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Query processing

• Understanding query processing helps producing 
better applications

• SQL is a declarative language: it describes the query 
result, but not how to get it. 

• Query processing:

– Query analysis  logical query plan

– Query transformation

– Physical plan generation and optimization

– Query execution



Physical db design

• A query optimizer uses all available indexes, 
materialized views, etc. in order to better execute 
the query

– Data Base Administrator (DBA) is expected to set up a 
good physical design

– Good DBAs understand query optimizers very well

– Good DBAs are hard to find



Query execution steps: analysis

Check command
rewrite Boolean conditions
produce logical tree

ANALYSIS AND 
SIMPLIFICATION

SQL COMMAND

LOGICAL OPERATOR
TREE

CATALOG

QUERY
TRANSFORMATION

SELECT  Name
FROM    Students S, Exams E
WHERE   S.StudCode = E.Candidate AND 

City=‘PI’ AND Grade>25

Students S Exams E

S.StudCode = E.Candidate

σCity = ‘PI’ and Grade >25

Name



Query execution steps: transformation

Transform a 
logical query 
plan using 
equivalence 
rules to get a 
faster plan

LOGICAL OPERATOR
TREE

PHYSICAL PLAN
GENERATION

QUERY
TRANSFORMATION

Students S Exams E

S.StudCode = E.Candidate

σCity = ‘PI’ and Grade >25

Name

Students S Exams E

S.StudCode = E.Candidate

Name

σCity = ‘PI’ σGrade >25



Query ex. steps: physical plan generation

Select an algorithm for each logical operation.

Ideally: Want to find best physical plan. 
PHYSICAL PLAN

GENERATION

PHYSICAL PLAN:
PHYSICAL OPERATORS 

TREE

PLAN
EXECUTION

RESULT

Project
({Name})

NestedLoop
(S.StudCode=E.Candidate)

Filter
(Grade > 25)

IndexFilter
(Students,IdxP, City = ‘Pi’ )

TableScan
(Exams)

In practice: Avoid worst physical plans! 



Physical plan execution

• Each operator is implemented as an iterator using a 
‘pull’ interface: when an operator is ‘pulled’ for the 
next output tuples, it ‘pulls’ on its inputs and 
computes them. 

• An operator interface provides the methods open, 
next, isDone, and  close implemented using the 
Storage Engine interface.



Interesting transformations

• DISTINCT Elimination

• GROUP BY Elimination

• WHERE-Subquery Elimination

• VIEW Elimination (Merging)

• Many are based on functional dependencies

• Do you remember functional dependencies?



Functional dependencies

• For R(T) and X, Y  T

• X  Y  (X determines Y) iff:

–  r  valid instance of R.
 t1, t2r. If   t1[X] = t2[X]  then   t1[Y] = t2[Y]



Example

StudCode Name City Region BirthYear Subject Grade Univ

1234567 Mary Pisa Tuscany 1995 DB 30 Pisa

1234567 Mary Pisa Tuscany 1995 SE 28 Pisa

1234568 John Lucca Tuscany 1994 DB 30 Pisa

1234568 John Lucca Tuscany 1994 SE 28 Pisa

• StudCode Name, City, Region, BirthYear

• City  Region

• StudCode, Subject Grade

• Ø  Univ

• StudCode, Name City, Univ, Name



Functional dependencies

• Trivial dependencies:  XY  X

• Atomic dependency: X  A  (A attribute)

• Union rule:

– X  A1…An   iff X  A1  … X  An 

• What about the lhs:

– Does  A1…An  X     imply   A1X …  AnX    ?

– Does  A1   X     imply    A1..An  X ?

• What does Ø  X  mean?



Functional dependencies and keys

• Canonical dependencies:

– X  A  but  not X’  A, for any X’  X

• Every non-trivial dependency ‘contains’ one or more 
canonical dependencies – just remove extraneous 
attributes

• Key: set K such that KT holds and is canonic

• In a well designed relation, only one kind of non-
trivial canonical dependencies (BCNF):

– Key A                (key dependencies)



Deriving dependencies

• Given a set F of FDs, X  Y is derivable from F
(F |– X  Y),  iff X  Y can be derived from F using 
the following rules:

– If Y  X, then X  Y  (Reflexivity R ) 

– If  X  Y  and   Z  T, then  XZ  YZ  (Augmentation A)

– If X  Y and Y  Z, then  X  Z  (Transitivity  T)

• Soundness:

– when  r |= F  and  F |- X  Y, then r |= X Y



Closure of an attribute set

• Definition Given R<T, F>, and X  T, the closure of X 

wrt F, denoted by XF
+, (or just X+ when F is clear), is:

– XF
+ = {Ai  T | F |– X  Ai}

• Theorem:  F |– X  Y  Y XF
+



Example

• StudCode+ ={StudCode, Name, City, BirthYear, Region, 
Univ}

• (StudCode, Name)+ = { 

• (Name,City)+ = {Name, City, Region, Univ}

• (StudCode, Subject)+

• Ø+

• StudCode Name, City, BirthYear

• City  Region

• StudCode, Subject Grade

• Ø  Univ



Dependencies in a SQL query

• Consider a query on a set of tables R1(T1),…,Rn(Tn) 
such that no attribute name appears in two tables

• After joins and select, assuming that the WHERE 
condition C is in CNF, these dependencies hold on 
the result:

– The initial dependencies: KijTi for any key Kij of the 
table Ti

– Constant dependencies ØA for any factor A=c in C

– Join dependencies AiAj and AjAi for any factor Ai=Aj



Computing the closure of X

• Assume a product-select-project expression with CNF 
condition

• Let X+=X

• Add to X+ all attributes Ai such that Ai=c is in C

• Repeat until X+ stops changing:

– Add to X+ all Aj such that Ak is in X+ and Aj= Ak or Ak= Aj is in C

– Add to X+ all attributes of Ri if one key of Ri is included in X+



DISTINCT elimination

• Consider a SELECT DISTINCT query

– Duplicate elimination is very expensive, and DISTINCT is
often redundant

• SELECT Name FROM Students

• SELECT StudId FROM Students

• SELECT StudId FROM Students NATURAL JOIN Exams



DISTINCT elimination

• Consider E returning a set of tuples of type {T}. If
AT, then b

A(E) creates no duplicates: if two lines
coincide on A they are the same line

• SELECT DISTINCT A

FROM R1(T1),…,Rn(Tn)

WHERE C:

– DISTINCT is redundant when A+ is T1… Tn (or A+

includes a key for every relation in the join), assuming
that all input tables are sets (have a key)

– A+ can be computed as in the previous slide



Distinct elimination: example



DISTINCT elimination with GROUP BY

• Consider a GROUP BY query:

– SELECT DISTINCT X, f

– FROM R1,…,Rn WHERE C1

– GROUP BY X,Y    HAVING C2

• The set X,Y determines all other attributes in the 
output of the run-time {X,Y}{f,g} operation

• Hence, DISTINCT is redundant when XY  X+

• The X+ computation has to use the keys of R1,…,Rn
and the conditions C1 and C2



Distinct elimination: example



Group by elimination

The query producing the data to be grouped is without duplicates?



WHERE-subquery elimination

select *
from studenti s
where exists (select * from exams e where e.sid=s.sid)

select *
from students s
where s.id in (select e.sid from exams e)

select distinct s.*
from students s natural join exams e

nested not correlated

unnested

nested correlated



WHERE-subquery elimination

• The most important transformation: very common 
and extremely relevant

• Very difficult problem: no general algorithm

• We only consider here the basic case:

– Subquery is EXISTS (do not consider NOT EXISTS)

– Correlated subquery

– Subquery with no GROUP BY



Left outer join

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

A B C

1 a x

3 c y

SELECT * 
FROM R  

NATURAL LEFT JOIN
S;

SELECT * 
FROM R  

NATURAL JOIN
S;

A B C

1 a x

2 b

3 c y

Also called: natural inner join

Also called: natural left outer join



Outer join: right, full

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

A B C

1 a x

2 b

3 c y

5 z

SELECT * 
FROM R  

NATURAL FULL JOIN
S;

SELECT * 
FROM R  

NATURAL RIGHT JOIN
S;

A B C

1 a x

3 c y

5 z

Also called: natural full outer join

Also called: natural right outer join



WHERE unnesting

• Courses(CrsName, CrsYear,Teacher, Credits)

• Transcripts(StudId, CrsName*, Year, Date, Grade)



WHERE unnesting

SELECT *

FROM Courses C

WHERE CrsYear = 2012 AND

EXISTS (SELECT FROM Transcripts T

WHERE T.CrsName = C.CrsName
AND T.Year = CrsYear);

• The unnested equivalent query is

SELECT DISTINCT C.*

FROM Courses C, Transcripts T

WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;



WHERE unnesting

SELECT DISTINCT C.Teacher

FROM Courses C

WHERE CrsYear = 2012 AND

EXISTS (SELECT FROM Transcripts T

WHERE T.CrsName = C.CrsName
AND T.Year = CrsYear);

• The unnested equivalent query is

SELECT DISTINCT C.Teacher

FROM Courses C, Transcripts T

WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;



WHERE unnesting

SELECT C.Teacher

FROM Courses C

WHERE CrsYear = 2012 AND

EXISTS (SELECT FROM Transcripts T

WHERE T.CrsName = C.CrsName
AND T.Year = CrsYear);

• Is not equivalente to the following, w or w/o distinct:

SELECT (DISTINCT) C.Teacher

FROM Courses C, Transcripts T

WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;



WHERE unnesting

• SELECT C.CrsName, C.Teacher
FROM Courses C
WHERE CrsYear = 2012 AND

EXISTS ( SELECT count(*) FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
HAVING 27 < AVG(Grade))

• The unnested equivalent query is

• SELECT C.CrsName, C.Teacher
FROM Courses C, Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012
GROUP BY C.CrsName, C.Teacher
HAVING 27 < AVG(Grade);



WHERE unnesting

• SELECT C.CrsName, C.Teacher
FROM Courses C
WHERE C.CrsYear = 2012 AND

EXISTS ( SELECT count(*) FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
HAVING 0 = Count(*))

• The following is wrong (the count bug problem)

• SELECT C.CrsName, C.Teacher
FROM Courses C, Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012
GROUP BY C.CrsName, C.Teacher
HAVING 0 = Count(*);



WHERE unnesting

• SELECT C.CrsName, C.Teacher
FROM Courses C
WHERE C.CrsYear = 2012 AND

EXISTS ( SELECT * FROM Transcripts T
WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
HAVING 0 = Count(*))

• The following is ok:

• SELECT C.CrsName, C.Teacher
FROM Courses C LEFT JOIN Transcripts T

ON (T.CrsName = C.CrsName AND T.Year = CrsYear)
WHERE CrsYear = 2012
GROUP BY C.CrsName, C.Teacher
HAVING 0 = Count(C.Grade);



View merging

• CREATE VIEW TestView AS
SELECT      Price, AName
FROM        Order, Agent
WHERE      FKAgent = PKAgent;

• SELECT      Price, AName
FROM        TestView
WHERE      Price = 1000;

• Can the query be transformed to avoid the use of 
the view?



Temporary view

• Created by a SELECT in the FROM:

• SELECT ...
FROM (SELECT ... FROM ...) AS Q1,

(SELECT ... FROM ...) AS Q2,
WHERE ...

• Same as

• WITH Q1 AS (SELECT ... FROM ...)
, Q2 AS (SELECT ... FROM ...)

SELECT .... FROM Q1,  Q2, WHERE ...



View merging
The approach: 

Logical 
Plan

View Query
Logical 
Plan

View

Query

Logical 
Plan

Let a be

View merging:

(1) (2) (3) (4)

Transformed
Logical Plan

Query SQL 
without 
View



View merging: an equivalence rule

• Let XR be attributes of R with fkXR a foreign key of 
R referring to pk of S with attributes A(S), then



(1) (2)

(3) (4)

SELECT Price, AName  

FROM Order, Agent

WHERE FKAgent = PKAgent

AND Price = 1000;

CREATE VIEW TestView AS

SELECT Price, AName  

FROM Order, Agent

WHERE FKAgent = PKAgent;

SELECT Price, AName

FROM TestView

WHERE Price = 1000;

TestView =



(1) (2)

(3)
c

(4)

CREATE VIEW FKAgent_GBY AS
SELECT FKAgent, COUNT(*) AS No
FROM Order
GROUP BY FKAgent;

SELECT AName, No 
FROM FKAgent_GBY, Agent
WHERE FKAgent = PKAgent  

AND ACity = ‘Pisa’;

FKAgent_GBY =



(4)

SELECT AName, COUNT(*) AS No  

FROM Order, Agent

WHERE FKAgent = PKAgent

AND ACity = ‘Pisa’ 

GROUP BY FKAgent, AName;

CREATE VIEW FKAgent_GBY AS
SELECT FKAgent, COUNT(*) AS No
FROM Order
GROUP BY FKAgent;

SELECT AName, No 
FROM FKAgent_GBY, Agent
WHERE FKAgent = PKAgent  

AND ACity = ‘Pisa’;c



Physical plan generation

• Main steps:

– Generate plans

– Evaluate their cost

• Plan generation:

– Needs to keep track of attributes and order of each
intermediate result

• Cost evaluation:

– Evaluate the size of each intermediate result

– Evaluate the cost of each operator



Physical plan generation phase: 
statistics and catalog

• The Catalog contains the following statistics:

– Nreg and Npag for each relation.

– Nkey and  Nleaf for each index.

– min/max  values for each index  key.

– ... Histograms

– The Catalog is updated with the command UPDATE 
STATISTICS



Single relation queries

• S(PkS, FkR, aS, bS, cS)

• SELECT bS
FROM S
WHERE FkR > 100 AND cS = 2000

• The only question is which index or indexes to use

• If we have an index on (cS, FkR, bS), a IndexOnly
plan can be used



Multiple relation queries

• Basic issue: join order

• Every permutation is a different plan

– AxBxCxD

– BxAxCxD

– BxCxAxD

– …

• n! permutations



Multiple relation queries

• Every permutation is many different plans

– Ax(Bx(CxD))

– (AxB)x(CxD)

– (Ax(BxC))xD

– Ax((BxC)xD)

– …

• Many different choices of join operator

• Huge search space!



Full search

S1    S2    S3

S4    S5

S6

S10

= Physical plan min cost

R Join S Join T

One relation

Two relations

Three relations



Optimization algorithm for a join

• Initialize Plans with one tree for each restricted 
relation

• repeat {
extract from Plans the fastest plan P
if P is complete, exit.
else, expand P:

join P with all other plans P’ on disjoint relations
for each P join P’, put the best tree in Plans
remove P

}



Optimization algorithm: heuristics

• Left deep: generate left-deep trees only

• Greedy: after a node is expanded, only expand its 
expansions

• Iterative full search: alternate full and greedy

• Interesting-order plans should also be considered

BA

C

D

BA

C

D



Example

R(N, D, T, C),  with indexes on C and T

S(C, O, E),       with indexes on C and E

SELECT S.C, S.O
FROM S, R
WHERE S.C = R.C AND E = 13 AND T = ‘AA’;



Example
R(N, D, T, C), with indexes on C and T S(C, O, E), with indexes on C and E

Physical plans for subexpression on relations

minimum cost



Example

minimum cost



Example

Final physical plan



Optimization of queries with grouping 
and aggregations

• The standard way to evaluate queries with group-by 
is to produce a plan for the join, and then add the 
group-by 

• To produce cheaper physical plans the optimizer 
should consider doing the group-by before the join



Example

SELECT FKAgent, SUM(Qty) AS SQ
FROM Order, Agent
WHERE FKAgent = PKAgent AND ACity = 'Pisa'
GROUP BY FKAgent;



Pre-grouping
SELECT FKAgent, SUM(Qty) AS SQ
FROM Order, Agent
WHERE FKAgent = PKAgent and ACity = 'Pisa'
GROUP BY FKAgent;

Standard Physical Plan

HashGroupBy
({FKAgent}, {SUM(Qty) AS SQ})

NestedLoop
(PKAgent = FKAgent)

Filter
(ACity = ‘Pisa’)

TableScan
(Agent)

TableScan
(Order)

Physical Plan with the Pre-Grouping

Project
({FKAgent, SQ})

NestedLoop
(FKAgent = PKAgent)

Filter
(ACity = ‘Pisa’)

TableScan
(Agent)

TableScan
(Order)

HashGroupBy
({FKAgent}, {SUM(Qty) AS SQ})



Assumptions

• The tables do not have null values, and primary and 
foreign keys have only one attribute

• The queries are a single SELECT with GROUP BY and 
HAVING but without subselect, DISTINCT and 
ORDER BY clauses

• In the SELECT there are all the grouping attributes



The pre-grouping problem

When and how can the group-by be pushed through the join?



Grouping equivalence rules: 

Two cases to consider for the selection

Bad news: two cases only

In SQL ?1)

2)



Grouping equivalence rules

Assume that XY:

PKOrder FKAgent ... PKAgent AName ACity ...

1 1 ... 1 Rossi Pisa ...

2 2 ... 2 Verdi Firenze ...

3 1 ... 1 Rossi Pisa ...

4 2 ... 2 Verdi Firenze ...

SELECT PKAgent, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent

GROUP BY PKAgent;

SELECT PKAgent, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent

GROUP BY PKAgent, AName;



Grouping equivalence rules

• Let F be decomposable with Fl-Fg



The pre-grouping problem

When and how can the group-by be pushed through the join?

Three cases



The  invariant grouping  rule

if the following conditions are true: 

1. Cj |- X  A(S): in every group, only one line from S

in practice: Cj is fk = pk, with fk in R, pk key for S, X  fk

2. Each aggregate function in F only uses attributes from R.

Proposition 1. R has the invariant grouping property



Example

≡

SELECT PKAgent, SUM(Qty) AS SQ
FROM Order, Agent
WHERE FKAgent = PKAgent AND ACity = 'Pisa'
GROUP BY PKAgent;



Example



Tests
SELECT PKAgent, ACity, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent

GROUP BY PKAgent, ACity;

SELECT ACity, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent

GROUP BY ACity;

SELECT AName, SUM(Qty) AS SQ

FROM Order, Agent

WHERE FKAgent = PKAgent AND ACity = 'Pisa'

GROUP BY AName;



Summary

• Understand principles and methods of query 
processing in order to produce a good physical 
design and better applications

• Query rewriting

• Production of alternative plans and cost evaluation


