
Big Data and NoSQL



Very short history of DBMSs

• The seventies:

– IMS – end of the sixties, built for the Apollo 
program (today: Version 15) and IDS (then IDMS), 
hierarchical and network DBMSs, navigational

• The eighties – for twenty years:

– Relational DBMSs

– The nineties: client/server computing, three tiers, 
thin clients



Object Oriented Databased

• In the nineties, Object Oriented databases 
were proposed to overcome the impedence
mismatch

• They influenced Relational Databases, and 
disappeared



Big Data

• Mid 2000s, Big Data:

– Volume:

• DBMSs do not scale enough for some applications

– Velocity:

• Computational speed

• Development velocity:
– DBMS require upfront schema design and data cleaning

– Variety:

• Schemas conflict with variety



BigData platforms

• The google stack:
– Hardware: each Google Modular Data Center houses 

1.000 Linux servers with AC and disks
– GFS: distributed and redundant FS
– MapReduce
– BigTable, on top of GFS

• Hadoop – open source
– HDFS, Hadoop MapReduce
– HBase
– SQL on Hadoop: Apache Hive, IBM Jaql, Apache Pig, 

Cloudera Impala



NoSQL

• Giving up something to get something more

• Giving up:

– ACID transactions, to gain distribution

– Upfront schema, to gain

• Velocity

• Variety

– First normal form, to reduce the need for joins

• Different from NewSQL



Types of NoSQL systems

• Key-value stores (Amazon Dynamo, Riak, 
Voldemort…)

• Document databases:
– XML databases: MarkLogic, eXist
– JSON databases:

• CouchDB, Membase, Couchbase
• MongoDB

• Sparse table databases:
– HBase

• Graph databases:
– Neo4j



NewSQL

• Column databases

• In memory databases



NoSQL



Why NoSQL

• Impedance mismatch

• Restrictive schema

• Integration databases -> application databases

• Cluster architecture

– Google BigTable

– Amazon Dynamo



NoSQL

• A set of ill-defined systems that are not RDMBS

• Usually do not support SQL

• Are usually Open Source (not always)

• Often cluster-oriented (not always), hence no 
ACID

• Recent (after 2000)

• Schema free

• Oriented toward a single application

• It is more a ‘movement’ than a technology



Aggregate data model

• NoSQL data models:

– Aggregate data models:

• Key-value

• Document

• Column family

– Graph model



Aggregate orientation

http://martinfowler.com/bliki/AggregateOrientedDatabase.html



Aggregate data models

• Key value stores: the database is a collection 
of <key,value> pairs, where the value is 
opaque (Dynamo, Riak, Voldemort)

• Document database: a collection of 
documents (XML or JSON) that can be 
searched by content (MarkLogic, MongoDB)

• Column-family stores: a set of <key, record> 
pair (BigTable, HBase, Cassandra)
– Columns are grouped in ‘column families’



Key-value stores implementation

• Implementation model:

– Key-based distribution of the pairs on a huge farm 
of inexpensive machines

– Constant time access

– Constant time parallel execution on all the pairs

– Flexible fault-tolerance

– MapReduce execution model

– Amazon Dynamo, Riak, Voldemort



Graph databases

• Set of triples <nodeid, property, nodeid> 
(FlockDB, Neo4J)



Schemaless databases

• Schema first vs. schema later

• Homogeneous vs. non homogeneous



Materialized views

• OLAP applications greatly benefit from 
materialized views

• Materialized views can be used to regain the 
flexibility of the relational model



Distribution Models

• Sharding: splitting data among nodes 
according to a key

• Master-slave replication
– No update conflict

– Read resilience

– Master election

• P2P replication
– No single point of failure

• Sharding + replication



Consistency

• Write-write conflicts: avoiding to lose an 
update

• Read consistency:
– Fresh data

– No intermediate data

– Session consistency

• Transactional consistency
– Writing values that are based on data that is not 

valid any more



The CAP Theorem

• You cannot have all of:

– Consistency

– Availability

– Partition tolerance

• A trade-off between consistency and latency

• Relaxing consistency

– Two writes in the same cart

• Relaxing durability



Consistency

• Quorums: in a P2P system, an operation is 
successful if it gets a quorum of confirmations
– The write quorum:

• W > N/2

– The read quorum:
• R+W > N

• Version stamps:
– Counter, GUID, content hash, time-stamp

– Consistent write after read



Map-Reduce

• Map: maps each object to a set of <key, value> 
pairs

• Shuffle: collect all pairs with the same <key> 
to the same node

• Reduce: for each set {<k,v1>,…,<k,vn>} 
produce a result

• Combine-Reduce:
– If reduce is associative, all same-key pairs can be 

combined locally before shuffling



Map-Reduce

• Map: <key1, value1> -> set(<key2,value2>)

• Combine: <key2,set(value2)> -> <key2,value2>

• Reduce:  <key2,set(value2)> -> <key2,value2>

• Input of Map and output of Reduce must be put 
somewhere
– HDFS

– Main memory (Spark)

• Examples
– OrderLine(Product, Amount, Date): group by product



Key-Value Databases

• Basically, a persistent hash table
• Sharding + replication
• Consistency

– Single object
– Riak: for each bucket (data space):

• Newest write wins / create siblings
• Setting read / write quorum

• Query
– By key
– Full store scan (not always provided)

• Uses: session information, user profiles, shopping cart 
data by userid…



Document Databases: MongoDB

• One instance, many databases, many 
collections

• JSON documents with _id field

• Sharding + replication



Consistency

• Master/slave replication

– Automated failover, server maintenance, disaster 
recovery, read scaling

• Master is dynamically re-elected over fail

• One can specify a write quorum

• One can specify whether reads can be 
directed to slaves



Querying

• CouchDB: query via views (virtual or 
materialized)

• MongoDB:

– Selection, projection, aggregation



Column-family Stores

• A ‘column-family’ (similar to a ‘table’ in relational 
databases) is a set of <key,record> pairs

• Records are not necessarily homogeneous

• Confusing terminology
– Column: a field such as «age:=35»

– Supercolumn: «address:={city:=‘Pisa,…}»

– Row: a pair key-record (record: set of columns):
• <johnsmith_001657, {name:=‘John’, age:=35}>

– Column family: set of related rows

– Keyspace: set of column families



Consistency

• In Cassandra:

– The DBA fixes the number of replicas for each 
keyspace

– the programmer decides the quorum for read and 
write operations (1, majority, all…)

– Transactions:

• Atomicity at the row level

• Possibility to use external transactional libraries



Queries (Cassandra)

• Row retrieval:

– GET Customer[‘johnsmith00012’]

• Field (column) retrieval:

– GET Customer[‘johnsmith00012’][‘age’]

• After you create an index on age:

– GET Customer WHERE age = 35

• Cassandra supports CQL:

– Select-project (no join) SQL



Graph Databases

• A graph database stores a graph

• We will talk later about a specific graph 
model: RDF

• Example: Neo4J



Consistency

• Graph databases are usually not sharded and 
transactional

• Neo4J supports master-slave replication

• Data can be sharded at the application level 
with no database support, which is quite hard



Querying: Cypher

MATCH (me {name:"Giorgio"})

RETURN me



Querying: Cypher

MATCH (expert)

-[:WORKED_WITH]->

(neodb:Database
{name:"Neo4j"})

RETURN neodb, expert



Querying: Cypher

MATCH (me {name:"Giorgio"})

MATCH (expert)

-[:WORKED_WITH]->

(neodb:Database {name:"Neo4j"})

MATCH path = shortestPath( (me)-[:FRIEND*..5]-(expert) )

RETURN neodb, expert, path 



Querying: Cypher

MATCH pattern matches

WHERE filtering conditions

RETURN what to return

ORDER BY properties to order by

SKIP nodes to skip from the top

LIMIT limit results



Polyglot Persistence

• Transactional RDBMSs, DSSs and NoSQL 
systems have different strength and it is 
natural to combine all of them

• However, such a heterogeneous environment 
can create huge problems of maintenance and 
security



Sources

• P. J. Sadalage, M Fowler, NoSQL Distilled, Addison 
Wesley


