
Physical DB design and tuning: outline

• Designing the Physical Database Schema

– Tables, indexes, logical schema

• Database Tuning

– Index Tuning

– Query Tuning

– Transaction Tuning

– Logical Schema Tuning

• DBMS Tuning

Relational DB design

• Database design phases:

(a) Requirement Analysis,

(b) Conceptual design

(c) Logical design

(d) Physical design

• Physical Design Goal: definition of appropriate
storage structures for a specific DBMS, to ensure the
application performance desired

Physical design: needed information

• Logical relational schema and integrity constraints

• Statistics on data (table size and attribute values)

• Workload

– Critical queries and their frequency of use

– Critical updates and their frequency of use

– Performance expected for critical operations

• Knowledge about the DBMS

– Data organizations,

– Indexes and

– Query processing techniques supported

Workload definition

• Critical operations: those performed more frequently
and for which a short execution time is expected.

Workload definition

• For each critical query

– Relations used

– Attributes of the result

– Attributes used in conditions (restrictions and joins)

– Selectivity factor of the conditions

• For each critical update

– Type (INSERT/DELETE/UPDATE)

– Attributes used in conditions (restrictions and joins)

– Selectivity factor of the conditions

– Attributes that are updated

The use of ISUD table

Insert, Select, Update, Delete

<---- Employee Attributes ------>

APPLICATION FREQUENCY %DATI NAME SALARY ADDRESS

Payroll monthly 100 S S S

NewEmployee quartly 0.1 I I I

DeleteEmployee quartly 0.1 D D D

UpdateSalary monthly 10 S U

Decisions to be taken

• The physical organization of relations

• Indexes

• Index type

• ... Logical schema transformation to improve
performance

Decisions for relations and indexes

• Storage structures for relations:

– heap (small data set, scan operations, use of indexes)

– sequential (sorted static data)

– hash (key equality search), usually static

– tree (index sequential) (key equality and range search)

• Choice of secondary index, considering that

– they are extremely useful

– slow down the updated of the index keys

– require memory

How to choose indexes

• Use a DBMS application, such as DB2 Design
Advisor, SQL Server DB Tuning Advisor, Oracle
Access Advisor.

How to choose indexes

• Tips: don’t use indexes
• on small relations,

• on frequently modified attributes,

• on non selective attributes (queries which returns ≥ 15% of
data)

• on attributes with values long string

• Define indexes on primary and foreign keys

• Consider the definition of indexes on attributes used
on queries which requires sorting: ORDER BY,
GROUP BY, DISTINCT, Set operations

How to choose indexes (cont.)

• Evaluate the convenience of indexes on attributes
that can be used to generate index-only plans.

• Evaluate the convenience of indexes on selective
attributes in the WHERE:

– hash indexes, for equality search

– B+tree, for equality and range search, possibly clustered

– multi-attributes (composite), for conjunctive conditions

• to improve joins with IndexNestedLoop or
MergeJoin, grouping, sorting, duplicate elimination.

• Attention to disjunctive conditions

How to choose indexes (cont.)

– Local view: indexes useful for one query (simple)

– Global view: indexes useful for a workload

– Index subsumption: some indexes may provide similar
benefit

• An index Idx1(a, b, c) can replace indexes Idx2(a, b) and Idx3(a)

– Index merging: two indexes supporting two different
queries can be merged into one index supporting both
queries.

– When there are a lot of data to load, create indexes after
data loading

How to choose indexes: the global view

1. Identify critical queries

2. Create possible indexes to tune single queries

3. From set of all indexes remove subsumed indexes

4. Merge indexes where possible indexes

5. Evaluate benefit/cost ratio for remaining indexes

(need to consider frequency of queries/index usage)

6. Pick optimal index configuration satisfying storage
constraints.

Primary organizations and secondary indexes

CREATE [UNIQUE...] INDEX Nome [USING {BTREE | HASH | RTREE}]

ON Table (Attributes+Ord)

Clustering indexes

Bitmap indexes

DB schema for the examples

Lecturers(PkLecturer INT, Name VARCHAR(20), ResearchArea VARCHAR(1),
Salary INT, Position VARCHAR(10), FkDepartment INT)

Departments(PkDepartment INT, Name VARCHAR(20), City VARCHAR(10))

CREATE TABLE Table (Attributes) < physical aspects >;

CREATE TABLE Table (Attributes + keys) ORGANIZED INDEX; (ORACLE)

CREATE TABLE Table (Attributes + keys) ORGANIZE BY DIMENSIONS (Att); (DB2)

Primary organization definitions in SQL

Departments Lecturers

Nrec 300 10 000

Npag 30 1 200

Nkey(IdxSalary) 50 (min=40, max=160)

Nkey(IdxCity) 15

The definition of indexes

Do not index!

Few records in this table

Do not index!

Possibly too many updates

The index is created implicitly
on a PK

SELECT Name
FROM Departments
WHERE City = ‘PI’

SELECT StockName, StockPrice
FROM Stocks
WHERE Stockprice > 50

SELECT Name
FROM Lecturers
WHERE PkLecturer = 70

The definition of (multi-attributes) indexes

A secondary index on Position or on
Salary? SELECT Name

FROM Lecturers
WHERE Position = ‘P’

AND Salary BETWEEN 50 AND 60

SELECT ResearchArea,Position
COUNT(*)

FROM Lecturers
GROUP BY Position, ResearchArea
ORDER BY ResearchArea

An index on Position, ResearchArea
or ResearchArea Position to speed up
GBY.

A secondary index on Position and
another on Salary?

A secondary index on <Position,
Salary>?

Better on ResearchArea Position
because it also returns result sorted

How many indexes on a Table ? How many indexes use the DBMS for
AND?

The creation of clustered index

With a not very selective predicate

Salary>70, a clustered index may
still be useful

SELECT Name
FROM Lecturers
WHERE Salary > 70

SELECT FkDepartment, COUNT(*)
FROM Lecturers
WHERE Salary > 70
GROUP BY FkDepartment

A clustered index on FkDepartment
can be useful here

SELECT Name
FROM Lecturers
WHERE Salary = 70

If there are a few lecturers with a
Salary =70, a clustered index on
Salary can be more useful than an
unclustered one

The creation of indexes for index-only plans

For Index-Only plans clustered indexes are not required.

SELECT DISTINCT FkDepartment
FROM Lecturers ;

SELECT Salary, COUNT(*)
FROM Lecturers
GROUP BY Salary;

SELECT D.Name
FROM Lecturers L, Departments D
WHERE FkDepartment=PkDepartment;

Index on su
FkDepartment

Index on Salary

Index on FkDepartment
for INL

SELECT FkDepartment, MIN(Salary)
FROM Lecturers
GROUP BY FkDepartment;

Index on
<FkDepartment,Salary>

Index-only plans

DB2: CREATE UNIQUE INDEX Name ON Table (Attrs) INCLUDE (OtherAttrs);

SQL Server: the clause UNIQUE is optional

Some DBMSs allow the definition of indexes on some attributes, and to

include also others which are not part of the index key.

SELECT FkDepartment, MIN(Salary)
FROM Lecturers
GROUP BY FkDepartment;

Index on FkDepartment

INCLUDE Salary

Concluding remarks
• The implementation and maintenance of a database

application to meet specific performance requirements is
a very complex task

• Table organizations and index selections are fundamental
to improve query performance, but ...

– Indexes must be really useful because of their memory and
update costs

– An index should be useful for different queries

• Clustered indexes are very useful, but only one for table
can be defined

• The order of attributes in multi-attribute (composite)
indexes is important

Database tuning: what is the goal?

• Improve performance

• Database tuning mostly refers to query (or DB
applications) performance.

What can be tuned ?

Applications Queries, Transactions, ...

System configuration, DB schema, storage structures, ...

System parameters and configuration for IO, ...

Components for CPU, main memory, hard disks,
backup solutions, network, ...

DBMS

OS

HW

Here the focus is on Database Tuning

Needed knowledge

Applications
How is the DB used and

what are the tuning goals?

DBMS
What possibilities of

optimization does it provides?

OS
How does it manage HW

resources and services by the
overall system?

HW
What are suitable HW

components to support the
performace requirements?

Fully efficient
DB Tuning

requires deep knowledge
about...

Schallehn: Database Tuning and Self-Tuning 2012

Who does the tuning?
DB and application designers During DB development (physical DB design)

and initial testing.

DB designers must have knowledge about applications, and good knowledge
about the DBMS, but may be only fair to no knowledge about OS and HW.

DB administrators (DBA) During ongoing DBMS maintenance.
Adjustment to changing requirements,
data volume, new HW.

DBA have knowledge about DBMS, OS, and HW. And about applications ?

DBA knowledge about applications depends on the given organizational structure

DB experts
(consultants, in-house experts)

DB consultants usually have strong knowledge about DBMS, OS and
HW, but have little knowledge about current applications.

During system re-design, troubleshooting or
fire fighting (emergency actions)

WHEN? WHAT KNOWLEDGE?

Schallehn: Database Tuning and Self-Tuning 2012

Database tuning as a process

Current
performance
requirements
not fulfilled

Identify
Existing
Problem

Monitor system
behavior and identify

cause of problem

Apply changes
to solve problem

Problem
Solved

Overall system continuously changes
Data volume, # of user, # of queries,
usage patterns, hardware, etc.

Requirements may change

Observe and measure
relevant quantities, e.g.
queries time.

Adjust system
parameters,
storage
structures etc.

Schallehn: Database Tuning and Self-Tuning 2012

Basic principles: controlling trade-offs

Database tuning very often is a process of decision about costs for a solution

compared to its benefits.

Adding indexes -> benefit: better query performance
costs: more disk memory, more update time

Costs: monetary costs (for HW, SW), working hours or more

techinical costs (resource consumption, impact on other aspects)

Examples

Benefits: improved performance (monetary effects most often not

easily quantifiable)

Denormalization -> benefit: better query performance
costs: need to control redundancy within tables

Replace disk by RAID -> benefit: better I/O performance
costs: HW costs

Schallehn: Database Tuning and Self-Tuning 2012

Basic principles: Pareto principle

80/20 Rule: by applying 20% of the effort one can achieve 80% of the

desired effects.

100% effect = full optimized system

Consequences for DB tuning

Full optimized system probably beyond necessary requirements.

Hence, one does not need to be an expert on all levels of the system to
be able to implement a reasonable solution...

“a little bit of DB tuning can help a lot”

Schallehn: Database Tuning and Self-Tuning 2012

Database tuning

When a database has unexpected bad performances
we must revise:

DB Logical Design

Query and Transaction Definitions

Physical Design: the selection of indexes or their type, looking
at the access plans generated by the optimizer

DBMS: buffer and page size, disk use, log management.

Hardware: number of CPU, disk types.

To begin

• Select the queries with low performance (either the
critical one or those which do not satisfy the users)

• Analyze physical query plans looking at

– physical operators for tables

– sorting of intermediate results

– physical operators used in the query plans

– physical operators for the logical operators

Index tuning

One of the most often applied tuning measures

Great benefits with little effort (if applied correctly).

Storage cost of additional disk memory most often acceptable.

Strong support within all available DBMS

(index structures, index usage controlled by optimizer)

Cost for locking overhead and lock conflicts.

Cost for index updates.

Query tuning

• SELECT with OR condition are rewritten as one
predicate IN, or with UNION of SELECT

• SELECT with AND of predicates are rewritten as a
condition with BETWEEN

• Rewrite SUBQUERIES as join

• Eliminate useless DISTINCT and ORDER BY from
SELECT or SUBSELECTS

• Avoid the definition of temporary views with
grouping and aggregations

• Avoid aggregation functions in SUBQUERIES

Query tuning (cont.)

Avoid useless HAVING or GROUP BY

SELECT MIN(Salary)
FROM Lectures
GROUP BY Position
HAVING Position = ‘P1’

SELECT MIN(Salary)
FROM Lectures
WHERE Position = ‘P1’

SELECT Position, MIN(Salary)
FROM Lectures
GROUP BY Position
HAVING Position IN(‘P1’,‘P2”)

SELECT Position, MIN(Salary)
FROM Lectures
WHERE Position IN(‘P1’,‘P2”)
GROUP BY Position

Avoid expressions with index attributes (e.g. Salary*2=100)

Transactions tuning

• Do not block data during db loading, as well as
during read-only transactions

• Split complex transactions in smaller ones

• Select the right block granularity, if possible (long T,
table; medium T, page; short T, record)

• Select the right isolation level among those
provided by SQL

– SET TRANSACTION ISOLATION LEVEL {READ
UNCOMMITTED | READ COMMITTED | REPEATABLE
READ | SERIALIZABLE }

Isolation levels in SQL

READ UNCOMMITTED, record READ only without locks

Problem: dirty read (read data updated by other active T)

Account (No INTEGER PRIMARY KEY, Name CHAR(30), Balance FLOAT);

-- T1.begin:
UPDATE Account
SET Balance = Balance - 200.00
WHERE No = 123;

ROLLBACK;

-- T2.begin: RU

SELECT AVG(Balance)FROM
Account; COMMIT;

Isolation levels in SQL

READ COMMITTED, shared read locks are released immediately,

exclusive locks until the T commit

Problem: avoid dirty read, but unrepeatable reads or loss of updates

-- T1.begin:

UPDATE Account
SET Balance = Balance - 200.00
WHERE No = 123; COMMIT;

-- T2.begin: RC
SELECT AVG(Balance)
FROM Account;

SELECT AVG(Balance)
FROM Account;COMMIT;

Isolation levels in SQL

REPEATABLE READ, shared and exclusive locks on records until the end of

the transaction

Problem: avoid the previous problems, but not the “phantom records”

problem:

-- T1.begin:

INSERT INTO Account
VALUES(1233,”xx”,200.00);
COMMIT;

-- T2.begin: RR
SELECT AVG(Balance)
FROM Account;

SELECT AVG(Balance)FROM
Account;COMMIT;

Isolation levels in sql (cont.)

• SERIALIZABLE, multi-granularity locks: tables read by
a T cannot be updated.

• Good, but the number of transactions which can be
executed concurrently is considerably reduced.

DBMS isolation levels

• Commercial DBMS may

– provide some isolation levels only,

– not have the same isolation level by default

– have other isolation levels (e.g. SNAPSHOT)

Logical schema tuning

• Types of logical schema restructuring:

– Vertical Partitioning.

– Horizontal Partitioning

– Denormalization

• Unlike changes to the physical schema (physical
independence), changes to the logical schema
(schema evolution) require views creation for the
logical independence.

Logical schema tuning

• Partitioning: splitting a table for performance

– Horizontal: on a property

– Vertical: R1(pk, Name, Surname) R2(pk, Address, …)

• Normalization: divide Students from Exams to avoid
anomalies

• Denormalization: store Students and Exams into one
table:

– increases update time but makes join faster

Vertical partitioning (projections)

Critical Query:
Find the number of exams passed and the number of students who have
done the test by course, and by academic year.

Students

Name StudentNo City BirthYear BDegree University

Exams

PkE Course StudentNo Master Date Other

ExamForAnalysis

PkE Course Master Date

ExamsOther

PkE StudentNo Other

The decomposition must preserve data...

Horizontal partitioning (selections)

Critical Query:
For a study program with title X and a course with less than 5 exams passed,
find the number of exams, by course, and academic year

Exams
PkE Course

StudentNo Degree Date ...

Master
PkM

Title President ...

MasterXExams
PkE Course

StudentNo Degree Date ...

MasterYExams
PkE Course

StudentNo Degree Date

FkM
FkE ...

MasterExam

Denormalization (attribute replication)

Critical Query:
For a student number N, find the student name, the master program title
and the grade of exams passed

Exams
PkE Course

Student Name Degree Date Master Other

Finally: Schema fusion of relations (1:1) and View materialization

Students

Name StudentNo City BirthYear BDegree University

Exams
PkE Course

Student Degree Date Other

Master
PkM

Title President ...
FkM

FkE ...

MasterExam

DBMS tuning

• Tune the transaction manager (log management and
storage, checkpoint frequency, dump frequency)

• Tune the buffer size (as well as interactions with the
operating system)

• Disk management (allocation of memory for
tablespaces, filling factor for pages and files,
number of preloaded pages, accesses to files)

• Use of distributed and parallel databases

Database self-tuning

Applications
Knowledge about from analyzing

queries, TXNs, schema, etc.

DBMS
Naturally, it knows best

about its functionality and
tuning options

OS
Knowledge about encoded in

platform specific code +
runtime inf via OS interfaces

HW
Knowledge about encoded in

platform specific code +
runtime inf via OS interfaces

DBMS itself
is best

Tuning Expert !

Schallehn: Database Tuning and Self-Tuning 2012

Database self-tuning

• Databases are getting better and better at this

• This is clearly the way to go

• But there will be still space for a good DBA

Exercise
• Tables:

– Sales(Date,FKShop,FKCust,FKProd,UnitPrice,Q,TotPrice)

– Shops(PKShop,Name,City,Region,State)

– Customer(PKCust,Nome,FamName,City,Region,State,Inco
me)

– Products(PKProd,Name,SubCategory,Category,Price)

Exercise

• Sales: 100.000.000, 1.000.000; Shops: 500, 2;
Customers: 100.000, 1.000; Products: 10.000, 100

SELECT Sh.Region, Month(S.Date),Sum(TotPrice)

FROM Sales S join Shops Sh on FKShops=PKShops

GROUP BY Sh.Region, Month(S.Date)

• Propose a primary organization based on this query

• Compute the cost of an optimal access plan based
on this organization

• Add a condition: WHERE 1/1/2017 < Date

