23
invoking, 5-5
invoking and implementing, 5-4
using, 5-2

process bundle, 7-8
creating, 7-10

projects
creating, 2-15
opening, 2-16
using, 2-14

R
repository

common features, 9-4
features, 9-5

routing, 2-7
routing support

content-based routing, 8-3
runtime, 1-7, 7-6

components, 8-6
features, 8-2
management features, 9-4
Index-5

runtime components
adapters, 8-6
advanced queues, 8-9
workflow, 8-10

runtime management, 9-2

S
standard messaging, 1-5
stored procedures, 5-18

T
toolbar, 2-11
tracking fields, 2-6
transformations, 2-4

char replace, C-7
concat fields, C-2
conditional copy, C-4
copy fields, C-2
copy object, C-2
delete xref, C-9
expand fields, C-2
false conditional concat, C-5
false conditional copy, C-5
false conditional to number, C-6
increment, C-10
l trim, C-7
lookup dvm, C-9
lookup xref, C-9
lpad, C-8
r trim, C-8
rpad, C-8
set constant, C-3
string replace, C-7
to number, C-6
true conditional concat, C-4
true conditional copy, C-4
true conditional lookup dvm, C-3
true conditional lookup xref, C-3
true conditional to number, C-5
truncate, C-10
x substring, C-6

W
workspaces

creating, 2-13
opening, 2-14
using, 2-13
Index-6

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Getting Started with Oracle9iAS InterConnect
	What is Oracle9iAS InterConnect?
	Oracle9iAS InterConnect Components
	Oracle9iAS InterConnect Hub
	Oracle9iAS InterConnect Adapters
	Oracle9iAS InterConnect Development Kit
	Oracle9iAS InterConnect Management Infrastructure
	Oracle9iAS InterConnect SDKs
	iStudio SDK
	Adapter SDK

	Oracle Workflow

	Standard Messaging
	Supported Messaging Paradigms

	Oracle9iAS InterConnect Integration Process
	Design Time
	Runtime
	Separation of Integration Logic and Platform Functionality
	Unique Integration Methodology
	How the Hub-and-Spoke Methodology Works

	Integration Lifecycle Management
	Using Adapters for Integration

	2 Using iStudio
	Overview of iStudio
	iStudio Concepts
	Applications
	Common Views and Business Objects
	Events
	Procedures

	Transformations or Mappings
	Metadata Versioning
	Tracking Fields
	Content-Based Routing
	Cross Reference Tables
	Domain Value Mapping
	Routing and the Message Capability Matrix

	Starting iStudio
	Parts of the iStudio Window
	Menu Bar
	File Menu
	Edit Menu
	Procedure Menu
	Event Menu
	Help Menu

	Toolbar
	Design Navigation Tree
	Deploy Navigation Tree
	Context Menus
	Detail View

	Using Workspaces in iStudio
	Creating a New Workspace
	Opening an Existing Workspace

	Using Projects in iStudio
	Creating a New Project
	Opening an Existing Project

	3 Creating Applications, Common Views, and Business Objects
	Applications: An Overview
	Application View
	Application Data Types
	Creating an Application

	Common Views and Business Objects: An Overview
	Defining Common Views
	Creating Business Objects
	Creating Common Data Types
	Adding Attributes
	Importing Attributes
	Deleting and Clearing Attributes

	4 Using Events in iStudio
	Events: An Overview
	Event Maps

	Creating Events
	Publishing and Subscribing to an Event
	Publishing an Event
	Subscribing to an Event

	5 Using Procedures in iStudio
	Using Procedures
	Creating a Procedure

	Invoking and Implementing a Procedure
	Invoking a Procedure
	Implementing a Procedure

	Exporting Stored Procedures

	6 Enabling Infrastructure
	Enabling Infrastructure
	Content-Based Routing
	Cross Reference Tables
	Domain Value Maps

	Working with Content-Based Routing
	Modifying Content-Based Routing

	Working with Cross Reference Tables
	Creating Cross-Reference Tables
	Adding Applications to Cross Reference Tables
	Removing Applications From Cross Reference Tables
	Populating Cross Reference Tables

	Working with Domain Value Mappings
	Creating a Domain Value Mapping Table
	Adding Applications to Domain Value Mappings
	Removing Applications From Domain Value Mappings
	Modifying Domain Value Mappings
	Deleting Domain Value Mappings
	Deleting Domain Value Mapping Tables
	Modifying Attribute Mappings
	Removing Attribute Mappings
	Adding Custom Transformations
	Deleting Custom Transformations
	Adding Mapping Variables
	Deleting a Mapping Variable

	Cross Reference Table Walk-Through
	Domain Value Mappings Walk-Through

	7 Using Oracle Workflow
	Oracle Workflow Overview
	Oracle Workflow Solves Common Business Problems
	Error Management
	Message Junctions
	Stateful Routing
	Composite Services

	Oracle9iAS InterConnect Integration with Oracle Workflow
	Design Time Tools
	Runtime

	Using Oracle Workflow to Apply Business Logic
	Install Oracle Workflow Components
	Design Business Process
	Deploy Business Processes for Runtime

	Design Business Process
	Process Bundle
	Business Process
	Activity
	Creating a Process Bundle
	Creating a Business Process
	Populating a Business Process with Activities
	Deploying to Oracle Workflow
	Launching Oracle Workflow Tools
	Launching the Oracle Workflow Home Page
	Launching Oracle Workflow Builder

	Modifying Existing Oracle Workflow Processes

	8 Runtime System Concepts and Compents
	Integration Architecture
	Features
	Messaging Paradigms
	Message Delivery
	Guaranteed delivery
	Exactly once delivery
	In order delivery

	Message Retention
	Routing Support
	Content-Based Routing

	Error Management
	Resubmission
	Tracing
	Tracking

	Scalability and Load Balancing
	Scenario 1
	Scenario 2
	Scenario 3

	Components
	Adapters
	Agent and Bridge Combination

	Repository
	Advanced Queues
	Oracle Workflow

	9 Runtime Management
	Introduction to Runtime Management
	Starting Oracle Enterprise Manager

	Features
	Common Features for Adapters and the Repository
	Repository Specific Features
	Adapter Specific Features

	A Integration Scenario
	Integration Scenario Overview
	The New Centralized System
	The Legacy System
	The Integration Scenario

	Modeling the Integration
	Integration Modeling using iStudio

	Implementing the Scenario
	Review Legacy System Database Trigger
	Create a Project
	Create the Common View Business Object
	Create Business Object Events
	DTD Code

	Create Applications
	Create a Cross Reference Table
	Create Publish Events
	Subscribing to Events
	DBAPP Application Subscriptions
	AQAPP Application Subscriptions

	Create Content Based Routing
	Create an Oracle Workflow Process Bundle
	Deploy the Process Bundle to Oracle Workflow
	Creating Objects in Oracle Workflow for Modeling
	Message
	Lookup Type
	Notification
	What Oracle Workflow provides.
	Copy Lookup Type (Approval)
	Create an Oracle Workflow Message
	Create an Oracle Workflow Notification

	Modeling Business Logic in Oracle Workflow
	Deployment
	Setting Queues
	Pushing Metadata
	Exporting and Installing Code
	Example

	Conclusion

	B Using the Data Definition Description Language
	About D3L
	What Is D3L?
	When Is D3L Used?

	Native Format Message and D3L File Example
	Native Format Message Contents Description in a D3L File
	Native Format Message Configuration with a D3L File
	adapter.ini Parameter File Setting
	Message Header Attributes
	Name/Value Pair Message Header Attributes
	Magic Value Message Header Attribute

	D3L File Structure
	Supported D3L Data Types
	Signed or Unsigned Integers
	Floating Point Numbers
	Strings
	Structures
	Sequences
	Data Padding

	D3L Integration with Oracle9iAS InterConnect Technology Adapters
	Runtime Initialization
	Native Format Message to Common View Incoming Message Translations
	Common View to Native Format Message Outgoing Messages Translations

	Installing D3L
	Configuring D3L
	Task 1: Configure D3L with iStudio
	Task 2: Create a Native Format Message
	Task 3: Create a D3L File Describing the Native Format Message
	Task 4: Configure a Native Format Message with a D3L File
	Task 5: Configure D3L with Oracle9iAS InterConnect Technology Adapters
	Task 6: Import a D3L File in iStudio
	Task 7: Define Metadata Properties with Each Event (Optional)

	D3L Use Case
	D3L Use Case Overview
	Creating Data Type Definitions for Application Views
	Task 1: Create a DTD File for the Advanced Queuing Adapter
	Task 2: Create a D3L File for the FTP Adapter

	Configuring the aqapp_pub and fileapp_sub Applications in iStudio
	Task 1: Create a New Workspace and New Project
	Task 2: Create the Employee Business Object
	Task 3: Create the newEmployee Event
	Task 4: Create the aqapp_pub Application
	Task 5: Enable the aqapp_pub Application to Publish the newEmployee Event
	Select the Event to Publish
	Define the Application View
	Define the Application View to Common View Mapping

	Task 6: Define the Application Queue for the aqapp_pub Application
	Task 7: Create the fileapp_sub Application
	Task 8: Enable the fileapp_sub Application to Subscribe to the newEmployee Event
	Select the Event to which to Subscribe
	Define the Application View
	Define the Application View to Common View Mapping

	Installing the Advanced Queuing and FTP Adapters
	Task 1: Install the Advanced Queuing Adapter for Application aqapp_pub
	Task 2: Create the Application Queue AQAPP_NEWEMP
	Task 3: Install the FTP Adapter for Application fileapp_sub
	Task 4: Copy the newemp.xml D3L File to the fileapp_sub Adapter Directory
	Task 5: Set the D3L file and Payload Type in the adapter.ini Adapter Initialization File

	Running the D3L Use Case
	Task 1: Start the Adapters
	To Start the Adapters on UNIX:
	To Start the Adapters on Windows:

	Task 2: Create PL/SQL Code to Trigger the Native newEmployee Event
	Task 3: Trigger the newEmployee Event
	Task 4: Verify Receipt of newEmployee Event

	Using Other Adapters and XML Mode
	Using the HTTP, SMTP, or MQ Series Adapters in D3L Mode
	Using XML Mode

	Additional D3L Sample Files and DTD
	Additional D3L Sample Files
	Example One: Sample File with Structure VehicleRegistration
	Example Two: Sample File with Structure Hierarchy PersonRecord
	Example Three: Sample File with Structure ProductRecord

	D3L DTD

	C Transformations
	Copy Fields
	Parameters:

	Copy Object
	Parameters:

	Concat Fields
	Parameters:

	Expand Fields
	Parameters:

	Set Constant
	Parameters:

	True Conditional Lookup XRef
	Parameters:

	True Conditional Lookup DVM
	Parameters:

	Conditional Copy
	Parameters:

	True Conditional Copy
	Parameters:

	True Conditional Concat
	Parameters:

	True Conditional To Number
	Parameters:

	False Conditional Copy
	Parameters:

	False Conditional Concat
	Parameters:

	False Conditional To Number
	Parameters:

	To Number
	Parameters:

	Substring
	Parameters:

	Char Replace
	Parameters:

	String Replace
	Parameters:

	LTrim
	Parameters:

	RTrim
	Parameters:

	LPad
	Parameters:

	RPad
	Parameters:

	Lookup XRef
	Parameters:

	Delete XRef
	Parameters:

	Lookup DVM
	Parameters:

	Truncate
	Parameters:

	Increment
	Parameters:

	Glossary
	Index

