
Advanced Database Systems

DBMS Internals

• Data structures and
algorithms to
implement RDBMS

• Internals of non
relational data
management systems

Why to take this course?

• To understand the strengths and weaknesses of
commercial (ORACLE, DB2, SQLServer,...) and
public domain (MySQL, PostgreSQL) DBMS

• To make you a better application designer, or
database administrator, or database programmer

• To prepare you as implementer of data intensive
systems

Course topics

• Architecture of a DBMS

• Permanent Memory Data Structures

• Query Processing and Optimization

• Transaction Management

• Database Physical Design and Database Tuning

• Internals of NoSQL systems

Before taking this course

• Before taking this course you should be
comfortable with

– Logics (set theory, first order logic, De Morgan rules)

– Operating systems (persistent memories, buffers,
concurrency)

– Algorithms (hashing, balanced trees)

– Functional dependencies (normalization)

– Relational algebra

– SQL querying

Course material and exams

• Course web site. Lecture Notes: Relational DBMS Internals
• http://www.di.unipi.it/~ghelli/bd2/bd2.eng.html
• Exams:

– Written and oral exams, in the same session
– Two optional mid-term tests (compitini)
– Each of them, separately, can be used to forfeit half of the written

test, until August

• Office hours: https://www.di.unipi.it/it/didattica/inf-
l/commissioni-e-docenti/ricevimento or ask for a date by email
– (Web site: Education / Master Programme … / Committees and

Faculty / Faculty and office hours)

http://www.di.unipi.it/~ghelli/bd2/bd2.eng.html
https://www.di.unipi.it/it/didattica/inf-l/commissioni-e-docenti/ricevimento

JRS

• A system write and execute SQL queries and
access plans

• http://www.di.unipi.it/~albano/JRS/toStart.html

http://www.di.unipi.it/~albano/JRS/toStart.html

How to use the lecture notes

• Use them. Slides are not enough

• Start reading them now

• If you do not understand anything ask me

DBMS Architecture

9

Why not just main memory

• Costs too much. For $1000 the market offers (Jan
2015):

– ~120 GB of RAM

– ~3 TB of Solid State Disk (Flash)

– ~30 TB of Magnetic Disk

• Main memory is volatile

Disks – survival of the mecha-saurs

Access Time =

Seek Time (5-20 ms) +

Rotational Delay (0-5 ms) +

Transfer time (.01 ms per 8K)

Evolution of technology

• Disk capacity increases each year of the ~ 50%

• Transfer time decreases each year of the ~ 50%

• Seek time and rotational delay decrease very
slowly (~ 10%)

Improving performance: RAID

• RAID: Redundant Array of Independent Disks

– RAID 0 (striping without parity): performance

– RAID 1 (mirroring without parity): fault tolerance

– RAID 5 (striping with distributed parity): performance
and tolerance

– RAID 6: more robust than RAID 5

Persistent memory: flash

Characteristics of the three types of
memory

• This table should NOT be taken too seriously

Memory Read Write Erase

HD
12.7 ms

(2KB)

13.7 ms

(2 KB)

NAND

Flash

80 µs

(2 KB)

200 µs

(2 KB)

1.5 ms

(128 KB)

RAM 22.5 ns 22.5 ns

Characteristics of the three types of
memory

• Seek time:
– Flash, RAM: little or no seek time
– Disk: huge

• Transfer rate (do not take this too seriously, depends on MANY
things):
– RAM: 6 Gb/sec
– Flash: 1 Gb/sec
– Disc: 140 Mb/sec

• I/O Time Disk = 100 x Flash = 100 000 RAM
• Flash memory operations: Read, Write, Erase
• Capacity and costs quite different
• Lifetime: disk 10 years, Flash: 100 K cycles E/W

DBMS Architecture

17

Permanent memory manager

• The PMM gives an abstraction of permanent memory
as a set of databases, each of them as a set of logical
files of physical pages (or blocks), linearly addressed,
hiding:
– The disk characteristics (“disk geometry”)

– The operating system

• Each file can grow dynamically (but the physical
contiguity cannot be assured)

• Each relation (and index) of a database is stored in a
logical file

Permanent Memory Manager

• JRS Interface:
– GM_createDB: Path, DbName -> null

(GM_destroyDB)
– GM_createFile: Path, DbName, FileName -> null

(GM_destroyFile)
– GM_openFile: Path, DbName, FileName -> FileIde

(GM_closeFile)
– GM_newBlock: FileIde, string -> PID

• PID = (FileIde, NumBlock)

– GM_readBlock: PID -> string
– GM_writeBlock: PID, string -> null

Buffer Manager

• It manages the transfer of pages between temporary
and permanent memory

• gives the abstraction of permanent memory as a set
of pages that can be used in temporary memory

• Buffer Interface (partial)

– GB_getAndPinPage: PID -> Page

– GB_setDirty: PID, bool -> null

– GB_unpinPage: PID -> null

Buffer manager

Buffer manager

Function

GB_getAndPinPage(p):

IF buffer contains p

THEN (pinCount(p) := pinCount(p) + 1

RETURN address of frame with p);

ELSE

select a frame with page p’ to be replaced

IF dirty(p’) THEN GM_writeBlock(p’);

p’ := GM_readBlock(p),

pinCount(p’) := 1; dirty(p’) := false;

RETURN address of frame with p’;

Buffer replacement policy

• Very common policy: Least Recently Used (LRU)
frame

• Replace the frame which has the earliest unpinned
time

• Not always the best:

– In a join loop, the LRU could be optimal for one table,
while for the other the optimal policy is the Most
Recently Used (MRU)

Buffer Manager: page release

• What happens when a page p is no longer needed
by a transaction?

• If p has not been modified

– GB_unpinPage(p):

– pinCount(p) := pinCount(p) - 1 ;

• If p has been modified

– GB_setDirty(p):dirty(p) := true ;

– GB_unpinPage(p); ?

– GM_writeBlock(p); ?

Buffer Manager and OS

• A disk page is in two buffers

• DBMS try to turn off OS
functionality: raw disk access
instead of OS files

• May be difficult or
impossible

Summary

• Permanent Memory

– Magnetic disk: cheap, random access, but cost depend
on location of page

• Buffer Manager

– DBMS vs OS VM manager. DBMS need features not
found in many OS’s, e.g. controlling the order of page
writes to disk, forcing page to disk, ability to control
pre-fetching and page replacement policy, based on
predictable access patterns

Next

Next: storage structures manager

• Data organizations

– Heap or sequential organizations

– Primary organizations (hash, tree)

– Secondary organizations

• Cost model

– Number of pages (Npag(R))

– Operations cost (accessed pages):

• Equality and Range search

• Update, Insertion, Delete

