Tree primary organizations

* Tree terminology:
— Order: max number of children per node

— Level of a node: number of nodes in the path from the
root to the node

— Height of a tree:Maximum level of a node
— Balanced tree: levels of leaf nodes differ by at most 1

Tree primary organizations

* Binary tree
* B-tree

- " & "
v B " e " T il .
m . w u L | m w v £ | m w v £ | m w

¥ ® ¥ ¥ ;¥ ¥F ¥ ¥ 2 ¥ ¥ ;¥ ¥ =¥ +* ¥ T ¥ =EF'FT ¥F ¥ ¥'¥F¥ +® ¥F¥ F'F =EFE = =B

B-tree

* A B-tree is a perfectly balanced search tree in which
nodes have a variable number of children

* Here, let ‘k*’ denote the full record with key k, and a
tree node be a page.

B-tree

A B—tree of order m (m = 3) is perfectly balanced
and has the following properties:

— Each node has at most (m - 1) keys and, except the root,
at least (Im/21- 1) keys

— A node with j keys has also pO0,...,pj (j+ 1) pointers to
distinct subtrees, undefined in the leaves. Let K(pi) be the
set of keys in the subtree pi

— Each non leaf node has the following structure

B-tree

[po; K1x,p1,ko*x, D2 ... kj*:pj]

K@)\ K@)\ K (p;)

vy € K(po) Yy € K(p1) Vy € K(pj)
Yy < kq ki <y < ks ’y>kj

B-tree

10*

17+

23*

30*

2*

3*

5*

7*

14*

16*

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

Equality search: k=5

Range search: k >= 23

B-tree

e Relationship between the height h, the order m and
number of keys N:

 Example: record 100 byte, pointer 4 byte, a page
4096 byte, m = 40 ((4096-4)/(100+4) + 1)
— h=1 Nodes =1 NMax = 39
— h=2 Nodes = 1+40 NMax = (1+40)*39 = 1599

— h=3 Node = 1+40+1600 = 1641
NMax = 1641*39= 63999

N+1
¢ logm(N + 1) < h <1+ log[m/z](T)

B-tree: search cost

e Equality search (k=v):1<C<h
* Range search (p=(v,<k<v,)):
= sep) = (v = Vi)/(Kinax = Kiin)
— Ereg = 5e(P) x N
— C=s{p) x N
—h<C<N

nodes

nodes

Insertion

* |Insertion in an unfull leaf
 |nsertion in a full leaf ...

Insertion of 6

10% || 17+ || 23+ || 30*
v
2+ [3* [5* [7* | [14* Jie* 19* [20* [22* 24% [27* o 33+ [34* B8* B9
- 5 moves in the ancestor node....
2+ [3* [5* |7~ 2x |3 6% |77 >

10

Insertion of 6

10* 17* 23* 30*
Before } |
v
2* |3* |5* |7* 14* |16* 19* [20* |22* 24%* (27* [po* 33* [34* B8* B9*
The tree height increases
After 17*
5% || 10* j 23* || 30*
/, \\ \ /' \ \

2* [3* 6* [7* 14* N6* 19*[20* [22* DA* [27* po* 33* [34* gg* BO* |

In the worst case, the insertion cost is h reads + (2h+1) writes

11

Deletion

 The key is in a nonleaf node: it is replaced by the

next key, which is in a leaf node, and is deleted from
there

* The key is in a leaf node: it is deleted

 What happens if, after deletion, the leaf node has
less than (| m/2 |- 1) elements ?

Rotation

10* 7* 23* 30*
V
2* |3* |5* |[7* 14* 15{ o* |22* |.. 24* |127* [p9* 33* (34* [38* [39*
Deletion of 16 and rotation
10+ || 19* || 23* || 30*
V
2* |3* |5* |[7* 14* (17* 20* [22* |... 24* |27* 29* 33* (34* [38* [39*

13

Merging

10* 7* 23* 30*
v
* * * * * *
2% 3% |5* |7* 14* |16* m)zx 2R 24*% |27* po* 33* |34* [38* B9
Deletion of 22, 20 and merging
10* | [23* ||30*
2x [3* |5* [7* | [14* [ie* [17* [197 24 [27* o> 33+ [34* B8~ B9*

14

Deletion: cost

* In the worst case (merging at all levels and rotation
at the root children), the cost is:

— (2h—1) reads + (h+1) writes

B*-Tree

| B-TREE
3 ||s j 22] 29
/ AN / -
2* [3* 5% [7* |8* 14* N6* 19*[20* [22* P4* [27* po* 33* |34* B8* 39*_|
Index Sequential IOT: Index Organized Table Clustered Index

Sparse Index

Note: when a leaf splits, a copy of the key is inserted the ancestor (B*-
tree), when a nonleaf node splits, a key moves in the ancestor (B-tree)

19

B+—Tree: Equality Search Cost

/ |

16

3

8

|
N\

22

29

[

S

/,/\
5*

7*

8*

‘\:::::;\\\\ﬁ; X~
14* 16* 19

22%

P4*

33* *

* 39*1

Let us consider the leaf access cost only

equality search (k = v1)

range search (p = (vl £k <v2))

C = Sf(p) * Nieaf

C=1 (C=2 or C=3)
Sf(p) = (v2 - v1)/(kmax - Kmin)

20

Deletion

e Search the leaf F with the key

e Actual deletion:
— |If F does not underflow, end
— Otherwise, apply merging or rotation

— If a merging is performed, delete a key from the ancestor
of F, in the B-tree structure...

Secondary organizations: indexes

An index is a mapping of attribute(s) (key) values to
RID of records.

Definition. An index | on an attribute (key) K of a
relational table R is an ordered table I(K, RID)

A tuple of the index is a pair (k;, r.), where k. is a key
value for a record, and r. is a reference (RID) to the
corresponding record.

We can have several indexes on a table, each with a
different search key

RID

Table 5

Index on StudCode

Examples

StudCode | City BirthYear
100 MI 1972
101 PI 1970
102 PI 1971
104 FI 1970
106 MI 1970
107 PT 1972

StudCode | RID Index on BirthYear
100 1
101 2
102 3
104 4
106 5
107 6

BirthYear RID
1970 2
1970 4
1970 5
1971 3
1972 1
1972 6

Clustered Indexes

Clustered vs. unclustered

If the order of data records is the same as the order
of data entries, then it is called clustered index.

Clustered = with data almost ordered, if there are
Insertions

Data organizations for two keys

:KIO and K

DATA INDEXES
PRIMARY ORGANIZATION ON K,
: K, -> PAGE WITH RECORD
HASH B*-TREE INDEX ON K
ﬁ A K| Kp
DATA
SECONDARY ORGANIZATION INDEX ON I{p
Kz | RID
INDEX ON K
DATA K | RID

25

Clustered vs. Unclustered

INDEX FILE

Clustered
/ \
% 2 ‘-:j’ i - H.'L [N
’_ﬂ‘ ’ﬁﬁ i‘fﬁﬂ'ff 1151'1'*[51 \\“:h

SORTED DATA FILE

Search cost
Equality search cost (k = v1)

Range search cost (p = (vl £k £v2))

Celustered = Sf(p)*NIeaf + Sf(p)*Npag

INDEX FILE

Unclustered

/)
ﬂ'g‘/fﬁ H;\

& w P =
il

DATAFILE

C=Cl+CD
C=1+1
st(p) = (v2 - v1)/(kmax - kmin)

Cunclustered = Sf(p)* Nieaf + Sf(p)*Nrec

Summary

A B-tree is a fully balanced dynamic structure that
automatically adapts to inserts and deletes

A B+-tree refine the B-tree to improve range search
and sorted data scans

Indexes are used for secondary organizations
Types of Indexes: clustered vs unclustered

