Parallel and Distributed Databases
Based on

- Which is an excellent book
Parallel and Distributed Systems

- Parallel system: how to parallelize critical operations
- Distributed systems: how to distribute transactions
- Peer to peer systems
Models of parallelism

• Shared memory machines:
 – Different CPUs share access to a unique main memory, but each has its own cache

• Shared disk machines:
 – Every CPU with its memory, but the disk space is unique

• Shared nothing machines:
 – Every CPU has its own memory and disks

• SN is the most common

• Message overhead: it is important to use few long messages rather than many small messages
Parallel algorithms for set operators

• Distinct: if tuples are distributes using a hash function, Distinct can be executed locally in parallel

• Union(R,S), Intersection(R,S), Difference(R,S):
 – If R and S are hashed with the tame function, can be executed locally
 – Otherwise, if we have M processors we hash both R and S with a same function in [0,M-1] and send tuple t to processor h(t)
 – We use M buffers in main memory of each processor, and send a buffer to the corresponding machine only when is full
Parallel algorithms for table operators

• Join(R(X,Y), S(Y,Z)):
 – We distribute tuples of R and S using the same hash function that only depends on Y
 – Join is then performed locally

• GroupBy(R,X,{f1,...,fn}):
 – Distribute R with a hash function that depends on X
 – GroupBy locally

• Filter and Projection can be performed locally
Performance of parallel algorithms

• Total accesses and total CPU time increase, but we hope to reduce the elapsed time
• A unary operator takes $1/p$ elapsed time if we have p processors operating in parallel
• What about join?
Performance of parallel join

• Join:
 1. $(NPag(R) + NPag(S))/p$ to read and hash the tuples
 2. We must send around $(NPag(R) + NPag(S))(p-1/p)$ block of data
 3. We need $2*(NPag)/p$ at every site to perform a hash join or a sort-merge join (assuming tuple-level pipeline) (ignore the different numbers given in the book)

• Elapsed time is almost the same as sequential-time$/p$

• Apart from communication time (2) and the fact that one node may get more data and one may get less

• Every node gets $NPag/p$ data: if it fits main memory, we may avoid any I/O!
Distributed databases
Distributed systems vs. shared-noting parallel systems

• In a distributed system:
 – Communication is more expensive than in a parallel system
 – Node failure is independent, which gives better resilience
 – The system may get partitioned in two for a non-negligible amount of time
 – The system may be ‘federated’, that is, it may be managed by different authorities
 – We may have different levels of trust (usually regarded as ‘peer-to-peer’ rather than ‘distributed’)
Data distribution

• Partitioning: data communication is expensive, hence we may put data where is most used: horizontal partitioning (e.g.: the database may be distributed nation by nation) or even vertical partitioning (every site keeps the column it uses more)

• Replication: in order to have resilience, every fragment of a relation should be replicated
Distributed consistency

• A transaction is now a distributed process that coordinates local transactions
 – How do we manage distributed commit?
 – How do we ensure distributed serializability?

• Consistency of data replication
 – How do we avoid data divergence in case of partitioning?
 – Is there a primary copy or are all copies created equal?
Designing data distribution

• The data distribution design:
 – Every relation is divided in horizontal/vertical fragments such as $\pi_{\text{item, date}} \sigma_{\text{nation=‘Italy’}}(\text{Sales})$
 – Every fragment is mapped to n sites - if we have a primary copy, we must also decide which copy is primary

• How to fragment is the easy part: we may define the smallest possible pieces and then map them to the same site

• Where to put fragments, and specifically how many copies for each fragment, is a very difficult optimization problem
Distributed query processing: the distributed join problem

- We have $R(X,Y)$ at site r and $S(Y,Z)$ at site s. Communication is the dominating cost. The two simplest possibilities:
 - We send R to s
 - We send S to r
- We would typically send the smallest one
- There is a third possibility: the semijoin reduction
The semijoin reduction

• The semijoin plan for $\text{join}(R(X,Y),S(Y,Z))$, assuming that Y is much smaller than X and then Z:
 – Send $\pi_Y(R)$ to s
 – s computes $S1(Y,Z) = \text{semijoin}(\pi_Y(R), S(Y,Z))$
 – Send $S1(Y,Z)$ to r
 – R computes $\text{join}(R(X,Y),S1(Y,Z))$, which is equivalent to $\text{join}(R(X,Y),S(Y,Z))$

• When is this a good idea?
Distributed commit

• A typical distributed transaction in a federated system:
 – A client ‘c’ sends to a merchant ‘m’ and order and the two together send a request to a bank ‘b’ to issue the payment
 – At the end we would like to atomically update the state of the database ‘M’ of ‘m’ and of the database ‘B’ of ‘b’

• In a non-federated system
 – A bank is moving money from accounts in two distinct branches where two halves of its DB are stored. A failure happens. At restart we need a coherent state.
Two-Phase commit

- Assumptions:
 - A many-sites transaction with one site that acts as a coordinator
 - Every site has its local log
 - All messages in the protocol are logged
Fixing a date for a meeting

• We discussed, and 1st of June seems ok
• First phase: I ask everybody ‘is 1st of June ok’?
• People start answering – whoever says ‘yes’ is pre-committed: they MUST put 1st of June as busy in their calendar and cannot change their mind
• Second phase: after everybody has said yes, I tell everybody: ok, it is decided then, it is 1st of June
• I wait the ack of everybody, and if somebody does not ack I will insist until acked
The 2PC: Phase I

• Coordinator C: writes <Prepare,T> on its log
• C: sends to every Participant Pi: **send(Pi, prepare T)**
• Each Pi must answer, sooner or later, as follows:
 – It cannot commit:
 • **send(C, don’t commit T)**
 – It wants to commit:
 • Gets ready to redo in case of failure and writes <ready,T> on the log, entering in the pre-committed state: is not a commit, but from now on C and only C has the power to Abort
 • After this: **send(C, ready T)**
The 2PC: phase II: Abort case

• C decides whether to Commit – which requires that every Pi sended a ready msg – or to abort – which is the only choice if a Pi says ‘no’ or does not answer

• If C decides to Abort:
 – It writes <Abort,T> on its log
 – C: send(Pi, abort T) to every participant
 – Every Pi aborts T and then...
 – ...writes <Abort,T> on its log
The 2PC: phase II: Commit case

• C gets a ‘ready’ from every Pi and decides to Commit:
 – It writes <Commit,T> on its log
 – C: send(Pi, commit T) to every participant
 – Every Pi commits, which implies that it writes <Commit,T> on its log
Recovering after a crash

• The basic idea is very simple. The only difficult thing is proving that:
 – If there is a failure at any moment, we can always recover
 – If every site is guaranteed to eventually restart, then the protocol is guaranteed to eventually terminate
Messages and failures

• Every message may be duplicated, the second copy is just ignored; message send is ‘idempotent’
• Every message may be lost, when an answer does not arrive:
 – We first reiterate the request, with some policy (this is not even specified in the protocols)
 – We eventually assume that the partner is down
• Restart is always log-guided: I read the log and restart ‘from there’
Recovering Pi after a crash

• Last log record for T was:
 – <Commit,T> or <Abort,T>: easy, do as in the non-distributed case
 – <Don’t commit,T>, or is a <Write,T>: perform a local abort
 – <Ready,T>: contact the coordinator and the other sites to discover which was the decision; until an answer is obtained, the transaction is in the pre-committed condition and can neither be aborted nor be committed
Recovering C after a crash

• Last log record for T was:
 – <Prepare,T>: may send(Pi, Abort T), which is always allowed before the (Pi, Commit T), or do nothing
 – <Abort,T>: may (re)send(Pi, Abort T), or do nothing
 – <Commit T>: may (re)send(Pi, Commit T), or do nothing

• This is quite easy!

• If C receives a status request from some Pi that just recovered, for a transaction T, it consults the log:
 – Last record is <Commit T>: the transaction is committed
 – Otherwise, is Aborted
Recovering C by doing nothing

• \(<\text{Prepare},T\>):
 – Some site may be waiting a I phase or II phase msg from C; in this case, they will solicit C, which will answer ‘abort’

• \(<\text{Abort},T\>):
 – Some site may be waiting a II phase msg from C; in this case, they will solicit C, which will answer ‘abort’

• \(<\text{Commit T}\>):
 – Some site may be waiting a II phase msg from C; in this case, they will solicit C, which will answer ‘commit’
When messages get lost

• C: send(P, prepare)
 – If lost: Pi may solicit but may also safely assume Abort

• Pi: send(C, ready/don’t commit)
 – If lost: Pi may solicit but may also safely decide to Abort

• C: send(Pi, abort/commit)
 – If lost: Pi MUST solicit or get information by the peers
 – Until the decision is known, Pi must remain in the very uncomfortable ‘pre-committed’ state
 – What if C is down ‘forever’?

• The third case is the problem of the 2PC protocol
Distributed locking: the centralized solution

• We can either lock the many physical copies – one by one – of a piece of data, or we may get a logical lock on the logical data: both solutions work

• The centralized solution: we have a centralized lock server which manages lock on the logical data

• The usual problems of centralized solutions:
 – Bottleneck for performance
 – Single point of failure
Distributed locking: the primary copy

• One copy of the data item is primary, and every lock should be taken there
• We still have a bottleneck and a single point of failure
Distributed locking: the distributed solution

• Every transaction just gets S/X locks on the local copies that it reads or writes
• Consistency problem: one transaction may read a copy while another is writing a different copy
• Two solutions:
 – Write-locks-all: in order to write, a transaction must get an X lock on all copies; in order to read, one lock is enough
 – Majority locking: in order to write, I need \((n+1)/2\) X locks, in order to read, I need \((n+1)/2\) S locks
Distributed locking: the quorum

• The quorum: we have an s quorum and an x quorum such that
 – $x + x > n$ and $s + x > n$ (n: number of copies)
 – In order to read, I need S on s copies; in order to write I need X lock on x copies
 – by $x + x > n$ and $s + x > n$ no two transactions may be able to take enough conflicting locks at the same time

• Some typical cases
 – $x = s = (n+1)/2$
 – $x = n, \ s = 1$
 – $x = n-1, \ s = 2$
Distributed consistency

• The problem: being sure to always read the latest version of data

• Solutions:
 – Always write/read the primary copy – the others are only used during recovery
 – Every transaction always modifies all the copies before releasing its lock
 – Every transaction always modifies \((n+1)/2\) copies before releasing the X lock, and every transaction that needs safe data always reads \((n+1)/2\) copies
 – ...

Locks vs consistency

• In principle they are distinct:
 – I may use a centralized lock server but I may still use write-all consistency
 – Or any other combination

• In practice, the best solution is to adopt the same approach for locking and for consistency
Locks vs consistency

• In principle they are distinct:
 – I may use a centralized lock server but I may still use write-all consistency
 – Or any other combination

• In practice, the best solution is to adopt the same approach for locking and for consistency
Distributed deadlock

• Every centralized solution may be used – the waits-for graph, the timeout, the prevention
• In practice, we opt for timeout