
Tree primary organizations

• Tree terminology:

– Order: max number of children per node

– Level of a node: number of nodes in the path from the
root to the node

– Height of a tree:Maximum level of a node

– Balanced tree: levels of leaf nodes differ by at most 1

Tree primary organizations

• Binary tree

• B-tree

B-tree

• A B-tree is a perfectly balanced search tree in which
nodes have a variable number of children

• Here, let ‘k*’ denote the full record with key k, and a
tree node be a page.

B-tree

• A B–tree of order m (m ≥ 3) is perfectly balanced
and has the following properties:

– Each node has at most (m − 1) keys and, except the root,
at least (⎡m/2⎤ - 1) keys

– A node with j keys has also p0,…,pj (j + 1) pointers to
distinct subtrees, undefined in the leaves. Let K(pi) be the
set of keys in the subtree pi

– Each non leaf node has the following structure

B-tree
• .

...

B-tree

6

17* 23* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*

Equality search: k = 5 Range search: k >= 23

B-tree

• Relationship between the height h, the order m and
number of keys N:

• Example: record 100 byte, pointer 4 byte, a page
4096 byte, m = 40 ((4096-4)/(100+4) + 1)

– h=1 Nodes = 1 NMax = 39

– h=2 Nodes = 1+40 NMax = (1+40)*39 = 1599

– h=3 Node = 1+40+1600 = 1641
NMax = 1641*39= 63999

• log𝑚(𝑁 + 1) ≤ ℎ ≤ 1 + log Τ𝑚 2 (
𝑁+1

2
)

B-tree: search cost

• Equality search (k = v): 1 ≤ C ≤ h

• Range search (p = (v1 ≤ k ≤ v2)):

– sf(p) = (v2 – v1)/(kmax – kmin)

– Ereg = sf(p) × N

– C = sf(p) × Nnodes

– h ≤ C ≤ Nnodes

8

Insertion

• Insertion in an unfull leaf

• Insertion in a full leaf ...

9

Insertion of 6

10

2* 3* 6* 7*

5* 5 moves in the ancestor node….

2* 3* 5* 7*

17* 23* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*

Insertion of 6

11

2* 3*

17*

23* 30*

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*5*

7*6*

The tree height increases

In the worst case, the insertion cost is h reads + (2h+1) writes

17* 23* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*Before

After

Deletion

• The key is in a nonleaf node: it is replaced by the
next key, which is in a leaf node, and is deleted from
there

• The key is in a leaf node: it is deleted

• What happens if, after deletion, the leaf node has
less than (m/2 - 1) elements ?

12

Rotation

13

Deletion of 16 and rotation

17* 23* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*

...

17*

23* 30*

2* 3* 5* 7* 14*

19*

20* 22* 24* 27* 29* 33* 34* 38* 39*

10*

...

Merging

14

17* 23* 30*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

10*

17*

23* 30*

2* 3* 5* 7* 14* 16* 19* 24* 27* 29* 33* 34* 38* 39*

10*

Deletion of 22, 20 and merging

Deletion: cost

• In the worst case (merging at all levels and rotation
at the root children), the cost is:

– (2h – 1) reads + (h+1) writes

15

B+-Tree

19

2* 3*

16

22 29

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

83

7*5* 8*

Note: when a leaf splits, a copy of the key is inserted the ancestor (B+-
tree), when a nonleaf node splits, a key moves in the ancestor (B-tree)

Index Sequential Clustered Index

Sparse Index

IOT: Index Organized Table

B–TREE

B+–Tree: Equality Search Cost

20

2* 3*

16

22 29

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

83

7*5* 8*

equality search (k = v1) C = 1 (C =2 or C=3)

range search (p = (v1 ≤ k ≤ v2))

C = sf(p)  Nleaf

sf(p) = (v2 - v1)/(kmax - kmin)

Let us consider the leaf access cost only

Deletion

• Search the leaf F with the key

• Actual deletion:

– If F does not underflow, end

– Otherwise, apply merging or rotation

– If a merging is performed, delete a key from the ancestor
of F, in the B-tree structure...

21

Secondary organizations: indexes

• An index is a mapping of attribute(s) (key) values to
RID of records.

• Definition. An index I on an attribute (key) K of a
relational table R is an ordered table I(K, RID)

• A tuple of the index is a pair (ki, ri), where ki is a key
value for a record, and ri is a reference (RID) to the
corresponding record.

• We can have several indexes on a table, each with a
different search key

22

.

Examples

23

Index on BirthYear

Table

Index on StudCode

RID StudCode City BirthYear

1 100 MI 1972

2 101 PI 1970

3 102 PI 1971

4 104 FI 1970

5 106 MI 1970

6 107 PI 1972

StudCode RID

100 1

101 2

102 3

104 4

106 5

107 6

BirthYear RID

1970 2

1970 4

1970 5

1971 3

1972 1

1972 6

Clustered Indexes

• Clustered vs. unclustered

• If the order of data records is the same as the order
of data entries, then it is called clustered index.

• Clustered = with data almost ordered, if there are
insertions

24

Data organizations for two keys: Kp and K

25

Clustered vs. Unclustered

Search cost

Equality search cost (k = v1) C = 1 + 1

Range search cost (p = (v1 ≤ k ≤ v2))

Cclustered = sf(p)*Nleaf + sf(p)*Npag Cunclustered = sf(p)* Nleaf + sf(p)*Nrec

sf(p) = (v2 - v1)/(kmax - kmin)

C = CI + CD

Clustered Unclustered

Summary

• A B-tree is a fully balanced dynamic structure that
automatically adapts to inserts and deletes

• A B+-tree refine the B-tree to improve range search
and sorted data scans

• Indexes are used for secondary organizations

• Types of Indexes: clustered vs unclustered

