Parallel and Distributed Databases



Based on

* These slides are based on Chapter 20 of: Database
Systems: The Complete Book (2"¢ edition), by Hector

Garcia-Molina, Jeff Ullman, and Jennifer Widom,
2008

 Which is an excellent book



Parallel and Distributed Systems

Parallel system: how to parallelize critical operations
Distributed systems: how to distribute transactions

Peer to peer systems



Models of parallelism

Shared memory machines:

— Different CPUs share access to a unique main memory,
but each has its own cache

Shared disk machines:

— Every CPU with its memory, but the disk space is unique
Shared nothing machines:

— Every CPU has its own memory and disks

SN is the most common

Message overhead: it is important to use few long
messages rather than many small messages



Data partitioning

Tuples are allocated to nodes according to a partitioning strategy
— Range partitioning: node 1 keeps Gy jp<-k(is1) (R)
— Hash partitioning: we apply a hash function to R.A
— Random (round-robin) partitioning
— Block partitioning: round-robin at the level of blocks
— Co-located partitioning: for each partition Ri of R at node i, the semijoin(S,Ri)
are in the same node

The number of fragments may be fixed or may grow with the nodes
Every relation may also be vertically partitioned 1, g G ong(a)(R)
Every fragment is typically replicated for resilience



Uses of data partitioning

To execute query working in parallel on different
nodes

To only access relevant nodes when the relation is
filtered

To distribute the load of some maintenance work

To allocate the crucial fragments on the fastest
support



Parallel algorithms for set operators

e Distinct: if tuples are distributes using a hash
function, Distinct can be executed locally in parallel

 Union(R,S), Intersection(R,S ), Difference(R,S):
— If Rand S are hashed with the tame function, can be
executed locally

— Otherwise, if we have M processors we hash both R and
S with a same function in [0,M-1] and send tuple t to
processor h(t)

— We use M buffers in main memory of each processor,
and send a buffer to the corresponding machine only
when is full



Parallel algorithms for table operators

* Join(R(X,Y), S(Y,2)):

— We distribute tuples of R and S using the same hash
function that only dependson Y

— Join is then performed locally

* GroupBy(R,X,{f1,...,fn}):
— Distribute R with a hash function that depends on X
— GroupBy locally

* Filter and Projection can be performed locally



Join algorithms in detalil

Colocated join: R and S are partitioned in the same way
and fragments are co-located: local algorithm

Directed join: R and S are partitioned in the same way but
not co-located: choose one and send it to the
corresponding nodes of the other

Repartitioned join: R and S are not partitioned in the
same way: we re-partition one (or both) according to the
same approach and use directed join

Broadcast join: if one table is small, we just send it entire
to any node with a piece of S



Performance of parallel algorithms

* Total accesses and total CPU time increase, but we
hope to reduce the elapsed time

* A unary operator takes 1/p elapsed time if we have
p processors operating in parallel

 What about join?



Performance of repartitioned join

Join:
1. (NPag(R) + NPag(S))/p to read and hash the tuples
2. We must send around (NPag(R) + NPag(S))(p-1/p) block of data

3. We need 2*(NPag)/p at every site to perform a hash join or a
sort-merge join (assuming tuple-level pipeline) (ignore the
different numbers given in the book)

Elapsed time is almost the same as sequential-time/p

Apart from communication time (2) and the fact that one
node may get more data and one may get less

Every node gets NPag/p data: if it fits main memory, we
may avoid any |/O!



Distributed databases



Distributed systems vs.shared-noting
parallel systems

* In adistributed system:

— Communication is more expensive than in a parallel
system

— Node failure is independent, which gives better resilience

— The system may get partitioned in two for a non-
negligible amount of time

— The system may be ‘federated’, that is, it may be
managed by different autorities

— We may have different levels of trust (usually regarded as
‘peer-to-peer’ rather than ‘distributed’)



Data distribution

* Partitioning: data communication is expensive,
nence we may put data where is most used:
norizontal partitioning (e.g.: the database may be
distributed nation by nation) or even vertical
partitioning (every site keeps the column it uses
more)

* Replication: in order to have resilience, every
fragment of a relation should be replicated

* Replication makes reading faster and updating
slower



Designing data distribution

* The data distribution design:

— Every relation is divided in horizontal/vertical fragments
such as T[item,dateGnation=’ItaIy’(SaIes)

— Every fragment is mapped to n sites - if we have a
primary copy, we must also decide which copy is primary

* How to fragment is the easy part: we may define the
smallest possible pieces and then map them to the
same site

 Where to put fragments, and specifically how many
copies for each fragment, is a difficult optimization

problem



Distributed query processing: the
distributed join problem

 We have R(X,Y) at site r and S(Y,Z) at site s.
Communication is the dominating cost. The two
simplest possibilities:

— WesendRtos
— WesendStor

* We would typically send the smallest one
* There is a third possibility: the semijoin reduction



The semijoin reduction

* The semijoin plan for ioin(R(X,Y),S(Y,Z)), assuming
that Y is much smaller than X and then Z:
— Send i (R) to s
— s computes S1(Y,Z) = semijoin(rty(R), S(Y,2))
— Send S1(Y,Z) tor
— R computes join(R(X,Y),S1(Y,Z)), which is equivalent to
join(R(X,Y),S(Y,2))

* When is this a good idea?



Distributed consistency

* A transaction is now a distributed process that
coordinates local transactions

— How do we manage distributed commit?
— How do we ensure distributed serializability?
e Consistency of data replication

— How do we avoid data divergence in case of partitioning?
— Is there a primary copy or are all copies created equal?



Distributed commit

* A typical distributed transaction in a federated
system:

— A client ‘c’ sends to a merchant ‘m’ and order and the
two together send a request to a bank ‘b’ to issue the
payment

— At the end we would like to atomically update the state
of the database ‘M’ of ‘m’ and of the database ‘B’ of ‘b’

* In a non-federated system

— A bank is moving money from accounts in two distinct
branches where two halves of its DB are stored. A failure
happens. At restart we need a coherent state.



Two-Phase commit

* Assumptions:

— A many-sites transaction with one site that acts as a
coordinator

— Every site has its local log
— All messages in the protocol are logged



Fixing a date for a meeting

We discussed, and 1st of June seems ok
First phase: | ask everybody ‘is 1st of June ok’?

People start answering — whoever says ‘yes’ is pre-
committed: they MUST put 1st of June as busy in
their calendar and cannot change their mind

Second phase: after everybody has said yes, | tell
everybody: ok, it is decided then, it is 1st of June

| wait the ack of everybody, and if somebody does
not ack | will insist until acked



The 2PC: Phase |

e Coordinator C: writes <Prepare,T> on its log
e C:sends to every Participat Pi: send(Pi,prepare T)
 Each Pi must answer, sooner or later, as follows:

— |t cannot commit:
e writes <don’t commit,T> and send(C, don’t commit T)

— It wants to commit:

* Gets ready to redo in case of failure and writes <ready,T> on the
log, entering in the pre-committed state: is not a commit, but
from now on C and only C has the power to Abort

* After this: send(C, ready T)



The 2PC: phase Il: Abort case

* Cdecides whether to Commit — which requires that
every Pi sended a ready msg — or to abort — which is
the only choice if a Pi says ‘no’” or does not answer

* |If C decides to Abort:
— It writes <Abort,T> on its log
— C: send(Pi, abort T) to every participant
— Every Pi aborts T and then...
— ...writes <Abort,T> on its log



The 2PC: phase Il: Commit case

e Cgets a ‘ready’ from every Pi and decides to
Commit:
— It writes <Commit,T> on its log
— C: send(Pi, commit T) to every participant

— Every Pi commits, which implies that it writes
<Commit, T> onits log



Recovering after a crash

* The basic idea is very simple. The only difficult thing
is proving that:
— If there is a failure at any moment, we can always recover

— If every site is guaranteed to eventually restart, then the
protocol is guaranteed to eventually terminate



Messages and failures

* Every message may be duplicated, the second copy
is just ignored; message send is ‘idempotent’

 Every message may be lost, when an answer does
not arrive:

— We first reiterate the request, with some policy (this is
not even specified in the protocols)

— We eventually assume that the partner is down

* Restart is always log-guided: | read the log and
restart ‘from there’



Recoverying Pi after a crash

e Last log record for T was:

— <Commit, T> or <Abort, T>: easy, do as in the non-
distributed case

— <Don’t commit,T>, or is a <Write,T>: perform a local
abort

— <Ready,T>: contact the coordinator and the other sites to
discover which was the decision; until an answer is
obtained, the transaction is in the pre-committed
condition and can neither be aborted nor be committed



Recovering C after a crash

e Last log record for T was:

— <Prepare,T>: may send(Pi, Abort T), which is always
allowed before the (Pi, Commit T), or do nothing

— <Abort, T>: may (re)send(Pi, Abort T), or do nothing
— <Commit T>: may (re)send(Pi, Commit T), or do nothing

* Are there other possibilities?

* If Creceives a status request from some Pi that just
recovered, for a transaction T, it consults the log:

— Last record is <Commit T>: the transaction is committed
— Otherwides, is Aborted



Recovering C by doing nothing

* <Prepare,T>:

— Some site may be waiting a | phase or Il phase msg from
C; in this case, they will solicit C, which will answer
‘abort’

e <Abort,T>:

— Some site may be waiting a Il phase msg from C; in this
case, they will solicit C, which will answer ‘abort’

e <Commit T>:

— Some site may be waiting a Il phase msg from C; in this
case, they will solicit C, which will answer ‘commit’



When messages get lost

C: send(P, prepare)

— If lost: Pi may solicit but may also safely assume Abort
Pi: send(C, ready/don’t commit)

— If lost: Pi may solicit but may also safely decide to Abort
C: send(Pi, abort/commit)

— If lost: Pi MUST solicit or get information by the peers

— Until the decision is known, Pi must remain in the very
unconfortable ‘pre-committed’ state

— What it Cis down ‘forever’?

The third case is the problem of the 2PC protocol



Distributed locking: the centralized
solution

 We can either lock the many physical copies — one
by one — of a piece of data, or we may get a logical
lock on the logical data: both solutions work

* The centralized solution: we have a centralized lock
server which manages lock on the logical data

* The usual problems of centralized solutions:
— Bottleneck for performance
— Single point of failure



Distributed locking: the primary copy

* One copy of the data item is primary, and every lock
should be taken there

* We still have a bottleneck and a single point of
failure



Distributed locking: the distributed
solution

* Every transaction just gets S/X locks on the local
copies that it reads or writes

e Consistency problem: one transaction may read a
copy while another is writing a different copy

* Two solutions:

— Write-locks-all: in order to write, a transaction must get
an X lock on all copies; in order to read, one lock is
enough

— Majority locking: in order to write, | need (n+1)/2 X locks,
in order to read, | need (n+1)/2 S locks



Distributed locking: the quorum

* The quorum: we have an s qguorum and an x quorum
such that
— x+x>n and s+x>n (n: number of copies)

— In order to read, | need S on s copies; in order to write |
need X lock on x copies

— by x+x>n and s+x>n no two transactions may be able to
take enough conflicting locks at the same time

 Some typical cases
— x=s=(n+1)/2
— Xx=n, s=1

— X=n-1, s=2



Distributed deadlock

* Every centralized solution may be used — the waits-
for graph, the timeout, the prevention

* In practice, we opt for timeout






