
DB2 and DBSA – April 11, 2017 – First Intermediate Test – Amended version

You can answer this test in English, Italian, or any mixture

1. Consider a schema R(IdR, A, B, …, IdS*), S(IdS,…), T(IdT, …, IdS*) and the following query

 SELECT *

 FROM R, T

 WHERE R.IdS = T.IdS And R.A ≤ 10 And R.B ≤ 200

Assume that R, S and T are stored as heap files. Primary keys are R.IdR, S.IdS and T.IdT, while R.IdS

abd T.IdS are foreign keys that refers to S.

Assume that unclustered RID-sorted index are defined on all the primary and foreign keys, on R.A, on

R.B, and a combined index on (R.A,R.B). Assume that every index on R has 4.000 leaves, every index

on S has 10.000 leaves, every index on T has 200 leaves (some part of this information is not needed

for this exercise).

Assume the following table for the optimization parameters. If you need Cardenas formula (n,k),

approximate it with min(n,k).

Assume that every page is 4.000 bytes long, and that every attribute uses 4 bytes.

 NReg NPag NLeaf of

Indexes

NKey Min Max

R 2.000.000 100.000 4.000

S 5.000.000 500.000 10.000

T 100.000 1.000 200

Idx.R.A See R 100 0 1.000

Idx.R.B See R 10 0 1.000

a) Compute the cost of accessing all records of R that satisfy the condition R.A ≤ 10 And R.B ≤

200 using:

a. No index

b. Index on R.A only

c. Index on R.B only

d. Both R.A and R.B indexes

b) Using the cheapest access plan from (a), compute the cost of an IndexNestedLoop plan for the

complete query, where R is the outer relation

c) Compute the cost of an IndexNestedLoop plan for the complete query, where R is the inner

relation

d) How many records are in the result of the query?

2. Consider a combined index on attributes (A,B) of a table T. Assume the standard hypothesis of

uniformity and independence of T.A and T.B, and also that, for every a in A(T) and b in B(T), the

pair (a,b) belongs to AB(T). The following table reports the cost of accessing the data if the index is

unclustered with sorted RIDs, if it is clustered on (A,B), or if it is unclustered with unsorted RIDs.

The table assumes that RIDS are used to fetch the record in the same order as they are found in the

index, we do not merge different RID lists and we do not sort RIDs in main memory.

We use the following abbreviations for the involved selectivity factors – Ae stands for ‘equality

condition on A’ and Ar ‘range condition on A’.

sfAe = 1/Nkey(A)

sfAr = (k – min(A)) / (max(A)-min(A))

sfBe = 1/Nkey(B)

sfBr = (k’ – min(B)) / (max(B)-min(B))

sfXxYy = sfXx * sfYy

Condition Unclustered sorted RIDs Clustered on A, B Uncl. Unsorted

RIDs

A=k Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAe*Npag

A<k sfAr*NKey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Npag

B=k’ Nkey(A)

*(sfAeBe*Nrec,Npag)

B<k’ Nkey(A)*sfAeBr*NPag

A=k and B=k’ (sfAeBe*Nrec,Npag)

A=k and B<k’ sfBr*NKey(B)

*(sfAeBe*Nrec,Npag)

sfAeBr*Npag

A<k and B=k’

A<k and B<k’ sfArBr*NKey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Nkey(A)*sfAeBr*NPag sfArBr*Nrec

a. Consider the following graphical representation of the records that satisfy four of the

conditions of the table below in a file that is sorted on (A,B). Complete that with the

representation of the missing four conditions.

b. Draw a picture of an inverted-list combined index on (A,B)

c. Consider the case of ‘A<k and B<k’: explain how data is retrieved, in the three cases of the

table, and also explain the three costs that are reported in the table

d. Give a general formula for the first and for the third columns – you may you sf() for the

selectivity factor of the condition in the current line

e. (Optional) Fill up the holes in second column

3. Consider the following log content. Assume that the DB was identical to the buffer before the

beginning of this log, and consider a undo-redo protocol

A=k A=k and B < k A=k and B=k B=k

(begin,T1) (W,T1,A,1,30) (begin,T2) (W,T2,B,1,20) (begin-ckp,{T1,T2}) (begin,T3) (W,T3,C,1,40)

(commit,T1) (W,T2,A,30,50) (end-ckp) (begin,T4) (commit,T3) (W,T4,C,40,60)

a. Before starting this log, what was the content of A, B and C in the PS (Persistent Store)?

b. Assume there was a crash at the end of the logging period. At crash time, what was the content

of A, B and C in the buffer? What can be said about the content of A, B and C in the PS?

c. At restart time, which transactions are undone? Which are redone?

d. List the operations that are redone, in the order in which are redone

e. After restart is finished, what is the content of A, B and C in the buffer?

f. Undo and Redo are executed in the buffer or on the PS?

g. After restart is finished, what is the content of A, B and C in the PS?

h. Assume now a Redo-NoUndo protocol. In this case, what can be said about the content of A,

B and C in the PS at crash time, that is, after the completion of (W,T4,C,40,60)?

4. Assume that a system with no scheduler produces the following history:

r1[C], r2[A], r1[C], w3[B], w2[B], w1[C], c1, r2[A], c2, w3[B], c3

a) Is this history serializable?

b) Exhibit a history that may be produced by a strict 2PL scheduler if presented with the above

operations in that order, assuming that each transaction commits immediately after its last

operation. In case of deadlock, assume that a transaction is aborted and is restarted later

c) Repeat (b) considering now a Wait-Die 2PL scheduler

DB2 and DBSA – April 11, 2017 – First Intermediate Test – SOLUTIONS, version 0.2

You can answer this test in English, Italian, or any mixture

1. Consider a schema R(IdR, A, B, …, IdS*), S(IdS,…), T(IdT, …, IdS*) and the following query

 SELECT *

 FROM R, T

 WHERE R.IdS = T.IdS And R.A ≤ 10 And R.B ≤ 200

Assume that R, S and T are stored as heap files. Primary keys are R.IdR, S.IdS and T.IdT, while R.IdS

abd T.IdS are foreign keys that refers to S.

Assume that unclustered RID-sorted index are defined on all the primary and foreign keys, on R.A, on

R.B, and a combined index on (R.A,R.B). Assume that every index on R has 4.000 leaves, every index

on S has 10.000 leaves, every index on T has 200 leaves (some part of this information is not needed

for this exercise).

Assume the following table for the optimization parameters. If you need Cardenas formula (n,k),

approximate it with min(n,k).

Assume that every page is 4.000 bytes long, and that every attribute uses 4 bytes.

 NReg NPag NLeaf of

Indexes

NKey Min Max

R 2.000.000 100.000 4.000

S 5.000.000 500.000 10.000

T 100.000 1.000 200

Idx.R.A See R 100 0 1.000

Idx.R.B See R 10 0 1.000

a) Compute the cost of accessing all records of R that satisfy the condition R.A ≤ 10 And R.B ≤

200 using:

a. No index

b. Index on R.A only

c. Index on R.B only

d. Both R.A and R.B indexes

(a) No index. Access plan:

 C = NPag(R) = 100.000

(b) Index on R.A only

TableScan(R)

Filter(R.A ≤ 10 And R.B ≤ 200)

sf = 10/1000 = 1/100

C = CI + CD = sf*NLeaf + sf*NKey(A)* (NRec/NKey(A),NPag)

 = 4.000/100 + (100/100)*(2.000.000/100,100.000) = 40+20.000 = 20.040

(c) Index on R.B only

sf = 200/1000 = 1/5

C = CI + CD = sf*NLeaf + sf*NKey(B)* (NRec/NKey(B),NPag)

 = 4.000/5 + (10/5)*(2.000.000/10,100.000) = 800+2*100.000 = 200.800

(d) Both R.A and R.B indexes

C = CI(A) + CI(B) + CD = sf(A)*NLeaf + sf(B)*NLeaf + sf(A)*sf(B)*NRec

 = 40 + 800 + 1/5*1/100*2.000.000 = 4.840

b) Using the cheapest access plan from (a), compute the cost of an IndexNestedLoop plan for the

complete query, where R is the outer relation

C(IndexFilter) = CI + CD = sf(T.IdS=R.IdS)*NLeaf(IdxTIdS) + (NRec(T)/NKey(T.IdS),NPag)

 = 200/5.000.000 + (100.000/5.000.000, 1.000) = 1+1 = 2

NReg(AndIndexFilter) = sf(AndIndexFilter)*NReg(R) = 1/5*1/100*2.000.000 = 4.000

C(IndexNestedLoop) = C(OE) + NReg(OE)*C(OI) = 4.840 + 4.000*2 = 12.840

IndexFilter(R, IdxRA, R.A ≤ 10)

Filter(R.B ≤ 200)

IndexFilter(R, IdxRB, R.B ≤ 200)

Filter(R.A ≤ 10)

AndIndexFilter(R, {IdxRA, R.A ≤ 10}, {IdxRB, R.B ≤ 200})

AndIndexFilter(R, {IdxRA, R.A ≤ 10}, {IdxRB, R.B ≤ 200}) IndexFilter(T, IdxTIdS, T.IdS=R.IdS)

IndexNestedLoop(T.IdS=R.IdS)

c) Compute the cost of an IndexNestedLoop plan for the complete query, where R is the inner

relation

C(IndexFilter) = CI + CD = sf(R.IdS=T.IdS)*NLeaf(IdxRIdS) + (NRec(R)/NKey(R.IdS),NPag)

 = 4.000/5.000.000 + (2.000.000/5.000.000, 100.000) = 1+1 = 2

NReg(TableScan(T)) = 100.000

C(TableScan(T)) = NPag(T) = 1.000

C(IndexNestedLoop) = C(OE) + NReg(OE)*C(OI) = 1.000 + 100.000*2 = 201.000

d) How many records are in the result of the query?

NReg(R1 join R2) = NReg(OE) * NReg(OI) * sf(join condition) = 4.000*100.000*1/5.000.000 = 80

Or: NReg(R)*NReg(T)*sf(R.IdS = T.IdS And R.A ≤ 10 And R.B ≤ 200) =

 = 2.000.000*100.000*1/100*1/5*1/5.000.000 = 80

2. Consider a combined index on attributes (A,B) of a table T. Assume the standard hypothesis of

uniformity and independence of T.A and T.B, and also that, for every a in A(T) and b in B(T), the

pair (a,b) belongs to AB(T). The following table reports the cost of accessing the data if the index is

unclustered with sorted RIDs, if it is clustered on (A,B), or if it is unclustered with unsorted RIDs.

The table assumes that RIDS are used to fetch the record in the same order as they are found in the

index, we do not merge different RID lists and we do not sort RIDs in main memory.

We use the following abbreviations for the involved selectivity factors – Ae stands for ‘equality

condition on A’ and Ar ‘range condition on A’.

sfAe = 1/Nkey(A)

sfAr = (k – min(A)) / (max(A)-min(A))

sfBe = 1/Nkey(B)

sfBr = (k’ – min(B)) / (max(B)-min(B))

sfXxYy = sfXx * sfYy

Condition Unclustered sorted RIDs Clustered on A, B Uncl. Unsorted

RIDs

A=k Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAe*Npag

A<k sfAr*NKey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Npag

TableScan(T) Filter(R.A ≤ 10 And R.B ≤ 200)

IndexNestedLoop(R.IdS=T.IdS)

IndexFilter(R, IdxRIdS, R.IdS=T.IdS)

B=k’ Nkey(A)

*(sfAeBe*Nrec,Npag)

B<k’ Nkey(A)*sfAeBr*NPag

A=k and B=k’ (sfAeBe*Nrec,Npag)

A=k and B<k’ sfBr*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAeBr*Npag

A<k and B=k’

A<k and B<k’ sfArBr*Nkey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Nkey(A)*sfAeBr*NPag sfArBr*Nrec

a. Consider the following graphical representation of the records that satisfy four of the

conditions of the table below in a file that is sorted on (A,B). Complete that with the

representation of the missing four conditions.

b. Draw a picture of an inverted-list combined index on (A,B)

A<k B<k A<k and B=k A<k and B<k

A=k A=k and B < k A=k and B=k B=k

c. Consider the case of ‘A<k and B<k’: explain how data is retrieved, in the three cases of the

table, and also explain the three costs that are reported in the table

In each of the three cases, the index is scanned retrieving the RID lists associated to each couple of values

(a,b) belonging to AB(R). The number of retrieved lists can be estimated as

sfArBr*Nkey(A)*Nkey(B).

The values of AB(R) are ordered on (A,B), and the RID lists themselves are ordered in the ‘clustered’

and ‘ordered RIDs’ cases, while are not ordered in the ‘unordered RIDs’ case.

In the ‘unclustered ordered RIDs’ case, for each of the retrieved lists we follow an ordered list of RIDs

whose length is on average ‘sfAeBe*Nrec’. Since this list is sorted, the cost of following this list can be

estimated as (sfAeBe*Nrec,Npag), hence the total cost is

sfArBr*Nkey(A)*Nkey(B)*(sfAeBe*Nrec,Npag)

In the ‘unclustered ordered RIDs’ case, we must assume that every record is in a page that is unrelated

to those that have been recently read, hence the total cost is just sfArBr*Nrec.

In the ‘clustered case’ we must consider how data is distributed in the file:

The picture makes it clear that the records are grouped in sfAr*Nkey(A) sequences, each containing

sfAeBr records. Since the file is clustered, each seguence of sfAeBr records can be retrieved by reading

sfAeBr*NPag pages, hence the total cost is sfAr*Nkey(A)*sfAeBr*NPag.

A B Rid List

1 1 [100, 200, 300]

1 2 [50,150,350,400]

1 3 [80,90]

2 1 [130,160,360,370]

2 2 […]

2 3 […]

3 1 […]

A<k and B<k

d. Give a general formula for the first and for the third columns – you may you sf() for the

selectivity factor of the condition in the current line

Reasoning as in the previous point, we deduce that he general formula for the first column is

sf()*Nkey(A)*Nkey(B)*(sfAeBe*Nrec, Npag), and for the third column is sf()*Nrec.

e. (Optional) Fill up the holes in second column

We use the pictures on order to understand, in each case, how many clusters of consecutive records we

have (say M) and what is the size of each cluster (say sf…*NPag), and we write the corresponding

formula M*sf…*NPag.

Condition Unclustered sorted RIDs Clustered on A, B Uncl. Unsorted

RIDs

A=k Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAe*Npag

A<k sfAr*NKey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Npag

B=k’ Nkey(A)

*(sfAeBe*Nrec,Npag)
Nkey(A)*sfAeBe*NPag

B<k’ NKey(A)*NKey(B)*sfBr

*(sfAeBe*Nrec,Npag)

Nkey(A)*sfAeBr*NPag

A=k and B=k’ (sfAeBe*Nrec,Npag) sfAeBe*Npag

A=k and B<k’ sfBr*NKey(B)

*(sfAeBe*Nrec,Npag)

sfAeBr*Npag

A<k and B=k’ sfAr*NKey(A)

*(sfAeBe*Nrec,Npag)

sfAr*Nkey(A)*sfAeBe*NPag

A<k and B<k’ sfArBr*NKey(A)*Nkey(B)

*(sfAeBe*Nrec,Npag)

sfAr*Nkey(A)*sfAeBr*NPag sfArBr*Nrec

3. Consider the following log content. Assume that the DB was identical to the buffer before the

beginning of this log, and consider a undo-redo protocol

(begin,T1) (W,T1,A,1,30) (begin,T2) (W,T2,B,1,20) (begin-ckp,{T1,T2}) (begin,T3) (W,T3,C,1,40)

(commit,T1) (W,T2,A,30,50) (end-ckp) (begin,T4) (commit,T3) (W,T4,C,40,60)

a. Before starting this log, what was the content of A, B and C in the PS (Persistent Store)?

 1-1-1

b. Assume there was a crash at the end of the logging period. At crash time, what was the content

of A, B and C in the buffer? What can be said about the content of A, B and C in the PS?

 Buffer PS

A 50 30-50

B 20 20

C 60 1-40-60

c. At restart time, which transactions are undone? Which are redone?

(T2,T4) are undone. (T1,T3) are redone.

d. List the operations that are redone, in the order in which are redone

(W,T3,C,1,40)

e. After restart is finished, what is the content of A, B and C in the buffer?

f. Undo and Redo are executed in the buffer or on the PS?

g. After restart is finished, what is the content of A, B and C in the PS?

Undo and Redo are executed in the buffer, and their intermediate states MAY be flushed to the PS. The

initial state of the buffer is undefined, and the possible initial states of the PS are those indicated at the

point (b).

The following operations are undone:

UNDO: (W,T4,C,40,60) (W,T2,A,30,50) (W,T2,B,1,20)

And then the following are redone:

REDO: (W,T3,C,1,40)

Hence this is the state of Buffer and PS, at the end of the restart:

 Buffer PS

A 30 30-50

B 1 20-1

C 40 1-40-60

h. Assume now a Redo-NoUndo protocol. In this case, what can be said about the content of A, B

and C in the PS at crash time, that is, after the completion of (W,T4,C,40,60)?

In a NoUndo protocol, the effects of an update never go to the PS before the commit, hence this would

be the state of the PS at crash time. Observe that, at checkpoint time, T1 was still running, hence the

value of A could not be saved. For this reason, we cannot be sure that the value of A is already 30 at

crash time.

 PS

A 1-30

B 1

C 1-40

4. Assume that a system with no scheduler produces the following history:

r1[C], r2[A], r1[C], w3[B], w2[B], w1[C], c1, r2[A], c2, w3[B], c3

a) Is this history serializable?

The serialization graph is:

The graph has a loop, hence the history is not c-serializable. This was the expected answer. One may

also notice that, since T3 reads no value, the effect of this history is the same as that of a serial

execution T1,T2,T3 and also the same as a serial execution T2,T1,T3, and, although it is not c-

serializable, the history is serializable.

b) Exhibit a history that may be produced by a strict 2PL scheduler if presented with the above

operations in that order, assuming that each transaction commits immediately after its last

operation. In case of deadlock, assume that a transaction is aborted and is restarted later

We report here the history. We will not indicate the lock requests that are granted, but only those that

are not granted, indicated with a *

T1 T2 T3

r1[C]

 r2[A]

r1[C]

 w3[B]

 wl2[B]*

w1[C]

c1

 w3[B]

 c3

 w2[B]

 r2[A]

 c2

c) Repeat (b) considering now a Wait-Die 2PL scheduler

The history of point (b) has exactly one request of a conflicting lock, where an older transaction T2

asks for a lock that is currently held by the younger transaction T3. In the Wait-Die protocol, that is

a ‘Wait’ situation, hence T2 waits until T3 commits, hence the produced history is identical to the

one produced by the standard ‘Wait-Wait’ version of the 2PL protocol depicted at point (b).

T1 T2 T3

