
Relational DBMS Internals
Solutions Manual

A. Albano, D. Colazzo, G. Ghelli and R. Orsini

February 10, 2015

CONTENTS

2 Permanent Memory and Buffer Management 1

3 Heap and Sequential Organizations 5

4 Hashing Organizations 9

5 Dynamic Tree-Structure Organizations 13

6 Non-Key Attribute Organizations 19

9 Transaction Management 23

10 Concurrency Control 27

11 Implementation of Relational Operators 35

12 Query Optimization 39

II CONTENTS c© 2015 by Albano et al.

Chapter 2

PERMANENT MEMORY AND
BUFFER MANAGEMENT

Exercise 2.1 A disk has the following characteristics:

– bytes per sector (bytes/sector) = 512
– sectors per track (sectors/track) = 50
– tracks per surface (tracks/surface) = 2000
– number of platters = 5
– rotation speed = 5400 rpm (rotations/minutes)
– average seek time = 10 ms

Calculate the following parameters.

1. Tracks capacity (bytes), a surface capacity, total capacity of the disk.
2. Number of disk cylinders.
3. Average rotational latency.
4. Average transfer time of a block of 4096 bytes.

256, 2048 and 51 200 are examples of valid block sizes?

Answer 2.1

1. bytes/track = bytes/sector × sectors/track = 512 × 50 = 25 600
bytes/surface = bytes/track × tracks/surface = 25 600 × 2000 = 51,2M.
bytes/disk = bytes/surface × surfaces/disk = 51,2M × 10 = 512M.

2. Number of cylinders = tracks per surface = 2000.
3. Average rotational latency = 1/2 rotation time = 1/2×(1/5400)×60 = 0,006 sec.
4. Average transfer time of a track = 25 600/0,011 = 2 327 272 bytes/sec.

Average transfer time of a block of 4096 bytes = 4096/2 327 272 = 1,76 ms.

The size of a block must be a multiple of the sector size and less than a track size.
256 and 51 200 are not valid block sizes.

Exercise 2.2 Consider the disk of the previous exercise with blocks of 1024 bytes
to store a file with 100 000 records, each of 100 bytes and stored completely in a
block,

Calculate the following parameters.

2 CHAPTER 2 Permanent Memory and Buffer Management c© 2015 by Albano et al.

1. Number of records per block.
2. Number of blocks to store the file.
3. Number of cylinders to store the file per cylinders.
4. Number of 100 bytes records stored in the disk.
5. If the pages are stored on the disk by cylinder, with page 1 on block 1 of track

1, which page is stored on block 1 of track 1 of the next disk surface? What will
change if the disk can read/write in parallel by all the array of heads?

6. What is the time to read serially a file with 100 000 records of 100 bytes? What
will change if the disk is able to read/write in parallel from all the array of heads
(with the data stored in the best way)?

7. Suppose that every reading of a block involves a seek time and a rotational latency
time, what is the time to read the file randomly?

Answer 2.2

1. Number of record per block = 1024/100 = 10.
2. To store 100 000 record in blocks of 10 record are needed 10 000 blocks.
3. A track contains 25 blocks and so 400 are needed. A cylinder contains 250 blocks

and so 100 000 records are stored in 40 cylinder.
4. Total capacity of the disk is 512M, i.e. 500 000 blocks. Each block can contain 10

records, therefore 5M records can be stored in the disk.
5. It is block 26 on block 1 of track 1 on the next disk surface.

If the disk were capable of reading/writing from all heads in parallel, we can put
the first 10 blocks on the first cylinder. Therefore, it is block 2 on block 1 of track
1 on the next disk surface.

6. A file containing 100,000 records of 100 bytes needs 40 cylinders or 400 tracks
in this disk. The transfer time of one track of data is 0.011 seconds. Then it takes
400× 0, 011 = 4, 4 seconds to transfer 400 tracks.
This access seeks the track 40 times. The seek time is 40 × 0, 01 = 0, 4seconds.
Therefore, total access time is 4, 4 + 0, 4 = 4, 8 seconds.
If the disk were capable of reading/writing from all heads in parallel, the disk can
read 10 tracks at a time. The transfer time is 10 times less, which is 0,44 seconds.
Thus total access time is 0, 44 + 0, 4 = 0, 84 seconds

7. To read a block, the average access time is: ts + tr + tt = 10 ms + 6 ms + 1/2250
ms = 10 + 6 + 0, 44 = 16, 44 ms.
For a file containing 100 000 records of 100 bytes, in 10 000 blocks, the total
access time to read serially the file would be 164,4 seconds. To read the file ran-
domly, 100 000 blocks must be read and the total access time would be 1644 sec-
onds.

Exercise 2.3 Consider a disk with the following characteristics:

– 29 = 512 bytes/sector
– 1000 sectors/track
– 10 000 cylinders
– 5 platters and 10 surfaces
– rotation speed 10 000 rpm
– the seek time is of 1 ms per track plus 1 ms per 1000 cylinders skipped.

Calculate the following parameters.

c© 2015 by Albano et al. 3

1. Total capacity of the disk.
2. The average seek time.
3. The average rotational latency.
4. The transfer time of a block (214 = 16 384 bytes).
5. The average time for accessing 10 continuous blocks in one track on the disk.
6. Suppose you are told that half of the data on the disk are accessed much more fre-

quently than another half (hot or cold data), and you are given the choice to place
the data on the disk to reduce the average seek time. Where do you propose to
place the hot data, considering each of the following two cases? (Hint: inner-most
tracks, outer-most tracks, middle tracks, random tracks, etc). State your assump-
tions and show your reasoning.

(a) There are same number of sectors in all tracks (the densities of inner tracks
are higher than those of the outer tracks).

(b) The densities of all tracks are the same (there are less sectors in the inner
tracks than in the outer tracks).

Answer 2.3

1. TotalNumberOfTracks = 10 000 × 10 = 100 000
TotalNumberOfSectors = TotalNumberOfTracks × 1000 = 100 000 000
Total capacity of disk = 512 × TotalNumberOfSectors = 512 × 108 = 51,2 GB

2. Average seek distance = 10 000 / 3 = 3333 tracks
Average seek time = 1 + 3333/1000 = 4,333 ms

3. Average rotational latency = 1/2× 60/10 000 = 3 ms
4. Number of sectors per block = 214/29 = 32

Transfer time of a block = 25 / 1000 × 60/10 000 s = 0,192 ms
5. Time for accessing 10 continuous blocks = ts + tr + tt = 4,33 + 3 + 0,192 × 10 =

9,25 ms.
6.

(a) Put the hot data on the middle tracks. Thus, the average seek distance between
the hot data and other (cold) data is minimized, and thereby minimizing the
overall average seek time. Note that for part (a), the average seek distance
among the hot data is the same no matter where you put the hot data.

(b) Put the hot data on the outer tracks. Thus, the average seek distance among the
hot data is minimized, because the hot data fits in fewer tracks. Note that since
the hot data is frequently accessed, the average seek distance among the hot
data is a dominating factor for the overall average seek time. So, minimizing
the seek distance among the hot data also minimizes the overall average seek
time.

Exercise 2.4 Give a brief answer to the following questions:

1. Explain how the read of a page is executed by the buffer manager.
2. When the buffer manager writes a page to the disk?
3. What does it mean that a page is pinned in the buffer? Who puts the pins and who

takes them off?

Answer 2.4 See the textbook.

4 CHAPTER 2 Permanent Memory and Buffer Management c© 2015 by Albano et al.

Chapter 3

HEAP AND SEQUENTIAL
ORGANIZATIONS

Exercise 3.1 Explain what is meant by file reorganization and give an example of
file organization that requires it, specifying which operations motivate it.

Answer 3.1 The performance of a static data organization tend to degrade when
there are several insertions and deletions. An example is a sequential organization
with overflow management to deal with several insertions and deletions.

Deletions reduce the pages load factor. Insertions can create long lists of overflow
records that increase the cost of a search. In all these cases it is advisable to reorganize
the file periodically, that is, to unload the records, allocate more space for records, and
the reinsert the records back into the file in the required order.

Exercise 3.2 Discuss the advantages and disadvantages of records with fixed fields
vs variable fields, and of records with fixed length vs variable length.

Answer 3.2

1. Fixed fields

(a) Advantages:
i. Easy to implement.

ii. Efficient access.
iii. Easy to update data.

(b) Disadvantages:
i. May waste space (when the padding is bigger than the field size)

ii. Inflexible (need a priori knowledge of field size).
iii. Can’t support repeating fields that don’t have an upper limit.

2. Fixed records

(a) Advantages:
i. Easy to implement.

ii. Easy to manipulate.
iii. Efficient access.
iv. Efficient usage of disk space (schema is separate from data).

6 CHAPTER 3 Heap and Sequential Organizations c© 2015 by Albano et al.

(b) Disadvantages:
i. Space is waste with fields that are just full of nulls.

ii. Inflexible schema.

Exercise 3.3 Let R(K,A,B, other) a relation with Nrec(R) = 100 000, a key K
with integer values in the range (1, 100 000), and the attribute A with integer values
uniformly distributed in the range (1, 1000). The size of a record of R is Lr = 100
bytes. Suppose R stored with heap organization, with data unsorted both respect to
K and A, in pages with size Dpag = 1024 bytes.

The cost estimate C of executing a query is the number of pages read from or
written to the permanent memory to produce the result.

Estimate the cost of the following SQL queries, and consider for each of them the
cases that Attribute is K or A, and assuming that there are always records that satisfy
the condition.

1. SELECT *
FROM R
WHERE Attribute = 50;

2. SELECT *
FROM R
WHERE Attribute BETWEEN 50 AND 100;

3. SELECT Attribute
FROM R
WHERE Attribute = 50
ORDER BY Attribute;

4. SELECT *
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY Attribute;

5. SELECT Attribute
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY Attribute;

6. INSERT INTO R VALUES (. . .);
7. DELETE

FROM R
WHERE Attribute = 50;

8. UPDATE R
SET A = 75
WHERE K BETWEEN 50 AND 100;

Answer 3.3

1. With Attribute = K the cost is C =
⌈
Npag/2

⌉
. With Attribute = A the cost is C =

Npag.
2. With Attribute = K or A the cost is C = Npag.
3. The clause ORDER BY is superfluous and the cost is as in case 1.
4. Suppose that the cost is the sum of four quantities:

a) range search cost.
b) write cost to a temporary file of the records to sort.

c© 2015 by Albano et al. 7

c) a temporary file sort and
d) read cost of the sorted file.

The cost of (a) is C = Npag as in case 2.
The cost of (b) is C = N ′pag, the number of pages occupied by the Erec records
that satisfy the condition: C = N ′pag =

⌈
Erec/Dpag

⌉
.

With Attribute = K

Erec =

⌈
Nrec ×

100− 50

100 000− 1

⌉
= 51

therefore N ′pag = 5.
With Attribute = A

Erec =

⌈
Nrec ×

100− 50

1000− 1

⌉
= 5006

therefore N ′pag = 489.
The cost of (c) is C = 4×N ′pag.
The cost of (d) is C = N ′pag.

5. As in the previous case, the cost is

C = Npag +N ′pag + 4×N ′pag +N ′pag

the value of N ′pag is different because the result records have one attribute only,
suppose with LA = 4:

C = N ′pag = Erec × LA/Dpag

6. The cost is one page read and write: C = 2.
7. With Attribute = K the cost is that of search (case 1), to test that a record with
K = 50 does not exist, and a page write.
With Attribute = A the cost is that of search (case 1) and a write of the pages with the
records deleted, estimated as Erec = Nrec/Nkey(A), with Nkey(A) the number of
different A values.

8. The cost is the range search by the primary key, as in the case 2, and the write of
N ′pag with the 51 records that satisfy the condition: N ′pag = 51.

Exercise 3.4 Assuming that a page access requires 10 ms, estimate the execution
time of the SQL queries of the previous exercise in the case of a sequential organiza-
tion with records sorted on the key K values.

Answer 3.4 The execution time is estimated as C = CD × ta, where CD is the
search cost and ta = 10 ms. Let us estimate CD in the different cases with the
selection Attribute = K only because with Attribute = A the result of the previous exercise
hold.

1. CD =
⌈
Npag/2

⌉
.

2. CD = Cr +
⌈
fs ×Npag

⌉
− 1, with Cr the cost of case 1 and fs = 51

3. The clause ORDER BY is superfluous and the cost is as in case 1.
4. The clause ORDER BY is superfluous and the cost is as in case 2.
5. As in the previous case.

8 CHAPTER 3 Heap and Sequential Organizations c© 2015 by Albano et al.

6. To insert a new record, we must find the correct position in the ordering for the
record and then find space to insert it. If there is sufficient space in the required
page for the new record, then the single page can be reordered and written back to
disk: CD = Cr + 1. If this is not the case, then it would be necessary to move one
or more records on to the next page. Again, the next page may have no free space
and the records on this page must be moved, and so on: CD = Cr + Npag. If the
insertion requires an update of the overflow record list, then CD = Cr + 3.

7. CD = Cr + 1

8. The cost is the range search by the primary key, as in the case 2, and the write of
N ′pag = 6 with the 51 records that satisfy the condition.

Exercise 3.5 Consider a fileRwith 10 000 pages to sort using 3 pages in the buffer,
and to write the sorted file to the disk.

1. How many runs are produced in the first pass?
2. How many 2-way merge phases are needed to sort the file?
3. How much time does it take to sort the file if a page access requires 10 ms?
4. How many buffer page B are needed to sort the file with one merge phase?

Answer 3.5

1. Let S be the initial number of runs: S =
⌈
Npag/B

⌉
= 3334

2. k = dlgSe = 12

3. t = ta×2×Npag×(k+1) = 0, 010×2×10 000×13 = 0, 010×260 000 = 2600

4. B − 1 ≥ S.
B × (B − 1) ≥ Npag
B = 101

Exercise 3.6 Consider a file R with Nrec(R) = 10 000 records of 100 bytes stored
in pages with size 1K. Assume that there are 5 buffer pages to sort the file, and to
write the sorted file to the disk.

1. How many runs are produced in the first pass, and how long will each run be?
2. How many passes are needed to sort the file completely?
3. Which is the cost of sorting the file?
4. What is the number of records Nrec of the largest file that can be sorted in just two

passes?

Answer 3.6

1. Let Npag = dNrec × Lr/Dpage = 1000 and the initial number of runs S =⌈
Npag/B

⌉
= 200 of 5 pages.

2. k =
⌈
logB−1 S

⌉
+ 1 = 5

3. C = 2×Npag × k = 10 000

4. In the second pass we must merge
⌈
Npag/B

⌉
runs, i.e.

⌈
Npag/B

⌉
≤ (B − 1).

With B = 5, we get Npag = 20. The maximum number of records for page is 10
and so Nrec = 200.

Chapter 4

HASHING ORGANIZATIONS

Exercise 4.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but the DBA can use the following command to transform
a heap organization into a hash primary organization:

MODIFY Table TO HASH ON Attribute;

The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. hash) structure until the table contains most,
if not all, of its data, . . . , (otherwise) query processing performance degrade upon
adding extra data”. Explain what determines the performance degradation.

Answer 4.1 Performance degrades upon adding extra records, since the hash orga-
nization is static and overflow are created.

Exercise 4.2 Let R(K,A,B, other) a relation with key K with integer values. In
the text it has been shown how the relation is stored with a primary static hashing
organization. Explain how to modify the operations when the static hashing organi-
zation is made using the non-key attribute A.

Answer 4.2 An insertion does not present problems: a record with the same value
of A is assigned to the same page. A search operation, or deletion, requires that once
a record with the specified A value has been found, it is necessary to check if there
are others records with the same attribute value.

A problem occurs when an overflow record is inserted in a page of a separate
overflow area, and A has few different values in number less than the number of
pages. In this case part of the primary area is not used and the lists of overflow become
long, with a performance degradation.

Exercise 4.3 Let R(K,A,B, other) a relation with Nrec(R) = 100 000, Lr = 100
bytes, and a key K with integer values in the range (1, 100 000). Assume the relation
stored with a primary static hashing organization using pages with sizeDpag = 1024
bytes and a loading factor d = 0, 80.

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the condition.

1. SELECT ∗
FROM R;

10 CHAPTER 4 Hashing Organizations c© 2015 by Albano et al.

2. SELECT ∗
FROM R
WHERE K = 50;

3. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100;

4. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100
ORDER BY K;

Answer 4.3

1. The cost is that of primary area scan:
CD = (Nrec × Lr)/(Dpag × d) = 12 208

2. CD = 1

3. Since the number of records to find is 51, less than the number pages of the pri-
mary area, they can be found by applying 51 times the hash function to the values
of the keys with a cost of 51.

4. As in the previous case because the clause ORDER BY is superfluous.

Exercise 4.4 Let R(K,A,B, other) a relation with Nrec(R) = 100 000, Lr = 100
bytes, and a key K with integer values in the range (1, 100 000), and the attribute A
with integer values uniformly distributed in the range (1, 1 000) and LA = 4. As-
sume the relation stored using pages with size Dpag = 1024 bytes, and the following
queries must be executed:

1. Find all R records.
2. Find all R records such that A = 50.
3. Find all R records such that K ≥ 50 and K < 100.

Which of the following organizations is preferable to perform each operation?

1. A serial organization.
2. A static hashing organization

Answer 4.4 Let Npag(R) =
⌈
(Nrec × Lr)/Dpag

⌉
= 104 be the number of pages

needed to store data with a serial organization, and
⌈
1, 25×Npag(R)

⌉
the number of

pages needed by a static hashing organization. Table 4.1 shows the costs of operations
for the two organizations.

– To find all records of R a serial organization is preferable.
– To find the record with A = 50 a static hashing organization is preferable.
– To find the records in the range K ≥ 50 and K < 100, with 50 key values, a static

hashing organization is preferable (remember, however, that a file scan is usually
faster than a random access to half of its pages).

c© 2015 by Albano et al. 11

Operation Serial Hash

1 Npag(R) = 104 d1, 25×Npag(R)e
2 Npag(R) Npag(R)/Nkey(A) = 10

3 Npag(R) 50

Table 4.1: Table for Exercise 4.4.

Operation Sequential Hash Hash index

1 Npag(R) = 104 d1, 25×Npag(R)e Npag(I) +Nrec

2 dlgNpag(R)e = 14 1 2
3 14 + dfs1 ×Npage − 1 = 18 50 50 + 50

4 14 + dfs2 ×Npage − 1 = 14 5 5 + 5

5 Npag(R) 1, 25×Npag(R) Npag(I)

Table 4.2: Costs of operations.

Exercise 4.5 Let R(K,A,B, other) a relation with Nrec(R) = 100 000, Lr =
100 bytes, and a key K with integer values in the range (1, 100 000), and LK =
4. Assume the relation stored using pages with size Dpag = 1024 bytes, and the
following queries must be executed:

1. Find all R records.
2. Find all R records such that K = 50;
3. Find all R records such that K ≥ 50 and K < 100.
4. Find all R records such that K ≥ 50 and K < 55.
5. Find all K values.

Which of the following organizations is preferable to perform each operation?

1. A sequential organization.
2. A static hashing organization.
3. An unclustered hash index I .

Answer 4.5

– Let Npag(R) =
⌈
(Nrec × Lr)/Dpag

⌉
= 104 be the pages occupied by the data

organized with a sequential organization,
– Let Npag(I) =

⌈
1, 25× (Nrec × 4)/Dpag

⌉
= 500 be the pages occupied by the

hash index,
– Let fs1 = 5× 10−4 the selectivity factor of the condition K ≥ 50 and K < 100,
– Let fs2 = 5× 10−5 the selectivity factor of the condition K ≥ 50 and K < 55,

Table 4.2 shows the costs of operations for the three organizations, assuming that
there are no overflow.

1. To find all the R records a sequential organization is preferable.

12 CHAPTER 4 Hashing Organizations c© 2015 by Albano et al.

2. To find the records with K = 50 a static hashing organization is preferable.
3. To find all R records such that K ≥ 50 and K < 100, a range with many key

values, a sequential organization is preferable.
4. To find all R records such that K ≥ 50 and K < 55, a range with only few key

values, a static hashing organization is preferable.
5. To find all K values, an hash index is preferable.

Exercise 4.6 Consider a linear hashing organization, with M = 3 and each page
holding 2 data entries. The following figure shows how the keys {4, 18, 13, 29, 32}
are stored.

0 18
1 4 13
2 29 32

Show how the structure changes by inserting then the following keys in the order (9,
22, 44, 35).

Answer 4.6 See the textbook.

Chapter 5

DYNAMIC TREE-STRUCTURE
ORGANIZATIONS

Exercise 5.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but provides the DBA the following command to trans-
form a heap organization into a tree-structure organization:

MODIFY Table TO ISAM ON Attribute;

The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. ISAM) structure until the table contains
most, if not all, of its data, . . . , (otherwise) query processing performance degrade
upon adding extra data”. Explain what determines the performance degradation.

Answer 5.1 Performance degrades upon adding extra records, since the ISAM or-
ganization is static and overflow are created.

Exercise 5.2 Answer the following questions about index and tree organizations:

– What is the difference between an index secondary organization and index sequen-
tial. organization?

– What is the difference between a clustered index and an unclustered index? If an
index contains data records as ‘data entries’ can it be unclustered?

Answer 5.2 See the textbook.

Exercise 5.3 Show the result of entering the records with keys in the order (1, 2,
3, 4, 5) to an initially empty B+–tree of order m = 3. In case of overflow, split the
node and do not re-distribute keys to neighbors. Is it possible to enter the records with
keys in a different order to have a tree of less height?

Answer 5.3 The result of entering the records with keys in the order (1, 2, 3, 4, 5)
is the following B+–tree.

1* 2* 3* 4* 5*

1 3

2

14 CHAPTER 5 Dynamic Tree-Structure Organizations c© 2015 by Albano et al.

The result of entering the records with keys in the order (2, 3, 4, 1, 5) is the following
B+–tree.

2 3

3*2*1* 4* 5*

Exercise 5.4 Show how the following B+–tree changes after the insertion of the
record with key 25.

10 40

30* 40*10* 50*

Answer 5.4

10* 25* 30* 40* 50*

10 40

30

Exercise 5.5 Consider a DBMS with the following characteristics: a) file pages
with size 2048 bytes, b) pointers of 12 bytes, c) the page header of 56 bytes. A
secondary index is defined on a key of 8 bytes. Compute the maximum number of
records that can be indexed with

1. A three levels B–tree.
2. A three levels B+–tree. For simplicity, assume that the leaf nodes are organized

into a singly linked list.

Answer 5.5

1. An internal node of a B–tree of order n has at most n children and (n− 1) pairs
(ki, ridi), e.g. keys and pointers to data: 8× (n−1)+12× (2n−1)+56 ≤ 2.048
and so n ≤ 62. The root has at most 61 keys, the second level at most 62 × 61
keys, the leaves at most 62 × 62 × 61 keys. Therefore the maximum number of
keys is 61 + 62× 61 + 62× 62× 61 = 238 327.

2. An internal node of a B+–tree of order n has at most n children and n− 1 keys:
8×(n−1)+12×n+56 ≤ 2048 and so n ≤ 100. The root has at most 99 keys. The
number of leaves is 100× 100 = 10 000 and have at most 99× 10 000 = 990 000
keys.

Exercise 5.6 Consider a secondary index on a primary key of a table with N
records. The index is stored with a B+–tree of order m. What is the minimum num-
ber of nodes to visit to search a record with a given key value?

c© 2015 by Albano et al. 15

Answer 5.6 First let us calculate the maximum number of keys that can be in-
dexed with a B+–tree of order m and height h. Each internal node has m children
and each leaf node has at most m − 1 pointers to a record, and so with h levels
mh−1 × (m − 1) keys can be indexed. Therefore mh−1 × (m − 1) ≥ N and so
h ≥ dlogm(N/m− 1)e+ 1.

Exercise 5.7 Discuss the advantages and disadvantages of a B–tree and a static
hashing primary organizations.

Answer 5.7 A B–tree is a typical dynamic structure that does not require a reorga-
nization when there are several insertions and deletions. The operations cost depend
on the tree height, which is usually small, and the structure allows both key search
and range key search. The cost of an operation is easily estimate both in the best and
in the worse case. The memory occupation is good because the nodes are 70% filled
on average.

A static hashing is a typical structure that requires a reorganization when there
are several insertion and deletions. The cost of operations depend on the loading
factor of the primary area: for values lesser than 0.8 the average key search cost
is estimated 1, the optimum. The cost of the worst case cannot always be easily
estimated significantly. This organization does not allow range key search, except in
cases where they are few and well-known key values, because it is enough to repeat
the search for each value. The memory occupation is comparable to that of a B–tree.
Another advantage is that it is easily implemented.

Exercise 5.8 Let R(K,A,B, other) be a relation with Nrec(R) = 100 000, Lr =
100 bytes, a keyK with integer values in the range (1, 100 000) andLK = 4. Suppose
R stored with heap organization in pages with size Dpag = 1024 bytes and a loading
factor fr = 0, 8, and an index exists on the key K stored as B+–tree,

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the WHERE condition.

1. SELECT ∗
FROM R;

2. SELECT ∗
FROM R
WHERE K = 50;

3. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100;

4. SELECT ∗
FROM R
WHERE K BETWEEN 50 AND 100
ORDER BY K;

Answer 5.8

1. The cost of the data file scan is (Nrec × Lr)/(Dpag × fr) = 12 208. With the
unclusterd index the cost is Nleaf +Nrec.

2. C = 1 + 1

16 CHAPTER 5 Dynamic Tree-Structure Organizations c© 2015 by Albano et al.

3. The operation requires the index search to get the record rids with the cost dfs ×Nleafe
where

fs =
100− 50

100 000− 1

and the access cost to Erec = 50 records.
4. As in the previous case because the clause ORDER BY is superfluous.

Exercise 5.9 Let R(A,B,C,D,E) be a relation with key A, Npag(R) = 10 000,
Nrec(R) = 100 000 and Dpag = 500 bytes. The values of all attributes are strings
with length 10 bytes. Consider the query

SELECT A, B
FROM R
ORDER BY A;

1. Estimate the query execution cost without indexes.
2. Estimate the query execution cost with a clustered index on A stored as B+–tree

with Nleaf = 3500.

Answer 5.9

1. The query can be executed in two ways:

Sort
({A})

Project
({A,B})

TableScan
(R)

(a)

Project
({A,B})

SortScan
(R, {A})

(b)

Let us assume that merge sort of a file with N pages is implemented so that it
returns the final result of the merge without first writing it to a temporary file
(piped merge sort), so the cost is 3×N .
Let T be the result of the projection on (A,B), and

Npag(T) =
20× 100 000

500
= 4000

The first solution has cost

C = Npag(R) + sort(T) = 10 000 + 3× 4000 = 22 000

while the second solution has cost

C = 3×Npag(R) = 3× 10 000 = 30 000

c© 2015 by Albano et al. 17

2. With the use of the clustered index on A

Project
({A,B})

IndexScan
(R, IdxA)

the cost is

C = Nleaf(A) +Npag(R) = 3500 + 10 000 = 13 500

If the data were stored with the index sequential organization,

Project
({A,B})

IndexedSequentialScan
(R, IdxA)

the cost would be C = Npag(R) = 10 000, considering only the cost of data
access.

18 CHAPTER 5 Dynamic Tree-Structure Organizations c© 2015 by Albano et al.

Chapter 6

NON-KEY ATTRIBUTE
ORGANIZATIONS

Exercise 6.1 To speed up the search for records in a table with an equality predicate
on a non-key attribute A, and selectivity factor fs, is preferable:

1. A sequential organization on a key attribute.
2. A static hash organization on a key attribute.
3. An inverted index on A.

Briefly justify the answer and give an estimate of query execution cost in all three
cases.

Answer 6.1 A sequential or a static hash organization requires a data file scan with
cost Npag.

An inverted index on A has the cost C = CI + CD, where CI = dfs ×Nleafe.
The data access cost CD depends on the type of index.
If the index is clustered, CD =

⌈
fs ×Npag

⌉
.

If the index is unclustered with sorted rid-lists, CD =
⌈
Φ(fs ×Nrec, Npag)

⌉
.

If the index is unclustered with unsorted rid-lists, CD = dfs ×Nrece.

Exercise 6.2 Consider a relation R with Nrec records stored in Npag of a heap file,
and an inverted index on the attribute A with Nkey integer values in the range Amin
andAmax. Show two different execution plans to evaluate a non-key range query with
condition k1 ≤ A ≤ k2, and their estimated cost. Explain in which case one is better
than the other.

20 CHAPTER 6 Non-Key Attribute Organizations c© 2015 by Albano et al.

Answer 6.2 Let us consider the following plans

Filter
(k1≤A≤k2)

TableScan
(R)

(a)

IndexFilter
(R, IdxA, k1≤A≤k2)

(b)

The cost of plan (a) is Npag.

The cost of plan (b), with the index stored in a B+–tree, with sorted rid-lists in the
leaf nodes, is:

C = CI + CD = dfs ×Nleafe+
⌈
fs ×Nkey × Φ(Nrec/Nkey, Npag)

⌉
with fs = (k2 − k1)/(Amax −Amin)

The plan (b) has a lower cost only if fs is very small and Nrec is large.

Exercise 6.3 Consider the relation R(A,B,C,D,E) with the key A, and each at-
tribute a string 10 characters long. Assume that Npag(R) = 10 000, Nrec = 100 000
and Dpag = 500 bytes. Consider the following query:

SELECT A, B
FROM R
ORDER BY A;

a. Estimate the cost of a plan without the use of indexes.
b. Estimate the cost of a plan with the use of a clustered index on B stored with a
B+–tree with Nleaf = 2500.

c. Estimate the cost of a plan with the use of a clustered index on A stored with a
B+–tree with Nleaf = 2500.

d. Estimate the cost of a plan with the use of a clustered index on A,B stored with a
B+–tree with Nleaf = 5000.

Answer 6.3 Let us consider the following plans for the four cases:

Sort
({A})

Project
({A,B})

TableScan
(R)

(a)

Sort
({A})

Project
({A,B})

IndexScan
(R, idxB)

(b)

Project
({A,B})

IndexScan
(R, idxA)

(c)

IndexOnlyScan
(R, IdxAB, {A,B})

(d)

Let T be the result of the projection on (A,B), and Npag(T) =
20× 100 000

500
=

4000

a. C = Npag(R) + sort(T) = 10 000 + 3× 4000 = 22 000

c© 2015 by Albano et al. 21

b. C = Nleaf(B) +Npag(R) + sort(T) = 2500 + 10 000 + 3× 4000 = 24 500

c. C = Nleaf(A) +Npag(R) = 2500 + 10 000 = 12 500

d. C = Nleaf(A,B) = 5000

Exercise 6.4 Which of the following SQL queries execution takes less advantage
from the presence of a multi-attribute index on R with A as the first attribute and B
as the second attribute?

1. SELECT ∗ FROM R WHERE A = 10;

2. SELECT ∗ FROM R WHERE B = 20;

3. SELECT ∗ FROM R WHERE A < B;

4. SELECT ∗ FROM R WHERE A < C;

5. SELECT ∗ FROM R WHERE C < 100 AND A = 10;

Answer 6.4 The index is useful for queries 1 and 5.

Exercise 6.5 Discuss the advantages and disadvantages of bitmap indexes.

Answer 6.5 See textbook.

Exercise 6.6 Consider a relation R with an unclustred index on the numerical non-
key attributeB. Explain whether to find all records withB > 50 is always less costly
to use the index.

Answer 6.6 No. In fact, since the index is not clustered and more rid-lists must be
used, a page file might be read several times and so a file scan has a lower cost.

22 CHAPTER 6 Non-Key Attribute Organizations c© 2015 by Albano et al.

Chapter 9

TRANSACTION MANAGEMENT

Exercise 9.1 Define the concepts of transaction, of transaction failure and system
failure. Describe the algorithm NoUndo-Redo.

Answer 9.1 See textbook.

Exercise 9.2 Consider a DBMS that uses the recovery algorithm Undo-Redo. Which
of the following statements are true? Briefly justify your answers.

Exercise 9.3 Consider a DBMS that uses the recovery algorithm Undo-Redo. Which
of the following statements are true? Briefly justify your answers.

(a1) All the updates of a transaction must be transferred to the database before the
successful termination of the transaction (i.e. before the commit record is written
to the log).

(a2) All the updates of a transaction must be transferred to the database after the
successful termination of the transaction (i.e. after the commit record is written
to the log).

(a3) The updates of a transaction may be transferred to the database before or af-
ter the successful termination of the transaction (i.e. before or after the commit
record is written to the log).

(b1) The updates of a transaction must be transferred to the database before their
before-images have been previously written to the log in the persistent memory.

(b2) The updates of a transaction must be transferred to the database after their
before-images have been previously written to the log in the permanent memory.

(b3) The updates of a transaction may be transferred to the database before or after
their before-images have been previously written to the log in the permanent
memory.

Answer 9.2

1. Group a: only a3 is true. With redo, it is not necessary to transfer the updates to the
database before the commit. With undo it is not necessary to wait for the commit
to transfer the updates to the database.

2. Group b: only b2 is true. In fact, if a data has been updated before transferring its
old value in the log, a failure between the two events would lead to the impossi-
bility of retrieve the old value, and then the inability to undo.

24 CHAPTER 9 Transaction Management c© 2015 by Albano et al.

Exercise 9.4 Describe the Undo-Redo algorithm and how the commit and the abort
are implemented.

Answer 9.3 See the textbook.

Exercise 9.5 Describe the NoUndo-Redo algorithm and how the commit and the
abort are implemented.

Answer 9.4 See the textbook.

Exercise 9.6 Consider the following log records, assuming that A, B, C and D
are the pages with integer values. Assume the log entries are in the format (W, Trid,
Variable, Old value, New value).

(BEGIN T1)
(W, T1, A, 20, 50)

(BEGIN T2)
(W, T2, B, 20, 10)
(COMMIT T2)

(CKP, {T1})
(W, T1, C, 10, 5)

(BEGIN T4)
(W, T4, D, 30, 5)

(COMMIT T1)
SYSTEM FAILURE

Suppose that the transactions are managed with the Undo-Redo algorithm, and the
checkpoint with the Buffer-consistent checkpoint – Version 1. Show the actions made
with the system restart.

Answer 9.5 Not yet done.

Exercise 9.7 Consider the following log records from the start of the run of a
database system, and suppose that the transactions are managed with the Undo-Redo
algorithm, and the checkpoint with the Buffer-consistent checkpoint – Version 1.

1) (BEGIN T1)
2) (W, T1, A, 25, 50)
3) (W, T1, B, 25, 250)
4) (BEGIN T2)
5) (W, T1, A, 50, 75)
6) (W, T2, C, 25, 55)
7) (COMMIT T1)
8) (BEGIN T3)
9) (W, T3, E, 25, 65)

10) (W, T2, D, 25, 35)
11) (CKP {T2,T3})
12) (W, T2, C, 55, 45)
13) (COMMIT T2)
14) (BEGIN T4)
15) (W, T4, F, 25, 120)
16) (COMMIT T3)
17) (W, T4, F, 120, 150)
18) (COMMIT T4)

Assume the log entries are in the format (W, Trid, Variable, Old value, New value). What
is the value of the data items A, B, C, D, E on F on disk after the restart if the
system crashes

c© 2015 by Albano et al. 25

1. just before line 10 is written to disk.
2. just before line 13 is written to disk.
3. just before line 14 is written to disk.
4. just before line 18 is written to disk.
5. just after line 18 is written to disk.

Answer 9.6

Case A B C D E F

1 75 250 25 25 25 25
2 75 250 25 25 25 25
3 75 250 45 35 25 25
4 75 250 45 35 65 25
5 75 250 45 35 65 150

26 CHAPTER 9 Transaction Management c© 2015 by Albano et al.

Chapter 10

CONCURRENCY CONTROL

Exercise 10.1 Consider the following transactions and the history H:

T1 = r1[a], w1[b], c1
T2 = w2[a], c2
T3 = r3[a], w3[b], c3
H = r1[a], w2[a], c2, r3[a], w1[b], w3[b], c3, c1

Answer the following questions:

1. Is H c-serializable?
2. Is H a history produced by a strict 2PL protocol?

Answer 10.1

T1 T2 T3

r1[a]
w2[a]
c2

r3[a]
w1[b]

w3[b]
c3

c1

The history is c-serializable because its serialization graph is acyclic.

28 CHAPTER 10 Concurrency Control c© 2015 by Albano et al.

T1 T2

T3

A strict 2PL serializer cannot generate the history H , because T2 writes a before T1
has released the read lock on the same data that it holds.

Exercise 10.2 Consider the following transactions:

T1 = r1[X], r1[Y], w1[X]
T2 = r2[X], w2[Y]

and the history S = r1[X], r2[X], r1[Y] . . .

Show how the history can continue on a system that adopts the strict 2PL protocol.

Answer 10.2 A system that adopts the strict 2PL protocol will produce a deadlock
when T1 and T2 will execute in any order the operationsW1(X) andW2(Y), because
T2 has a read lock on X and T1 has a read lock on Y . The system must abort a
transaction, typically the youngest T2, and T1 will commit.

Exercise 10.3 Consider the following transactions and the history H:

T1 = r1[a], w1[a], c1
T2 = r2[b], w2[a], c2
H = r1[a], r2[b], w2[a], c2, w1[a], c1

Answer the following questions:

1. Is H c-serializable?
2. Is H a history produced by a strict 2PL protocol?
3. Suppose that a strict 2PL serializer receives the following requests (where rl and
wl means read lock and write lock):

rl1[a], r1[a], rl2[b], r2[b], wl2[a], w2[a], c2, wl1[a], w1[a], c1

Show the history generated by the serializer.

Answer 10.3

T1 T2

r1[a]
r2[b]
w2[a]
c2

w1[a]
c1

1. The history is not c-serializable because its serialization graph is cyclic.

c© 2015 by Albano et al. 29

T1 T2

2. No, because the strict 2PL protocol produces only c-serializable histories .
3. The serializer executes the commands in the order they are received until it re-

ceives the request for a write lock wl2[a]; this request is not granted because is
in conflict with the granted read lock rl1[a]. T2 is is blocked, while the other T1
requests (wl1[a], w1[a], c1) are accepted and executed. The commit c1 causes the
release of the blocks assigned to the transaction T1, and therefore the serializer
unblocks T2 and executes the related commands. The final history is therefore the
following:

rl1[a], r1[a], rl2[b], r2[b], wl1[a], w1[a], c1, wl2[a], w2[a], c2

Exercise 10.4 Consider the following history H of transactions T1, T2 and T3 ini-
tially arrived at time 10, 20, 30, respectively.

H = r3[B], r1[A], r2[C], w1[C], w2[B], w2[C[, w3[A]

We make the following assumptions:

1. A transaction requests the necessary lock (shared lock for read and exclusive lock
for write) on a data item right before its action on that item is issued,

2. If a transaction ever gets all the locks it needs, then it instantaneously completes
work, commits, and releases its locks,

3. If a transaction dies or is wounded, it instantaneously gives up its locks, and
restarts only after all current transactions commit or abort,

4. When a lock is released, it is instantaneously given to any transaction waiting for
it (in a first-come-first-serve manner).

Answer the following questions:

1. Is H c-serializable?
2. If the strict 2PL is used to handle lock requests, in what order do the transactions

finally commit?
3. If the wait-die strategy is used to handle lock requests, in what order do the trans-

actions finally commit?
4. If the wound-wait strategy is used to handle lock requests, in what order do the

transactions finally commit?
5. If the snapshot strategy is used, in what order do the transactions finally commit?

Answer 10.4 1. H is not c-serializable because its serialization graph is cyclic.

T1 T2

T3

30 CHAPTER 10 Concurrency Control c© 2015 by Albano et al.

2. Strict 2PL

T1 T2 T3

1) rl[B], r[B]
2) rl[A], r[A]
3) rl[C], r[C]
4) wl[C] Denied
5) wl[B] Denied
6) wl[A] Denied
7) Deadlock, Restart
8) wl[B], w[B]
9) wl[C], w[C] Commit

10) wl[C], w[C] Commit
11) rl[B], r[B]

wl[A], w[A] Commit

The transactions commit in the order T2, T1, T3.
3. Waits-die

T1 T2 T3

1) rl[B], r[B]
2) rl[A], r[A]
3) rl[C], r[C]
4) wl[C] Waits
5) wl[B] Waits
6) wl[A] Dies
7) w[B]

wl[C], w[C] Commit
8) w[C] Commit
9) rl[B], r[B]

wl[A], w[A] Commit

The transactions commit in the order T2, T1, T3.

4. Wound-wait

T1 T2 T3

1) rl[B], r[B]
2) rl[A], r[A]
3) rl[C], r[C]
4) wl[C] Wounded
5) w[C] Commit
6) rl[B], r[B]

wl[A], w[A] Commit
7) rl[C], r[C]

wl[B], w[B]
wl[C], w[C] Commit

The transactions commit in the order T1, T3, T2.

c© 2015 by Albano et al. 31

5. Snapshot

T1 T2 T3

1) r[B]
2) r[A]
3) r[C]
4) w[C] Commit
5) w[B]

w[C] Commit
Write set conflict
Abort, Restart

6) w[A] Commit
7) r[C], w[B], w[C] Commit

The transactions commit in the order T1, T3, T2.

Exercise 10.5 Consider the transactions:

T1 = r1[x], w1[x], r1[y], w1[y], c1
T2 = r2[y], w2[y], r2[x], w2[x], c2

1. Compute the number of possible histories.
2. How many of the possible histories are c-equivalent to the serial history (T1, T2)

and how many to the serial history (T2, T1)?

Answer 10.5

1. In general, given m transactions with number of operations n1, n2, . . ., nm, the
number of possible histories is:

(n1 + n2 + . . .+ nm)!

(n1!× n2!× . . .× nm!)

where the numerator gives the number of possible permutations and the denomi-
nator is the product of the permutations of the operations of individual transactions
to be excluded from the result. In our case, m = 2, n1 = 5 and n2 = 5, so the
number of possible histories is

(5 + 5)!

(5!× 5!)
= 252

2. Given a history, another c-equivalent to it can be obtained by inverting the order of
non-conflicting operations of different transactions. Therefore, instead of search-
ing among the possible histories for those equivalent to a serial history, we use the
inverse procedure: we calculate in how many ways it is possible to invert the or-
der of non-conflicting operations of different transactions to get other c-equivalent
histories.
In the history (T1, T2) the fourth and fifth operation arew1[y] and r2[y] that can not
be inverted. The other pairs of adjacent operations are of the same transaction and
can not be inverted. Therefore there is only one history c-equivalent to (T1, T2).
Same conclusion for (T2, T1).

32 CHAPTER 10 Concurrency Control c© 2015 by Albano et al.

Exercise 10.6 The transaction T1 precedes T2 in the history S if all actions of
T1 precede actions of T2. Give an example of a history S that has the following
properties:

1. T1 precedes T2 in S,
2. S is c-serializable, and
3. in every serial history c-equivalent to S, T2 precedes T1.

The schedule may include more than 2 transactions and you do not need to consider
locking actions. Please use as few transactions and read or write actions as possible.

Answer 10.6 Note that if T1 and T2 are the only transactions in S, then say that T1
precedes T2 is equivalent to saying that S is the serial history (T1, T2), but it does not
satisfy the third condition. The story S must therefore include at least one transaction
T3 with an operation that precedes and conflicts with an operation of T1, and T2 must
have an operation that precedes and conflicts with operation of T3. Finally, T1 and T2
should not have operations in the conflict.

1. Assume S = w3[x], r1[x], w2[y], w3[y]. In S, T1 precedes T2;
2. The serialization graph is T2→T3→T1, and therefore S is c-serializzable;
3. T2, T3, T1 is the only serial history c-equivalent to S and T2 precedes T1.

Exercise 10.7 Assume the transactions are managed with the undo-redo algorithm,
the concurrency mechanism used is strict 2PL protocol, there are only read and write
locks, and the checkpoint method used is the Buffer-consistent – Version 1.

Assume the log contents shown below (the sequence is ordered left to right, top to
bottom) when a system failure occurs. Assume the log entries are in the format (W,
Trid, Variable, Old value, New value) and for simplicity the variables are pages with an
integer value:

(BEGIN T1) (W, T1, X, 5, 10) (BEGIN T2)
(W, T2, X, 10, 20) (COMMIT T1) (W, T2, Y, 30, 60)
(CKP {T2}) (W, T2, W, 35, 70) (BEGIN T3)
(W, T3, Z, 60, 40) (COMMIT T2)

1. Is it possible for the log to have the above contents? Explain briefly. If the answer
is yes, give a possible sequence of actions of a possible schedule based on the log.
If the answer is no, remove the first “impossible” log entry and repeat the process
until you get a possible sequence of log entries.

2. For the sequence of entries you got in the previous point, what are the possible
values ofX , Y ,W and Z after the last of these records is written to the permanent
memory and before recovery.

Answer 10.7

1. The schedule is not possible: T2 obtains a lock on X and it changes X while T1 is
still locking X . Assume that the (W, T2, X, 10, 20) is in the log after (COMMIT T1).
The following sequence of actions is one possible schedule based on the log.

c© 2015 by Albano et al. 33

T1 starts
T1 locks X
T1 changes X from 5 to 10
T2 starts
T1 commits
T2 locks X
T2 changes X from 10 to 20
T2 locks Y
T2 changes Y from 30 to 60
CKP {T2}
T2 locks W
T2 changes W from 35 to 70
T3 starts
T3 locks Z
T3 changes Z from 60 to 40
T2 commits

2. The values written to the checkpoint (CKP) are certainly in the permanent mem-
ory: X = 20, Y = 60.
For the other variables, since undo-redo logging does not have any restrictions on
whether to flush data before or after the commit, the new values of W and Z may
or may not be flushed: W = 35/70 e Z = 60/40.

34 CHAPTER 10 Concurrency Control c© 2015 by Albano et al.

Chapter 11

IMPLEMENTATION OF
RELATIONAL OPERATORS

Exercise 11.1 Briefly answer the following questions:

1. Define the term useful index for a query.
2. Which relational algebra operators can be implemented with a sorting operator.
3. Describe an algorithm for the join implementation and give an estimate of its cost.
4. Compare two algorithms for the join implementation.
5. If the join condition is not equality, which join algorithms cannot be used?

Answer 11.1 See the textbook.

Exercise 11.2 Consider the relation R(A,B,C,D) with key A and the following
SQL query. All the attributes have a type string of the same length.

SELECT DISTINCT A, B FROM R;

1. Estimate the cost of an access plan without the use of indexes.
2. Estimate the cost of an access plan with the use of a clustered B+–tree index on
B.

3. Estimate the cost of an access plan with the use of an unclustered B+–tree index
on A.

4. Estimate the cost of an access plan with the use of a multi-attribute clustered B+–
tree index on A,B.

Answer 11.2 Not yet done.

Exercise 11.3 Consider the relation R(A,B,C,D) with key A. All the attributes
have a type string of the same length.

Suppose that a B+–tree inverted index on C is available. Estimate the cost of an
access plan for the following SQL query:

SELECT ∗
FROM R
WHERE C BETWEEN ‘C1’ AND ‘C10’;

36 CHAPTER 11 Implementation of Relational Operators c© 2015 by Albano et al.

Answer 11.3 Since the values of C have a type string, the selectivity factor of the
condition is estimated as 1/4.

CA = CI + CD = d0, 25×Nleafe+
⌈
0, 25×Nkey × Φ(Nrec/Nkey, Npag)

⌉
Exercise 11.4 Consider the relation R(A,B,C,D) with the attributes C and D
of type integer. Suppose there is a clustered inverted index on C and an unclustered
inverted index onD. Estimate the cost of an access plan for the following SQL query:

SELECT ∗
FROM R
WHERE C = 10 AND D = 100;

Answer 11.4 Let us consider the following physical plans:

Filter
(D= 100)

IndexFilter
(R, IdxRC, C= 10)

(a)

Filter
(C= 10)

IndexFilter
(R, IdxRD, D= 100)

(b)

AndIndexFilter
(R, {IdxRC,C= 10}, {IdxRD,D= 100})

(c)

The estimated cost of each plan is C = CI + CD.

(a) Only the clustered index IC on C is used. Let ψ = (C = 10).

CI = dsf (ψ)×Nleaf(IC)e CD =
⌈
sf (ψ)×Npag(R)

⌉
(b) Only the unclustered index ID on D is used. Let ψ = (D = 100).

CI = dsf (ψ)×Nleaf(ID)e CD =
⌈
Φ(sf (ψ)×Nrec(R), Npag(R))

⌉
where Φ is the Cardenas formula.

(c) Both indexes are used. Let ψC = (C = 10) and ψD = (D = 100).

CI = dsf (ψC)×Nleaf(IC)e+ dsf (ψD)×Nleaf(ID)e

CD =
⌈
Φ(sf (ψC)× sf (ψD)×Nrec(R), Npag(R))

⌉
Exercise 11.5 Consider the relation R(K:int, A:int, B:int) organized as a sorted file on
the attribute A in Npag pages. R contains Nrec records. The attributes A and B have
Nkey(A) and Nkey(B) values.

Suppose that the following indexes are available:

1. An hash index on the primary key K.
2. Two B+–tree inverted indexes on A and B.

For each of the following relational algebra queries, estimate the cost of an access
plan to execute the queries with the use of only one index:

c© 2015 by Albano et al. 37

1. σ(K isin [k1; k2; k3]) AND (B = 10)(R)

2. σ(A = 100) AND (B = 10)(R).

Answer 11.5

1. A strategy that uses at most one index may (a) use only the index on K, or (b) use
only the index on B. In the first case

CK = CI + CD = 3 + 3 = 6

Where we have estimated 1 the average cost of an access to a hash index. In the
second case, we have the following estimate (assuming sorted rid-lists):

CB = CI + CD

= dsf (B = 10)×Nleaf(B)e+
⌈
Φ(sf (B = 10)×Nrec, Npag)

⌉
In practice, CK < CB , unless the condition (B = 10) is not extremely selective,
or Nrec/Nkey(B) is a rather low value, in this case we may approximate CB as
follows:

CB ≈ 1 +Nrec/Nkey(B)

and therefore CB < CK if Nrec/Nkey(B) < 5.
2. A strategy that uses at most one index may (a) use only the index on A, or (b)

use only the index on B. In the first case, since the index is clustered, the cost is
estimated as:

CA = CI + CD = dfs(A = 100)×Nleaf(A)e+
⌈
fs(A = 100)×Npag

⌉
The value of CB is the same as previously calculated. If Nkey(A) and Nkey(B)

are similar, CA will be much less than CB . The approach (b) is instead convenient
if Nkey(A)� Nkey(B), more precisely, if Nkey(A)(Nrec/Npag) < Nkey(B).

Exercise 11.6 Consider the relations R(A,B), S(B,C), T (C,D) and the follow-
ing information about them:

Nrec(R) = 200, Nkey(R.A) = 50, Nkey(R.B) = 100
Nrec(S) = 300, Nkey(S.B) = 50, Nkey(S.C) = 50
Nrec(T) = 400, Nkey(T.C) = 40, Nkey(T.D) = 100

For each of the following relational algebra queries, estimate the size of the results:

1. (σS.B=20(S)) ./ T ;
2. σR.A 6=S.C(R ./ S).

38 CHAPTER 11 Implementation of Relational Operators c© 2015 by Albano et al.

Answer 11.6

1. (σS.B=20(S)) ./ T .

Let U = σS.B=20(S).

Erec(U) =
Nrec(S)

Nkey(S.B)
=

300

50
= 6.

We can assume that Nkey(C) of U is 6,

Erec(U ./ T) =
Nrec(U)×Nrec(T)

max{Nkey(U.C), Nkey(T.C)}
=

6× 400

40
= 60.

2. σR.A 6=S.C(R ./ S)

Let U = R ./ S.

Erec(U) =
Nrec(R)×Nrec(S)

max{Nkey(R.B), Nkey(S.B)}
=

200× 300

100
= 600.

Erec(σR.A 6=S.C(R ./ S)) = fs(R.A 6= S.C)× Erec(U)

Erec(σR.A 6=S.C(R ./ S)) = Erec(U)×
(

1− 1

max{Nkey(R.A), Nkey(S.C)}

)
Erec(σR.A 6=S.C(R ./ S)) =

600× 49

50
= 588.

Chapter 12

QUERY OPTIMIZATION

Exercise 12.1 Briefly answer the following questions:

1. Define the term selectivity factor.
2. Explain the role of interesting orders in a System R like optimizer.
3. Describe left-deep plans and explain why optimizers typically consider only such

plans.

Answer 12.1 See textbook.

Exercise 12.2 Consider the following schema, where keys are underlined:

Students(Id, Name, BirthYear, Status, Other)
Transcripts(Subject, StudId, Grade, Year, Semester)

Consider the following query:

SELECT Subject, Grade
FROM Students, Transcripts
WHERE BirthYear = 1990 AND Id = StudId

Suppose that a clustered B+–tree index on StudId is available.
Show two physical plans, and the estimated costs, one with the use of the join

physical operator IndexNestedLoop and the other with the join physical operators
MergeJoin.

Answer 12.2
Taking into account the presence of the clustered index on StudId, two possible phys-
ical plans with the join physical operators IndexNestedLoop and MergeJoin are the
following.

40 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

Project
({Subject,Grade})

IndexNestedLoop
(Id=StudId)

Filter
(BirthYear= 1970)

TableScan
(Students)

IndexFilter
(Transcripts, IdxSId, StudId= Id)

(a)

Project
({Subject,Grade})

MergeJoin
(Id= StudId)

Sort
({Id})

Filter
(BirthYear= 1970)

TableScan
(Students)

TableScan
(Transcripts)

(b)

The join cost with the IndexNestedLoop is estimated as follows.

CINL = CA(Students) + Erec(Students)× CA(Transcripts)

= Npag(Students) +Nrec(Students)/Nkey(BirthYear)

×(CI(StudId) + CD(Transcripts))

= Npag(Students) +Nrec(Students)/Nkey(BirthYear)

×(dfs ×Nleaf(StudId)e+
⌈
fs ×Npag(Transcripts)

⌉
)

≈ Npag(Students) +Nrec(Students)/Nkey(BirthYear)× 2

where fs = 1/Nkey(StudId)(= 1/Nrec(Students)), and the last approximation is valid
if Nkey(StudId) > Nleaf(IdxSId) and Nkey(StudId) > Npag(Transcripts).

The join cost with the MergeJoin is estimated as follows taking into account the fact
that the table Transcripts is sorted on StudId, and that it is only necessary to sort a
temporary table S′ containing only the Id of the students who were born in 1970,
with

Npag(S′) =
Npag(Students)

Nkey(BirthYear)

CMJ = CA(Students) + Csort(S
′) +Npag(Transcripts)

= Npag(Students) + 3×Npag(S′) +Npag(Transcripts)

Exercise 12.3 Consider the following schema, where the keys are underlined:

Students(Id, Name, BirthYear, Status, Other)
Transcripts(Subject, StudId, Grade, Year, Semester)

Consider the following query:

SELECT Subject, COUNT(*) AS NExams
FROM Students, Transcripts
WHERE Year = 2012 AND Id = StudId
GROUP BY Subject
HAVING AVG(Grade) > 25;

c© 2015 by Albano et al. 41

1. Suppose that no indexes are available. Show the physical plan with the lowest
estimated cost.

2. If there is a B+–tree index on Subject, and a B+–tree index on Id, what is the
physical plan with lowest estimated cost?

Answer 12.3 Not yet done.

Exercise 12.4 Consider the following schema, where the keys are underlined (dif-
ferent keys are underlined differently):

Customer(PkCustPhoneNo, CustName, CustCity)
CallingPlans(PkPlanId, PlanName)
Calls(PkCustPhoneNo, FkPlanId,

Day, Month, Year, Duration, Charge)

where PkPlanId e PlanName are two different keys, and the following query

Q: SELECT Year, PlanName, SUM(Charge) AS TC
FROM Calls, CallingPlans
WHERE FkPlanId = PkPlanId AND Year >= 2000 AND Year <=2005
GROUP BY Year, PlanName
HAVING SUM(Charge) > 1000;

Give the initial logical query plan. Can the GROUP BY be pushed on the relation Calls?

Answer 12.4

σTC> 1000

Year, PlanNameγ SUM(Charge) AS TC

σYear>= 2000∧Year<= 2005

./
FkPlanId = PkPlanId

Calls CallingPlans

Figure 12.1: Logical query plan

The selection on Year can be pushed below the join.
The group-by can be pushed below the join because the invariant grouping prop-

erty holds: (a) PlanName → PkPlanId, FkPlanId = PkPlanId, and so PlanName → Fk-
PlanId; (b) SUM(Charge) uses an attribute of Calls. The rewriting of the group-by can
be done together with the selection on TC.

42 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

πb
Year, PlanName, TC

./
FkPlanId = PkPlanId

σTC> 1000

Year, FkPlanIdγ SUM(Charge) AS TC

σYear>= 2000∧Year<= 2005

Calls

CallingPlans

Figure 12.2: Logical query plan with the group-by pushed below the join

Exercise 12.5 Consider the following schema without null values, where the keys
are underlined:

Customer(PkCustomer, CName, CCity)
Order(PkOrder, FkCustomer, ODate)
Product(PkProduct, PName, PCost)
OrderLine(LineNo, FkOrder, FkProduct, Quantity, ExtendedPrice, Discount, Revenue)

Consider the following query:

SELECT CCity, AVG(Revenue) AS avgR
FROM OrderLine, Order, Customer
WHERE FkOrder = PkOrder AND FkCustomer = PkCustomer
GROUP BY CCity, FkCustomer
HAVING SUM(Revenue) > 1000;

Give the logical query plan and show how the GROUP BY can be pushed on the join
(OrderLine ./ Order).

Can the GROUP BY be pushed on the relation OrderLine?

Answer 12.5

The group-by can be pushed below the join (OrderLine ./ Order) because the invariant
grouping property holds.

c© 2015 by Albano et al. 43

πb
CCity, avgR

σSR> 1000

CCity, FKCustomerγ SUM(Revenue) AS SR, AVG(Revenue) AS avgR

./
FKCustomer = PKCustomer

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 12.3: Logical query plan

πb
CCity, avgR

σSR> 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(Revenue) AS SR
, AVG(Revenue) AS avgR

./
FKOrder = PKOrder

OrderLine Order

Customer

Figure 12.4: Logical query plan: the GROUP BY is pushed below the first join

Can the GROUP BY be pushed on the relation OrderLine?

The group-by cannot be pushed below the join (OrderLine ./ Order)
because the invariant grouping property does not hold: FKCustomer 6→ FKOrder.

However, the group-by can rewritten as a double grouping, with the rewriting of the
not decomposable aggregation function AVG(Revenue) as SUM(Revenue) / COUNT(Revenue),
equivalent to SUM(Revenue) / COUNT(∗) because the database is without null values
(Figure 12.5a).

Now the second group-by can be pushed below the join (OrderLine ./ Order) on
OrderLine because the invariant grouping property holds (Figure 12.5b).

44 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

πb
CCity, SR/C AS avgR

σSR> 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

FKOrder
, FKCustomer

γ SUM(Revenue) AS SR
, COUNT(∗) AS C

./
FKOrder = PKOrder

OrderLine Order

Customer

(a)

πb
CCity, SR/C AS avgR

σSR> 1000

./
FKCustomer = PKCustomer

FKCustomerγ SUM(SR) AS SR
, SUM(C) AS C

./
FKOrder = PKOrder

FKOrderγ SUM(Revenue) AS SR
, COUNT(∗) AS C

OrderLine

Order

Customer

(b)

Figure 12.5: Logical query plans: (a) the GROUP BY is rewritten with the double grouping
and the rewriting of AVG, (b) the second group-by is pushed below the second
join

Exercise 12.6 Consider the following schema with attributes of type integer with-
out null values, where the keys are underlined:

R(PkR, FkS, RC)
S(PkS, SE)

Show how the following queryQ can be rewritten in SQL without the use of the view
V .

CREATE VIEW V AS
SELECT FkS, COUNT(∗) AS N
FROM R
GROUP BY FkS;

Q: SELECT SE, SUM(N) AS SN
FROM V, S
WHERE FkS = PkS;
GROUP BY SE;

c© 2015 by Albano et al. 45

Answer 12.6 Let us consider the logical query plans of V and Q:

FkSγ COUNT(∗) AS N

R
(a) V

SEγ SUM(N) AS SN

./
FkS = PkS

V S
(b) Q

Let us rewrite the Q logical plan, first by replacing the view V with its logical plan,
then by pulling the view γ up above the join using the pulling up grouping rule, and
finally by combining the two γ:

SEγ SUM(N) AS SN

./
FkS = PkS

FkSγ COUNT(∗) AS N

R

S

(a) Q1

SEγ SUM(N) AS SN

FkS, SEγ COUNT(∗) AS N

./
FkS = PkS

R S
(b) Q2

SEγ COUNT(∗) AS SN

./
FkS = PkS

R S
(c) Q3

Now the query Q can be rewritten in SQL without the use of the view V .

Q: SELECT SE, COUNT(∗) AS SN
FROM R, S
WHERE FkS = PkS;
GROUP BY SE;

46 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

Exercise 12.7 Consider the following schema, where the keys are underlined:

R(PkR integer, FkRS integer, RA varchar(10), RB integer)
S(PkS integer, SA varchar(20), SB varchar(10), SC varchar(10))
T(FkTS integer, TA integer, TB integer)

FkTS is both a primary key for T and a foreign key for S.

and the following query:

SELECT SA, TA
FROM R, S, T
WHERE FkRS = PkS AND PkS = FkTS

AND SC = ‘P’ AND RB > 130 AND RA = ‘B’;

Suppose the following indexes exist on the relations:

– R: four unclustered B+–tree indexes on PkR, FkRS, RA and RB.
– S: two unclustered B+–tree indexes on PkS and SC.
– T: one unclustered B+–tree index on FkTS.

The following information about the relations are available:

S R T

Nrec 300 10 000 300
Npag 66 110 18
Nkey(IdxRB) 50 (min = 70, max = 160)
Nkey(IdxRA) 200
Nkey(IdxSC) 15

Table 12.1: Statistics

Assume that the DBMS uses only the join physical operators NestedLoop and In-
dexNestedLoop, and only one index for selections.

1. Give the query logical plan that the optimizer uses to find the physical plan.
2. Assuming that the optimizer uses a greedy search algorithm, give an estimate of

the cost and of the result size of the physical plan for each relation, approximating
and index access cost with only the CD.

3. Which join physical plan for two relations will be selected in the second query
optimization step?

4. What is the cost and the result size of the final best physical query plan?

Answer 12.7

1. The initial logical plan is transformed by pushing projections and selections below
joins.

2. Assuming that the optimizer uses a greedy search algorithm, give an estimate of
the cost and of the result size of the physical plan for each relation, approximating
and index access cost with only the CD.

(a) Physical plans for the subexpression on R, σRA= ′B′ ∧RB> 130(R):
The plans have the cost:

Ca = Npag(R) = 110

c© 2015 by Albano et al. 47

Filter
(RA= ′B′ ANDRB> 130)

TableScan
(R)

(a)

Filter
(RB> 130)

IndexFilter
(R, IdxRA, RA= ′B′)

(b)

Filter
(RA= ′B′)

IndexFilter
(R, IdxRB, RB> 130)

(c)

Cb = CD

= Φ(dNrec(R)/Nkey(IdxRA)e, Npag(R))
= Φ(50, 110) = 41

Cc = CD

= fs(RB > 130)×Nkey(RB)
×Φ(dNrec(R)/Nkey(IdxRB)e, Npag(R))

= 1/3× 50× Φ(200, 110) = 1550

The best physical plan is (b).

Erec = fs(RB > 130)× fs(RA = ′B′)×Nrec(R)
= 1/200× 1/3× 10 000 = 17

(b) Physical plans for the subexpression on S, σSC=′P ′(S):

Filter
(SC= ′P′)

TableScan
(S)

(a)

IndexFilter
(S, IdxSC, SC= ′P′)

(b)

The plans have the cost:

Ca = Npag(S) = 66

Cb = CD

= Φ(dNrec(S)/Nkey(IdxSC)e, Npag(S))
= Φ(20, 66) = 18

The best physical plan is (b).

Erec = fs(SC = ′P′)×Nrec(S) = 1/15× 300 = 20

(c) Physical plans for the subexpression on T :

TableScan
(T)

The plan has the cost:

C = Npag(T) = 18

Erec = Nrec(T) = 300

48 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

3. Which join physical plan for two relations will be selected in the second query
optimization step?

The subexpression with the lowest physical plan cost is selected and, at the same
cost, the one the produce less records: the subexpression on S. Then the optimiza-
tion proceeds by expanding the best subexpression with the possible joins of two
relations.

For simplicity, for each possible join, if a physical plan with the IndexNestedLoop
is possible, we will not show also the physical plan with the NestedLoop, if it has
an higher cost.

(a) Physical plan for (σSC=′P ′(S)) ./Cj
T :

IndexNestedLoop
(FkTS=PkS)

IndexFilter
(S, IdxSC, SC= ′P′)

IndexFilter
(T, IdxFKTS, FkTS=PkS)

CINLST
= C(OE) + Erec(OE)× C(OI) = 18 + 20× 1 = 38

Erec(INLST) = fs(PkS = FkTS)
×Erec(OE)× Erec(OI)

= 1/300× 20× 300 = 20

(b) Physical plan for T ./
Cj

(σSC=′P ′(S)):

IndexNestedLoop
(FkTS=PkS)

TableScan
(T)

Filter
(SC= ′P′)

IndexFilter
(S, IdxPKSS, PkS=FkTS)

CINLTS
= C(OE) + Erec(OE)× C(OI) = 18 + 300× 1 = 318

Erec(INLTS) = Erec(INLTS) = 20

(c) Physical plan for (σRA= ′B′ ∧RB> 130(R)) ./Cj
(σSC= ′P ′(S)):

IndexNestedLoop
(FkTS=PkS)

Filter
(RB> 130)

IndexFilter
(R, IdxRA, RA= ′B′)

Filter
(SC= ′P′)

IndexFilter
(S, IdxPKSS, PkS=FkTS)

CINLRS
= C(OE) + Erec(OE)× C(OI)
= 41 + 17× 1 = 58

c© 2015 by Albano et al. 49

Erec(INLST) = fs(FkRS = PkS)
×Erec(OE)× Erec(OI)

= 1/300× 17× 20 = 2

(d) The physical plan for (σSC= ′P ′(S)) ./Cj
(σRA= ′B′ ∧RB> 130(R)) has the higher

cost 618.

The subexpression with the lowest cost is (σSC=′P ′(S)) ./Cj
T , and the optimiza-

tion proceeds by expanding it with the possible joins with R to find the final phys-
ical query plan.

4. What is the cost and the result size of the final best physical query plan?

The subexpression with the lowest cost (σSC= ′P ′(S)) ./Cj
T it is expanded with

the join with the subexpression on R

((σSC= ′P ′(S)) ./Cj
T) ./Cj

(σRA= ′B′ ∧RB> 130(R))

The physical query plan with the best physical plan for (σSC= ′P ′(S)) ./Cj
T as

external operand, and a NestedLoop for the internal operand (Figure 12.6), has the
cost

C = C(OE) + Erec(OE)× C(OI)
= CINLST

+ Erec(INLST)× C(OI)
= 38 + 20× 41 = 858

Erec = fs(PkS = FkRS)× Erec(INLST)× Erec(OI)
= 1/300× 20× 17 = 2

NestedLoop
(PkS=FkRS)

IndexNestedLoop
(FkTS=PkS)

IndexFilter
(S, IdxSC, SC= ′P′)

IndexFilter
(T, IdxFKTS, FkTS=PkS)

Filter
(RB> 130)

IndexFilter
(R, IdxRA, RA= ′B′)

Figure 12.6: Physical query plan.

The physical query plan with the best physical plan for (σSC= ′P ′(S)) ./Cj
T as

external operand, and an IndexNestedLoop for the internal operand (Figure 12.7),
has the lower cost

C = C(OE) + Erec(OE)× C(OI)
= CINLST

+ Erec(INLST)× C(OI)
= CINLST

+ Erec(INLST)× Φ(dNrec(R)/Nkey(IdxFKRS)e, Npag(R))
= 38 + 20× Φ(34, 110) = 38 + 20× 30 = 638

The final physical query plan is the one in Figure 12.7 extended with the Project({SA,
TA}).

50 CHAPTER 12 Query Optimization c© 2015 by Albano et al.

Project
({SA,TA})

IndexNestedLoop
(PkS=FkRS)

IndexNestedLoop
(FkTS=PkS)

IndexFilter
(S, IdxSC, SC= ′P′)

IndexFilter
(T, IdxFKTS, FkTS=PkS)

Filter
(RA= ′B′ ANDRB> 130)

IndexFilter
(R, IdxFKRS, FkRS=PkS)

Figure 12.7: Final physical query plan.

Note that if the optimization had been done using the full search instead of the
greedy search algorithm, the best physical query plan would be the one in Fig-
ure 12.8.

Project
({SA,TA})

IndexNestedLoop
(PkS=FkTS)

IndexNestedLoop
(FkRS=PkS)

Filter
(RB> 130)

IndexFilter
(R, IdxRA, RA= ′B′)

Filter
(SC= ′P′)

IndexFilter
(S, IdxPkS, PkS=FkRS)

IndexFilter
(T, IdxFKTS, FkTS=PkS)

Figure 12.8: The best physical query plan.

C = C(OE) + Erec(OE)× C(OI)
= CINLRS

+ Erec(INLRS)× C(OI)
= 58 + 2× 1 = 60

	Permanent Memory and Buffer Management
	Heap and Sequential Organizations
	Hashing Organizations
	Dynamic Tree-Structure Organizations
	Non-Key Attribute Organizations
	Transaction Management
	Concurrency Control
	Implementation of Relational Operators
	Query Optimization

