
DBMS ARCHITECTURE

Concurrency

• Consider two ATMs running in parallel

• We need a concurrency manager

T1 T2

r1[x]

x:=x-250 r2[x]

x:=x-250

w[x]

commit

w[x]

commit

Examples of interference

T1: r[x=200] w[x:=100] abort

T2: r[x=100] r[y=500] Dirty Read

T1: r[x=100] r[x=500] Unrepeatable Read

T2: w[x:=500]

T1: r[x=100] w[x:=600] Lost Updates

T2: r[x=100] w[x:=500]

Seriality and serializability

• Definition: A concurrent execution of a set
transactions {T1 , …, Tn } is serial if, for every pair of
transactions Ti and Tj, all the operations of Ti are
executed before any of the operations of Tj or vice
versa.

Seriality and serializability

• A serial execution is impractical – we need
interleaving

Seriality and serializability

• Definition: A concurrent execution of a set transactions
{T1 , …, Tn } is serializable if it has the same effect on
the database as some serial execution of the same
transactions.

Serializability theory

• Goal of the concurrence manager (or scheduler):
providing concurrency and serializability.

• Correctness of a scheduler is proved using a theory
of serializability, based on:

– Transactions

– History of the concurrent execution of a set of T

– Equivalence relation between histories

– Serializable histories

– Properties of the histories generated by a scheduler

Transactions and operations

• Assume a unbounded set of locations x, y, zX

• Transaction Ti: sequence of operations ri[x], wi[x] on
elements of X that terminates either with ci

(commit) or ai (abort)

• We ignore data creation and complex operations
such as insertion in a list

Example

The execution of the transaction

program T;

var i, j:integer;

begin

i:= read(x);

j:= read(y);

j := i + j;

write(j,x);

end;

end {program}.

is seen by the DBMS as a sequence of operations:
r[x] r[y] w[x] c

History of a set of transactions

Definition Let T = {T1,T2,…,Tn} be a set of transactions.

A history H on T is an ordered set of operations such

that:

1. The operations of H are those of T1, T2, …, Tn;

2. H preserves the ordering among the operations of the
same transaction.

Example of a history

H1= r1[x] r2[x] w1[x] r3[x] w3[x]
c3 w2[y] w1[y] c1 c2

T1 = r1[x] w1[x] w1[y] c1

T2 = r2[x] w2[y] c2

T3 = r3[x] w3[x] c3

T1 T2 T3
r1[x]

r2[x]
w1[x]

r3[x]
w3[x]
c3

w2[y]
w1[y]
c1

c2

H1

Time

A possible definition of equivalent
histories

• Definition A history S is serializable if it is
equivalent to a serial history

• Definition Two histories H and L are equivalent if

– they are defined on the same set of transactions,

– they produce the same effect on the DB (same final
state)

A stronger definition

• A simpler notion of equivalence it is used, which is
easier to check, based on the notion of operations
in conflict

• Definition Two operations are in conflict if

– they belong to different transactions,

– they are on the same data,

– one of them is a write operation

• Intuition: Two operation o1 and o2 commute if o1-
o2 has the same effect and result as o2-o1. Two
perations conflict if they may not commute

C-equivalent histories

• Definition Two histories H and L are c-equivalent
with respect to operations in conflict if:

– H and L are defined on the same set of transactions

– Evey pair of operations in conflict of committed
transactions are in the same order

• Therefore, each read operation in H reads the same
data in L, and the last data written in H and L are the
same.

C-equivalent histories

H2 c-equivalent to H1?

T1 T2 T3
r2[x]
w2[y]
c2

r1[x]
w1[x]

r3[x]
w3[x]
c3

w1[y]
c1

T1 T2 T3
r1[x]

r2[x]
w1[x]

r3[x]
w3[x]
c3

w1[y]
w2[y]

c1
c2

T1 T2 T3
r1[x]

r2[x]
w1[x]

r3[x]
w3[x]
c3

w2[y]
w1[y]
c1

c2

H1 H3 c-equivalent to H1 ?

H1= r1[x] r2[x] w1[x] r3[x] w3[x] c3 w2[y] w1[y] c1 c2

YES NO

Serializability and c-serializability

• A history H on the set T={T1,T2,…,Tn } is serial if
represent a serial execution of T1,T2,…,Tn.

• Definition: A history H on the set T={T1,T2,…,Tn } is
serializable if it has the same effect on the database
as some serial execution of the same transactions.

• Definition: A history H on the set T={T1,T2,…,Tn } is
c-serializable if it is c-equivalent to a serial history
on {T1,T2,…,Tn }.

• C-serializable implies serializable

Serializability and c-serializability

H2 c-equivalent to H1

T1 T2 T3
r2[x]
w2[y]
c2

r1[x]
w1[x]

r3[x]
w3[x]
c3

w1[y]
c1

T1 T2 T3
r2[x]
w2[y]
c2

r1[x]
w1[x]
w1[y]
c1

r3[x]
w3[x]
c3

Serial history c-
equivalent to H2 and H1

T1 T2 T3
r1[x]

r2[x]
w1[x]

r3[x]
w3[x]
c3

w2[y]
w1[y]
c1

c2

H1

Serializability and c-serializability

• Some serializable histories are not c-serializable

• Serial history: T1 , T2, T3

• The final DB state is the same.

T1 T2 T3
r1[y]

w2[y]
w2[x]
c2

w1[x]
c1

w3[x]
c3

Serializable C-serializable

Using the theory

• We define a scheduling algorithm

• Prove that it only produces c-serializable histories

• Hence, it only produces serializable histories

Serialization graph

• We can decide if a schedule is c-serializable by
looking at its serialization graph

• Definition Given a history H on T = {T1, T2, ..., Tn}, the
serialization graph of H, SG(H), is a direct graph
whose nodes are the committed transaction of H,
and arc from Ti to Tj (i ≠ j) if an operation of Ti

precedes and is in conflict with an operation of Tj.

Example

T1 T2 T3
r1[x]

r2[x]
w1[x]

r3[x]
w3[x]
c3

w1[y]
w2[y]

c1
c2

History H3

T1 T2 T3
r2[x]
w2[y]
c2

r1[x]
w1[x]

r3[x]
w3[x]
c3

w1[y]
c1

History H2

GS(H2) = T2 T1

T3

GS(H3) = T2 T1

T3

T1 T2
r1[x]

r2[x]
w1[x]

w2[x]
c1

c2

History H4

GS(H4) = T2 T1

Serializability theorem

• Serializability theorem: H is c-serializable if and only
if the corresponding serialization graph is acyclic.

• If SG is acyclic, a serial schedule can be obtained
with a topological ordering on the graph

GS(H2) = T2 T1

T3

GS(H3) = T2 T1

T3

GS(H2) = T2 T1

T3

Serial history? T2 , T1, T3

Strict 2PL protocol

• Strict two-phase locking algorithm (pessimistic
approach): the most used scheduling protocol

• A protocol between transactions Ti and a scheduler S:

– Before acting on X, Ti asks S for the corresponding lock

– Different transactions are not given conflicting locks by S

– Ti relases all its locks upon termination, and never before.

Lock vs Strict 2PL
No of locks

Obtain lock

Release lock

Phase 1 Phase 2

Lock in
concurrent
programming

Strict 2PL

No of locks

Strict 2PL protocol and 2PL

• Strict 2PL:

1. Before acting on X, Ti asks S for the corresponding lock

2. Different transactions are not given conflicting locks by
S

3. Ti relases all its locks upon termination, and never
before

• Two Phase Locks

3. After a lock has been released by Ti, Ti will not acquire
any new lock

• 2PL suffers the cascading abort problem

2PL vs Strict 2PL
No of locks

Phase 1 Phase 2

Obtain lock

Release lock

Phase 1 Phase 2

2PL

Strict 2PL

Lock modes
• RW – 2PL: two lock modes for each item, Shared (S

or R) and Exclusive (X or W)

• Before reading, ask for an S lock. Before writing, ask
for an X lock

• Compatibility matrix:

• Richer sets of modes are often used in practice

S X

S Yes No

X No No

Implementing the protocol

• A scheduler keeps a set of locks – that is, triples
(T,mode,x) where mode{S,X} (hashed on x):

• When a transaction asks for a lock on :

– If it possible, the lock is assigned

– If it is not possible, the transaction is suspended in a wait
queue (hashed on x)

• When a transaction commits / aborts:

– All of its locks are released

– Waiting transactions are notified, with some policy

• The scheduler detects (or prevents) the deadlocks

Strict 2PL and serializability

• Theorem: A strict 2PL schedule is c-serializable

T1 T2 T3
r1[x]
w1[x]

r2[x]
w2[x]

r3[y]
w1[y]
c1

c2
c3

serializable c-serializable S2PL

Strict 2PL history

No locks S2PL scheduler

t1 t2 t3
rl[x], r1[x]
wl[x],w1[x]

rl[x]*
rl[y],r3[y]

wl[y]*
c3,u[y]

wl[y],w1[y]
c1,u[x,y]

rl[x],r2[x]
wl[x],w2[x]
c2,u[x]

t1 t2 t3
r1[x]
w1[x]

r2[x]
w2[x]

r3[y]
w1[y]
c1

c2
c3

SG = t3 → t1 → t2

t1 t2 t3
r1[x]
w1[x]

r3[y]
c3

w1[y]
c1

r2[x]
w2[x]
c2

S2PL history

denied lock requests are marked with*

Deadlocks

• Strict two-phase locking is simple, but the scheduler
needs a strategy to manage deadlocks.

• T1: w1[X], w1[Y], ... T2: w2[Y], w2[X], ...

T1 T2

xl[X]
w1[X] xl[Y]

w2[Y]
xl[X] *xl[Y] *

Deadlock !

Deadlocks

• The deadlock problem can be solved with two
techniques:

– Deadlock detection and recovery

– Deadlock prevention

Deadlock detection

• Wait-for graph G = (V, E):

– V: Vertexes are the active transactions Ti

– E: Arc Ti -> Tj means that Ti is waiting for a data item
locked by Tj

– Arcs are added and removed when locks are granted and
releases

– A deadlock is present if there is a cycle in the graph

– A transaction inside the cycle is aborted and restarted

• Otherwise: timeouts

Example of deadlock detection

T1:
T2:
T3:
T4:

rl[A], rl[D],
wl[B],

T1 T2

T4 T3

rl[B] *,

rl[D], rl[C],

wl[C]*,

wl[B]*,
wl[A]*,

Cycle !

For simplicity, the lock requests only are shown, and those with * are

suspended

Deadlock prevention

• Each transaction Ti is given a time stamp when it
starts and it can wait only

– for a younger transaction Tj (wait-die) OR

– for an older transaction Tj (wound-wait)

– otherwise the younger transaction aborts (dies).

• The aborted T is always the younger, which then
later restarts with the same time stamp: no
starvation

• No deadlocks

Wait-die

A T may only wait for a younger one.

Suppose Ti requests a data item currently held by Tj

IF ts(Ti) < ts(Tj) (Ti is older than Tj)

THEN Ti wait for Tj (older waits for the younger)

ELSE Ti aborts (younger dies)

If Ti dies then it later restarts with the same timestamp!

No

T1

(ts =10)

wl[A] T2

(ts =20)

wl[B]

T3

(ts =30)

wl[C]

Wait-die: example

rl[B] waits

rl[C] waits
rl[A] waits?

T1
(ts =10)

T2
(ts =20)

T3
(ts =30)

wl[A]

rl[A] waitswl[A] waits

T3 terminates

waits for A? No

T2 dies!

T2 would not die with the wait-for graph

wl[A]

Wait-die: example

Wound-wait

Suppose Ti requests a data item currently held by Tj

IF ts(Ti) < ts(Tj) (Ti is older than Tj)

THEN Ti wounds Tj and takes the lock (younger dies: lock to older)

ELSE Ti waits (younger waits for older)

If Tj dies then it later restarts with the same timestamp

A T may only wait only for an older one.

No

T1

(ts =10)

wl[A] T2

(ts =20)

wl[B]

T3

(ts =30)

wl[C]

rl[A] waits

rl[B] waits
rl[C] waits?

Wound-wait: example

Comparing Deadlock Management Schemes

Wait-die and Wound-wait ensure no starvation

Wait-die (older waits) tends to roll back more transactions
then Wound-wait (younger waits) but they tend to have
done less work

Wait-die and Wound-wait are easier to implement than
waits-for graph

Waits-for graph technique only aborts transactions if
there really is a deadlock (unlike the others)

Snapshot isolation

• Optimistic concurrency control

• T always reads data as they were when it started

• T reads/writes without locks in its own snapshot,
which is not visible to others.

• First Committer Wins Rule:

– A T commits only if no other concurrent transaction has
already written data that T intends to write (no writeset
conflict).

Snapshot isolation: example
T1 T2 T3

begin
w[y:=1]
c

begin
r[x=0]
r[y=1]

begin
w[x:=2]
w[z:=3]
c

Snapshot(T2)
x = y = z = 0

begin
r[x=0]
r[y=1]

begin
w[x:=2]
w[z:=3]
c

r[z=0]
c

Snapshot(T1)
x = z = 0
y = 1

Snapshot(T3)
x = z = 0
y = 1

All T commit ?
abort

r[z=]0

w[x:=3]
c

Is strict 2PL ?

<-- ?

<-- ?

All T commit ? Yes
No

T1 T2 T3
begin
w[y:=1]
c

Snapshot isolation: properties

Reading is never blocked and also does not block other T

Avoids the usual anomalies: dirty read, lost update, ...

PROBLEM: it can produce non-serializable histories

Snapshot serialization anomalies

Consider two Ts that starts (at the same time) with a state x=3 e
y=17:

T1 (x:=y) T2 (y:= x)

begin begin
r[y= ?] r[x= ?]
w[x :=y] w[y :=x]
c c

Serializable Isolation: Snapshot Isolation:

x= , y= 17 3

T2, T1: x= , y=

T1, T2: x = , y =

3 3

17 17

EXERCISE

Exercise 10.3 Consider the following transactions and the history H:

T1 = r1[a];w1[a]; c1

T2 = r2[b];w2[a]; c2

H = r1[a]; r2[b];w2[a]; c2;w1[a]; c1

Answer the following questions:

1. Is H c-serializable?

2. Is H a history produced by a strict 2PL protocol?

3. Suppose that a strict 2PL serializer receives the following requests

(where rl and wl means read lock and write lock):

rl1[a]; r1[a]; rl2[b]; r2[b];wl2[a];w2[a]; c2;wl1[a];w1[a]; c

Show the history generated by the serializer.

EXERCISE
Exercise 10.4 Consider the following history H of transactions T1, T2 and T3

H = r3[B]; r1[A]; r2[C];w1[C];w2[B];w2[C[;w3[A]

We make the following assumptions:

1. If a transaction ever gets all the locks it needs, then it instantaneously completes

work, commits, and releases its locks,

2. If a transaction dies or is wounded, it instantaneously gives up its locks, and

restarts only after all current transactions commit or abort,

Answer the following questions:

1. Is H c-serializable?

2. If the strict 2PL is used to handle lock requests, in what order do the transactions

finally commit?

3. If the wait-die strategy is used to handle lock requests, in what order do the

transactions finally commit?

4. If the wound-wait strategy is used to handle lock requests, in what order do the

transactions finally commit?

5. If the snapshot strategy is used, in what order do the transactions finally commit?

EXERCISE
Exercise 10.5 Consider the transactions:
T1 = r1[x];w1[x]; r1[y];w1[y]
T2 = r2[y];w2[y]; r2[x];w2[x]
1. Compute the number of possible histories.
2. How many of the possible histories are c-equivalent to the serial history (T1;
T2) and how many to the serial history (T2; T1)?

Exercise 10.6 The transaction T1 precedes T2 in the history S if all actions of
T1 precede actions of T2. Give an example of a history S that has the following
properties:
1. T1 precedes T2 in S,
2. S is c-serializable, and
3. in every serial history c-equivalent to S, T2 precedes T1.
The schedule may include more than 2 transactions and you do not need to
consider locking actions. Please use as few transactions and read or write
actions as possible.

Concurrency in real systems

Objects are of different size (granularity), and we try
to reduce locks as much as possible, as well as to lock
at the smallest possible level

Data is modified also for insertion and removal

When an index is updated, we must use locks!

5

2

Multiple granularity locking

• Containment hierarchy:
DB -> Files -> Pages -> Records -> Fields

• In the containment hierarchy, we can have either
low or high lock granularity:

– low (towards the fields): more concurrency, more lock
overhead, higher deadlock probability

– high (towards the DB): less concurrency, less overhead,
less deadlocks

• Every transaction should lock at its correct
granularity

Multiple granularity locking

• A lock on a object – S or X – is a lock on all its
components

• To lock some part of an object, an intention lock on
the whole object is required

– IS (intention share lock) allows one to then ask a shared
lock on a part of the object

– IX (intention exclusive lock) allows one to then ask an X
lock on a part of the object

– SIX (share intention exclusive lock) S + IX lock

Multigranular compatibility table

• Lock from the root towards the leafs

IS IX S SIX X

IS Y Y Y Y N

IX Y Y N N N

S Y N Y N N

SIX Y N N N N

X N N N N N

IS IX S SIX X

IS Y Y Y Y N

IX Y Y N N N

S Y N Y N N

SIX Y N N N N

X N N N N N

New kinds of locks and protocols

• Insertion and removal of records

– To insert or remove a record from a file we must lock-X the

entire file

• Concurrency on B-Tree indexes

– The strict 2PL protocol has terrible performances: when

updating an index a transaction should have an X lock on

the entire tree

– New methods have been proposed (for instance, when
child node is locked, the lock on the father is released)

Summary

• Correctness criterion for isolation is c-serializability,
more restrictive but easier to enforce.

• Pessimistic or optimistic approach

• Pessimistic: Strict 2PL.

– Deadlocks arise, can either be detected or prevented

– Multi-granularity locking

• Optimistic:

– Snapshot

– Timestamp

