
Parallel and Distributed Databases

Based on

• These slides are based on Chapter 20 of: Database
Systems: The Complete Book (2nd edition), by Hector
Garcia-Molina, Jeff Ullman, and Jennifer Widom,
2008

• Which is an excellent book

Parallel and Distributed Systems

• Parallel system: how to parallelize critical operations

• Distributed systems: how to distribute transactions

• Peer to peer systems

Models of parallelism

• Shared memory machines:

– Different CPUs share access to a unique main memory,
but each has its own cache

• Shared disk machines:

– Every CPU with its memory, but the disk space is unique

• Shared nothing machines:

– Every CPU has its own memory and disks

• SN is the most common

• Message overhead: it is important to use few long
messages rather than many small messages

Data partitioning

• Tuples are allocated to nodes according to a partitioning strategy

– Range partitioning: node 1 keeps k(i)<A<=k(i+1) (R)

– Hash partitioning: we apply a hash function to R.A

– Random (round-robin) partitioning

– Block partitioning: round-robin at the level of blocks

– Co-located partitioning: for each partition Ri of R at node i, the semijoin(S,Ri)
are in the same node

• The number of fragments may be fixed or may grow with the nodes

• Every relation may also be vertically partitioned πA,B,Ccond(A)(R)

• Every fragment is typically replicated for resilience

Uses of data partitioning

• To execute query working in parallel on different
nodes

• To only access relevant nodes when the relation is
filtered

• To distribute the load of some maintenance work

• To allocate the crucial fragments on the fastest
support

Parallel algorithms for set operators

• Distinct: if tuples are distributes using a hash
function, Distinct can be executed locally in parallel

• Union(R,S), Intersection(R,S), Difference(R,S):

– If R and S are hashed with the tame function, can be
executed locally

– Otherwise, if we have M processors we hash both R and
S with a same function in [0,M-1] and send tuple t to
processor h(t)

– We use M buffers in main memory of each processor,
and send a buffer to the corresponding machine only
when is full

Parallel algorithms for table operators

• Join(R(X,Y), S(Y,Z)):

– We distribute tuples of R and S using the same hash
function that only depends on Y

– Join is then performed locally

• GroupBy(R,X,{f1,…,fn}):

– Distribute R with a hash function that depends on X

– GroupBy locally

• Filter and Projection can be performed locally

Join algorithms in detail

• Colocated join: R and S are partitioned in the same way
and fragments are co-located: local algorithm

• Directed join: R and S are partitioned in the same way but
not co-located: choose one and send it to the
corresponding nodes of the other

• Repartitioned join: R and S are not partitioned in the
same way: we re-partition one (or both) according to the
same approach and use directed join

• Broadcast join: if one table is small, we just send it entire
to any node with a piece of S

Performance of parallel algorithms

• Total accesses and total CPU time increase, but we
hope to reduce the elapsed time

• A unary operator takes 1/p elapsed time if we have
p processors operating in parallel

• What about join?

Performance of repartitioned join
• Join:

1. (NPag(R) + NPag(S))/p to read and hash the tuples

2. We must send around (NPag(R) + NPag(S))(p-1/p) block of data

3. We need 2*(NPag)/p at every site to perform a hash join or a
sort-merge join (assuming tuple-level pipeline) (ignore the
different numbers given in the book)

• Elapsed time is almost the same as sequential-time/p

• Apart from communication time (2) and the fact that one
node may get more data and one may get less

• Every node gets NPag/p data: if it fits main memory, we
may avoid any I/O!

Distributed databases

Distributed systems vs.shared-noting
parallel systems

• In a distributed system:

– Communication is more expensive than in a parallel
system

– Node failure is independent, which gives better resilience

– The system may get partitioned in two for a non-
negligible amount of time

– The system may be ‘federated’, that is, it may be
managed by different autorities

– We may have different levels of trust (usually regarded as
‘peer-to-peer’ rather than ‘distributed’)

Data distribution

• Partitioning: data communication is expensive,
hence we may put data where is most used:
horizontal partitioning (e.g.: the database may be
distributed nation by nation) or even vertical
partitioning (every site keeps the column it uses
more)

• Replication: in order to have resilience, every
fragment of a relation should be replicated

• Replication makes reading faster and updating
slower

Designing data distribution

• The data distribution design:

– Every relation is divided in horizontal/vertical fragments
such as πitem,datenation=‘Italy’(Sales)

– Every fragment is mapped to n sites - if we have a
primary copy, we must also decide which copy is primary

• How to fragment is the easy part: we may define the
smallest possible pieces and then map them to the
same site

• Where to put fragments, and specifically how many
copies for each fragment, is a difficult optimization
problem

Distributed query processing: the
distributed join problem

• We have R(X,Y) at site r and S(Y,Z) at site s.
Communication is the dominating cost. The two
simplest possibilities:

– We send R to s

– We send S to r

• We would typically send the smallest one

• There is a third possibility: the semijoin reduction

The semijoin reduction

• The semijoin plan for ioin(R(X,Y),S(Y,Z)), assuming
that Y is much smaller than X and then Z:

– Send πY(R) to s

– s computes S1(Y,Z) = semijoin(πY(R), S(Y,Z))

– Send S1(Y,Z) to r

– R computes join(R(X,Y),S1(Y,Z)), which is equivalent to
join(R(X,Y),S(Y,Z))

• When is this a good idea?

Distributed consistency

• A transaction is now a distributed process that
coordinates local transactions

– How do we manage distributed commit?

– How do we ensure distributed serializability?

• Consistency of data replication

– How do we avoid data divergence in case of partitioning?

– Is there a primary copy or are all copies created equal?

Distributed commit

• A typical distributed transaction in a federated
system:

– A client ‘c’ sends to a merchant ‘m’ and order and the
two together send a request to a bank ‘b’ to issue the
payment

– At the end we would like to atomically update the state
of the database ‘M’ of ‘m’ and of the database ‘B’ of ‘b’

• In a non-federated system

– A bank is moving money from accounts in two distinct
branches where two halves of its DB are stored. A failure
happens. At restart we need a coherent state.

Two-Phase commit

• Assumptions:

– A many-sites transaction with one site that acts as a
coordinator

– Every site has its local log

– All messages in the protocol are logged

Fixing a date for a meeting

• We discussed, and 1st of June seems ok

• First phase: I ask everybody ‘is 1st of June ok’?

• People start answering – whoever says ‘yes’ is pre-
committed: they MUST put 1st of June as busy in
their calendar and cannot change their mind

• Second phase: after everybody has said yes, I tell
everybody: ok, it is decided then, it is 1st of June

• I wait the ack of everybody, and if somebody does
not ack I will insist until acked

The 2PC: Phase I

• Coordinator C: writes <Prepare,T> on its log

• C: sends to every Participat Pi: send(Pi,prepare T)

• Each Pi must answer, sooner or later, as follows:

– It cannot commit:

• writes <don’t commit,T> and send(C, don’t commit T)

– It wants to commit:

• Gets ready to redo in case of failure and writes <ready,T> on the
log, entering in the pre-committed state: is not a commit, but
from now on C and only C has the power to Abort

• After this: send(C, ready T)

The 2PC: phase II: Abort case

• C decides whether to Commit – which requires that
every Pi sended a ready msg – or to abort – which is
the only choice if a Pi says ‘no’ or does not answer

• If C decides to Abort:

– It writes <Abort,T> on its log

– C: send(Pi, abort T) to every participant

– Every Pi aborts T and then…

– …writes <Abort,T> on its log

The 2PC: phase II: Commit case

• C gets a ‘ready’ from every Pi and decides to
Commit:

– It writes <Commit,T> on its log

– C: send(Pi, commit T) to every participant

– Every Pi commits, which implies that it writes
<Commit,T> on its log

Recovering after a crash

• The basic idea is very simple. The only difficult thing
is proving that:

– If there is a failure at any moment, we can always recover

– If every site is guaranteed to eventually restart, then the
protocol is guaranteed to eventually terminate

Messages and failures

• Every message may be duplicated, the second copy
is just ignored; message send is ‘idempotent’

• Every message may be lost, when an answer does
not arrive:

– We first reiterate the request, with some policy (this is
not even specified in the protocols)

– We eventually assume that the partner is down

• Restart is always log-guided: I read the log and
restart ‘from there’

Recoverying Pi after a crash

• Last log record for T was:

– <Commit,T> or <Abort,T>: easy, do as in the non-
distributed case

– <Don’t commit,T>, or is a <Write,T>: perform a local
abort

– <Ready,T>: contact the coordinator and the other sites to
discover which was the decision; until an answer is
obtained, the transaction is in the pre-committed
condition and can neither be aborted nor be committed

Recovering C after a crash

• Last log record for T was:

– <Prepare,T>: may send(Pi, Abort T), which is always
allowed before the (Pi, Commit T), or do nothing

– <Abort,T>: may (re)send(Pi, Abort T), or do nothing

– <Commit T>: may (re)send(Pi, Commit T), or do nothing

• Are there other possibilities?

• If C receives a status request from some Pi that just
recovered, for a transaction T, it consults the log:

– Last record is <Commit T>: the transaction is committed

– Otherwides, is Aborted

Recovering C by doing nothing
• <Prepare,T>:

– Some site may be waiting a I phase or II phase msg from
C; in this case, they will solicit C, which will answer
‘abort’

• <Abort,T>:

– Some site may be waiting a II phase msg from C; in this
case, they will solicit C, which will answer ‘abort’

• <Commit T>:

– Some site may be waiting a II phase msg from C; in this
case, they will solicit C, which will answer ‘commit’

When messages get lost

• C: send(P, prepare)

– If lost: Pi may solicit but may also safely assume Abort

• Pi: send(C, ready/don’t commit)

– If lost: Pi may solicit but may also safely decide to Abort

• C: send(Pi, abort/commit)

– If lost: Pi MUST solicit or get information by the peers

– Until the decision is known, Pi must remain in the very
unconfortable ‘pre-committed’ state

– What it C is down ‘forever’?

• The third case is the problem of the 2PC protocol

Distributed locking: the centralized
solution

• We can either lock the many physical copies – one
by one – of a piece of data, or we may get a logical
lock on the logical data: both solutions work

• The centralized solution: we have a centralized lock
server which manages lock on the logical data

• The usual problems of centralized solutions:

– Bottleneck for performance

– Single point of failure

Distributed locking: the primary copy

• One copy of the data item is primary, and every lock
should be taken there

• We still have a bottleneck and a single point of
failure

Distributed locking: the distributed
solution

• Every transaction just gets S/X locks on the local
copies that it reads or writes

• Consistency problem: one transaction may read a
copy while another is writing a different copy

• Two solutions:

– Write-locks-all: in order to write, a transaction must get
an X lock on all copies; in order to read, one lock is
enough

– Majority locking: in order to write, I need (n+1)/2 X locks,
in order to read, I need (n+1)/2 S locks

Distributed locking: the quorum

• The quorum: we have an s quorum and an x quorum
such that

– x+x>n and s+x>n (n: number of copies)

– In order to read, I need S on s copies; in order to write I
need X lock on x copies

– by x+x>n and s+x>n no two transactions may be able to
take enough conflicting locks at the same time

• Some typical cases

– x=s=(n+1)/2

– x=n, s=1

– x=n-1, s=2

Distributed deadlock

• Every centralized solution may be used – the waits-
for graph, the timeout, the prevention

• In practice, we opt for timeout

