
Avdanced Database Systems, solutions of second intermediate test – 31 May 2017 – V1.2

Please feel free to answer this test in English, Italian, or any mixture

1. Let $doc be bound to an XML document with the following schema:

 movies

 movie*

 @idmovie

 title

 year

 director (@idperson)

 actor* (@idperson)

 persons

 persona*

 @idperson

 name

 birthyear

 cinemas

 cinema*

 @idcinema

 name

 town

 screen*

 @idscreen

 nameOfScreen

 screening*

 @idmovie

 date

 starttime

 price

a. Write a query that returns, for each date, the list of all movies that have been screened in that

date, listing, for each date and movie, the number of cinemas that project that movie, the number

of screenings, and the list of all of the screenings (for the movie and for the date), with the

following format

 date

 movie*

 title

 numberOfCinemas

 numberOfScreenings

 screening*

 nameOfCinema

 starttime

for $d in fn:distinct-values($doc//date)

return <date>

 { $d,

 for $m in fn:distinct-values($doc//screening[date=$d]/@idmovie

 let $ss := $doc/screening[@idmovie=$m and date=$d]

 <movie>

 { $doc//movie[@idmovie=$m]/title,

 <numberOfCinemas> fn:count($ss/../..) </numberOfCinemas>

 <numberOfScreenings > fn:count($ss) </numberOfScreenings >,

 for $s in $ss

 return <screening> <nameOfCinema> $s/../../name/text() </nameOfCinema>

 {$s/starttime}

 </screening>

 <movie> }

</date>

b. Write a query that returns the list of all directors that only directed movies with no actor, or

where the only actor is the director herself/himself

for $d in $doc //director

where each $m in $doc/movie[director/@idperson = $d/idperson]

 satisfies each $a in $m/actor

 satisfies $a/@idperson = $d/idperson

return $d

2. Consider an RDF graph with classes Person and Movie, and with the following declarations of

classes and predicates

 HasActor  Movie  Actor

 HasDirector  Movie  Director

 Directed  Director  Actor

 Actor, Director, SelfDirector  Person

 ManyDirectorsMovie, ActorLessOne, ActorLessTwo  Movie

Formalize the following statements in OWL, paying extreme attention to the direction of the

implication:

a. If X has been the director of a movie where Y was among the actors, then X Directed Y

SubObjectPropertyOf(ObjectPropertyChain (InverseOf (HasDirector) HasActor)

 Directed)

b. X is a SelfDirector if and only if X Directed X

EquivalentClasses(ObjectHasSelf (Directed)

 SelfDirector)

c. Is (b) equivalent to say that X is a SelfDirector if and only if X has been the director of a movie

where X was among the actors?

No – the statement of (c) makes SelfDirector equivalent to being the director of a movie where one

actes, while (b) makes that equivalent to X Directed X which is only implied by being the director of

a movie where one actes, but is not equivalent to that condition. In other terms, the two are not

equivalent since (a) only gives a lower bound for the Directed relation, but does not give an iff

condition. Hence, in a model, every individual X may satisfy X Directed X without contradicting

(a).

d. A Movie is a ‘ManyDirectorsMovie’ if and only if this movie has at least two directors

EquivalentClasses(ManyDirectorsMovie

 ObjectMinCardinality(2 HasDirector)

)

e. If a movie has no actor then it is an ActorLessOne movie

 SubClassOf (IntersectionOf (Movie ObjectMaxCardinality(0 HasActor))

 ActorLessOne)

f. A movie is ActorLessTwo if and only if it has no Actor

 SubClassOf (IntersectionOf (Movie ObjectMaxCardinality(0 HasActor))

 ActorLessOne)

(*) (Literally, the statement (d) starts with ‘A Movie is….’, and hence does not, literally, say

anything about an individual which is not a movie. In our formalization, we decided to interpret it

as: “Something is a ManyDirectorsMovie iff it is a movie and has at least two directors”. We did

the same for (f). The statement (e) does not have this kind of ambiguity.)

Consider now a knowledge base that consists of the above declarations, of the formalization of a-f,

and of a set of RDF triples talking about those predicates. Remembering the open world assumption

and considering the directions of the implications, answer the following questions.

g. In this knowledge base, may it be possible, or is it possible, to deduce that ActorLessOne is

equivalent to ActorLessTwo, or that one is a subclass of the other?

 From (e) and (f) we may deduce that ActorLessTwo is a subclass of ActorLessOne. The other

inclusion cannot be deduced since we have no upper bound for ActorLessOne.

h. In such a knowledge base, may it be possible to prove that a movie is an ActorLessOne movie?

No, because of the Open World Assumption

i. In such a knowledge base, may it be possible to prove that a movie is not an ActorLessOne

movie?

No, because of the direction of the implication: we have no upper bound for ActorLessOne, every

element may potentially belong to that class

j. In such a knowledge base, may it be possible to prove that a movie is an ActorLessTwo movie?

No, because of the Open World Assumption

k. In such a knowledge base, may it be possible to prove that a movie is not an ActorLessTwo

movie?

Yes. If the RDF graph contains a triple “M HasActor A”, then M does not belong to

ObjectMinCardinality (0 HasActor), and we can deduce that it does not belong to ActorLessTwo

since the two classes are equivalent.

