Big Data and NoSQL

Very short history of DBMSs

e The seventies:

— IMS — end of the sixties, built for the Apollo
program (today: Version 15) and IDS (then IDMS),
hierarchical and network DBMSs, navigational

* The eighties — for twenty years:

— Relational DBMSs

— The nineties: client/server computing, three tiers,
thin clients

Object Oriented Databased

* |n the nineties, Object Oriented databases
were proposed to overcome the impedence

mismatch
* They influenced Relational Databases, and
disappeared

Big Data

 Mid 2000s, Big Data:

— Volume:

 DBMSs do not scale enough for some applications
— Velocity:

* Computational speed

* Development velocity:

— DBMS require upfront schema design and data cleaning
— Variety:

* Schemas conflict with variety

BigData platforms

* The google stack:

— Hardware: each Google Modular Data Center houses
1.000 Linux servers with AC and disks

— GFS: distributed and redundant FS
— MapReduce
— BigTable, on top of GFS

* Hadoop — open source
— HDFS, Hadoop MapReduce
— HBase

— SQL on Hadoop: Apache Hive, IBM Jagl, Apache Pig,
Cloudera Impala

NoSQL

* Giving up something to get something more
* Giving up:
— ACID transactions, to gain distribution

— Upfront schema, to gain
* Velocity
* \Variety

— First normal form, to reduce the need for joins
e Different from NewSQL

Types of NoSQL systems

Key-value stores (Amazon Dynamo, Riak,
Voldemort...)

Document databases:

— XML databases: MarkLogic, eXist

— JSON databases:

 CouchDB, Membase, Couchbase
* MongoDB

Sparse table databases:
— HBase

Graph databases:
— Neo4;

NewSQL

e Column databases
* |n memory databases

NoSQL

Why NoSQL

mpedance mismatch
Restrictive schema

ntegration databases -> application databases

Cluster architecture
— Google BigTable
— Amazon Dynamo

NoSQL

A set of ill-defined systems that are not RDMBS
Usually do not support SQL
Are usually Open Source (not always)

Often cluster-oriented (not always), hence no
ACID

Recent (after 2000)

Schema free

Oriented toward a single application

It is more a ‘movement’ than a technology

Aggregate data model

e NoSQL data models:

— Aggregate data models:
e Key-value
* Document
e Column family

— Graph model

Aggregate orientation

http://martinfowler.com/bliki/AggregateOrientedDatabase.html

ID: 1001 o orders

/

customer: Ann

line items:
:

customers

|

0321293533 | 2 | S48 | 896

0321601912 1 $39 | $39

order lines
0131495054 1 $51 851

,l'
|/

payment details: N
Card: Amex
CC Number: 12345 SN SN S S—
expiry: 042001 |
N
: credit cards
—

Aggregate data models

e Key value stores: the database is a collection
of <key,value> pairs, where the value is
opaque (Dynamo, Riak, Voldemort)

* Document database: a collection of

documents (XML or JSON) that can be
searched by content (MarkLogic, MongoDB)

* Column-family stores: a set of <key, record>
pair (BigTable, HBase, Cassandra)

— Columns are grouped in ‘column families’

Key-value stores implementation

* Implementation model:

— Key-based distribution of the pairs on a huge farm
of inexpensive machines

— Constant time access

— Constant time parallel execution on all the pairs
— Flexible fault-tolerance

— MapReduce execution model

— Amazon Dynamo, Riak, Voldemort

Graph databases

* Set of triples <nodeid, property, nodeid>
(FlockDB, Neo4))

[Id: 2
| Name: Bob

.A00
A& Lot
‘)e\._yj\ \\0‘0'5
2070003
S

/ Id: 1
. Name: Alice :

Type: Group
. Name: Chess

Schemaless databases

e Schema first vs. schema later
* Homogeneous vs. non homogeneous

Materialized views

 OLAP applications greatly benefit from
materialized views

* Materialized views can be used to regain the
flexibility of the relational model

Distribution Models

Sharding: splitting data among nodes
according to a key

Master-slave replication
— No update conflict

— Read resilience

— Master election

P2P replication

— No single point of failure

Sharding + replication

Consistency

* Write-write conflicts: avoiding to lose an
update
* Read consistency:
— Fresh data
— No intermediate data
— Session consistency

* Transactional consistency

— Writing values that are based on data that is not
valid any more

The CAP Theorem

You cannot have all of:
— Consistency

— Availability

— Partition tolerance

A trade-off between consistency and latency
Relaxing consistency

— Two writes in the same cart

Relaxing durability

Consistency

* Quorums:in a P2P system, an operation is
successful if it gets a quorum of confirmations

— The write quorum:
e W>N/2
— The read quorum:
* R+W >N
* Version stamps:
— Counter, GUID, content hash, time-stamp
— Consistent write after read

Map-Reduce

Map: maps each object to a set of <key, value>
pairs

Shuffle: collect all pairs with the same <key>
to the same node

Reduce: for each set {<k,v1>,...,<k,vn>}
produce a result
Combine-Reduce:

— If reduce is associative, all same-key pairs can be
combined locally before shuffling

Map-Reduce

Map: <keyl, valuel> -> set(<key2,value2>)
Combine: <key2,set(value2)> -> <key2,value2>
Reduce: <key2,set(value2)> -> <key2,value2>

Input of Map and output of Reduce must be put
somewhere

— HDFS

— Main memory (Spark)

Examples

— OrderLine(Product, Amount, Date): group by product

Key-Value Databases

Basically, a persistent hash table
Sharding + replication

Consistency
— Single object
— Riak: for each bucket (data space):

* Newest write wins / create siblings
» Setting read / write quorum

Query
— By key
— Full store scan (not always provided)

Uses: session information, user profiles, shopping cart
data by userid...

Document Databases: MongoDB

* One instance, many databases, many
collections

* JSON documents with _id field
* Sharding + replication

Consistency

Master/slave replication

— Automated failover, server maintenance, disaster
recovery, read scaling

Master is dynamically re-elected over fail
One can specify a write quorum

One can specify whether reads can be
directed to slaves

Querying

* CouchDB: query via views (virtual or
materialized)

* MongoDB:

— Selection, projection, aggregation

Column-family Stores

* A ‘column-family’ (similar to a ‘table’ in relational
databases) is a set of <key,record> pairs

* Records are not necessarily homogeneous

* Confusing terminology
— Column: a field such as «age:=35»
— Supercolumn: «address:={city:='Pisa,...}»

— Row: a pair key-record (record: set of columns):
e <johnsmith 001657, {name:=John’, age:=35}>

— Column family: set of related rows

— Keyspace: set of column families

Consistency

 |In Cassandra:

— The DBA fixes the number of replicas for each
keyspace

— the programmer decides the quorum for read and
write operations (1, majority, all...)

— Transactions:
e Atomicity at the row level
* Possibility to use external transactional libraries

Queries (Cassandra)

Row retrieval:
— GET Customer|[‘johnsmith00012’]

Field (column) retrieval:
— GET Customer|[‘johnsmith00012’][‘age’]

After you create an index on age:
— GET Customer WHERE age = 35

Cassandra supports CQL:
— Select-project (no join) SQL

Graph Databases

* A graph database stores a graph

 We will talk later about a specific graph
model: RDF

* Example: Neo4)

Consistency

 Graph databases are usually not sharded and
transactional

* Neo4) supports master-slave replication

* Data can be sharded at the application level
with no database support, which is quite hard

Querying: Cypher

MATCH (me {name:"Giorgio"})
RETURN me

Querying: Cypher

MATCH (expert)
-[:WORKED_WITH]->

(neodb:Database
{name:"Neo4j"})

RETURN neodb, expert

Querying: Cypher

MATCH (me {name:"Giorgio"})
MATCH (expert)
-[:WORKED_WITH]->
(neodb:Database {name:"Neo4j"})
MATCH path = shortestPath((me)-[:FRIEND*..5]-(expert))
RETURN neodb, expert, path

Querying: Cypher

MATCH pattern matches

WHERE filtering conditions
RETURN what to return

ORDER BY properties to order by
SKIP nodes to skip from the top
LIMIT limit results

Polyglot Persistence

 Transactional RDBMSs, DSSs and NoSQL
systems have different strength and it is
natural to combine all of them

 However, such a heterogeneous environment
can create huge problems of maintenance and
security

Sources

* P.J. Sadalage, M Fowler, NoSQL Distilled, Addison
Wesley

