
1

Dense Subgraph Extraction with Application to
Community Detection

Jie Chen and Yousef Saad

Abstract— This paper presents a method for identifying a
set of dense subgraphs of a given sparse graph. Within the
main applications of this “dense subgraph problem”, the dense
subgraphs are interpreted as communities, as in, e.g., social
networks. The problem of identifying dense subgraphs helps
analyze graph structures and complex networks and it is known
to be challenging. It bears some similarities with the problem
of reordering/blocking matrices in sparse matrix techniques.
We exploit this link and adapt the idea of recognizing matrix
column similarities, in order to compute a partial clustering
of the vertices in a graph, where each cluster represents a
dense subgraph. In contrast to existing subgraph extraction
techniques which are based on a complete clustering of the graph
nodes, the proposed algorithm takes into account the fact that
not every participating node in the network needs to belong
to a community. Another advantage is that the method does
not require to specify the number of clusters; this number is
usually not known in advance and is difficult to estimate. The
computational process is very efficient, and the effectiveness of
the proposed method is demonstrated in a few real-life examples.

Index Terms— Dense subgraph, social network, community,
matrix reordering, hierarchical clustering, partial clustering.

I. INTRODUCTION

A challenging problem in the analysis of graph structures is
the dense subgraph problem, where given a sparse graph,

the objective is to identify a set of meaningful dense subgraphs.
This problem has attracted much attention in recent years due
to the increased interest in studying various complex networks,
such as the World Wide Web (information network), social
networks, and biological networks, etc. The dense subgraphs
are often interpreted as “communities” [1]–[4], based on the
basic assumption that a network system consists of a number
of communities, among which the connections are much fewer
than those inside the same community.

The recent data mining literature has seen various techniques
for approaching this network analysis problem from different as-
pects. Because of a potentially wide variety of purposes, different
definitions of communities are employed and methods are pro-
posed, ranging from partitioning the network to minimize inter-
connections between parts [5], [6], to aiming at extracting a large
number of subgraphs that have a high enough density [7]–[9]. In
addition to partitioning-based and density-based approaches, also
seen are techniques that build hierarchical structures [10]–[13],
that exploit stochastic block models [14]–[16], and that extract
chains of adjacent cliques [17], [18]. It is beyond the scope of this
paper to list the many existing approaches in such an emerging
area. We refer the interested reader to surveys [19]–[21].

The authors are with the Department of Computer Science and Engineer-
ing, University of Minnesota at Twin Cities, MN 55455. Email: {jchen,
saad}@cs.umn.edu

In this paper, we focus on the methodology of graph partition-
ing/clustering, with the goal of obtaining dense partitions/clusters.
A broad set of partitioning techniques (spectral based [6], [22],
multilevel based [23], [24], and stochastic based [25]) can be used.
However, these methods have several drawbacks and issues that
need to be addressed for the purpose of network analysis and com-
munity detection. The first drawback is that in general, the number
k of partitions is a mandatory input parameter, and the partitioning
result is sensitive to the change of k. In most applications, the
number k is not known a priori. A number of researchers proposed
to remedy this difficulty by tracking a goodness measure, such as
the conductance [4] and the modularity [11], of the partitioning
as a function of k. However, this remedy may not always be
practical due to the underlying expensive computational cost of
the algorithm. Second, most of these methods yield a complete
clustering of the data. A crucial question when studying human
behavior and social phenomena is: “Why should every participant
be grouped into some community?” It is natural to consider that
if a node in a network is far away from the rest of the nodes,
then excluding this node from the analysis will usually yield more
accurate results. Therefore, when attempting to discover commu-
nities, an incomplete clustering of the network is usually more
desirable. Finally, note that many graph partitioning techniques
based on optimizing an objective function [26] favor balancing,
i.e., sizes of different partitions should not vary too much [5].
This may not accurately represent human communities, since it
is common for social connections not to be evenly divided.

We propose a dense subgraph extraction approach that ad-
dresses the above issues. It is inspired by an effective technique
designed for a similar problem—matrix blocking [27], [28]—from
a different discipline (solving linear systems). How the proposed
approach overcomes the general drawbacks of graph partitioning
methodology for community detection will be made clear later in
the paper. For now, let us consider the matrix blocking problem,
which sheds light on the rationale of the approach we propose for
the graph problem. For solving a linear system, preconditioning
(e.g., an incomplete LU factorization) is an important step to
improve the convergence of an iterative method [29], whereby
blocking is a vital ingredient for preconditioning. The main
motivation is that block preconditioning methods are known to
yield better convergence than scalar ones (see [28], [29] and
references therein). Matrix blocking amounts to symmetrically
permuting the rows and the columns of a sparse matrix such that
the nonzeros are moved toward the diagonal. In this way, the
matrix exhibits dense diagonal blocks, whereas the rest of the
area contains sporadic nonzeros (see Fig. 1(b)). In our case, each
block naturally corresponds to a dense subgraph, or a community
that we seek after.

The blocking algorithm presented in [28] groups similar
columns (and rows) of a matrix according to a cosine similarity
measure. By a non-trivial adaptation of this algorithm, we obtain

2

what turns out to be a form of a hierarchical clustering (see,
e.g. [30] for AGNES and DIANA) of the graph nodes using
the same similarity measure. Hierarchical structures of a network
have been exploited for the purpose of community extraction, by
performing either a divisive clustering [11] or an agglomerative
clustering [10], [31]. A feature of our method is that it can be
viewed from both perspectives, by using the idea of a similarity
graph G′ computed from the original graph G. In the divisive
perspective edges of G′ are removed in an order of the edge
weights, whereas in the agglomerative perspective edges are
inserted to a set of isolated nodes in the opposite order to form
G′. This approach avoids tracking/updating all-pairs distances in
each merge or division step in the clustering process. The result is
a computationally inexpensive procedure as long as the similarity
scores can be efficiently computed.

Before looking at the algorithmic details, we shall mention
here two important issues concerning this approach. The first
concerns the similarity measure for building the hierarchy. Be-
sides the obvious fact that the matrix blocking technique [28]
(which inspires the algorithms proposed in this paper) uses the
cosine similarity, this measure also has a clear interpretation for
communities. A large cosine means that two nodes share a large
portion of common neighbors with respect to their own neighbor
sets, hence it can be interpreted as a probability that the two
nodes belong to a community. This measure has been adopted
in mining natural communities [31], and a similar measure—
the Jaccard coefficient—is also used for a similar purpose [32].
The second is the interpretation of the hierarchy. Traditional
hierarchical clustering methods cut the hierarchy at a specific
level, yielding a complete partitioning of the graph. However,
our goal is to identify dense subgraphs. Therefore, a sensible
approach is to define the notion of the density, and to walk the
hierarchy in a top-down fashion and return clusters only when
they have high densities. By using this approach, one can navigate
the hierarchy and adjust the density threshold (at almost no time
cost) until a desirable result is achieved. Note that by introducing
the definition of density, we do not intend to enumerate all the
dense subgraphs; instead, we form an incomplete partitioning of
the graph with dense partitions.

A common misperception is that computing pairwise similari-
ties have at least a quadratic cost, which would make an algorithm
based on such calculations ineffective for large data sets. Thus,
to guarantee scalability, the shingling algorithm in [32] (which
employs the Jaccard coefficient as the similarity measure) maps
the set of neighbors of each graph node to a small number of
“shingles”, and the similarity of the nodes is translated to the
number of shingles they share. In this paper, we employ a different
approach. We exploit the fact that the matrix representation of the
graph is sparse, and use sparse matrix computation techniques
to compute the similarities in linear time. In fact, our overall
algorithm is efficient. As will be seen in Sec. III, for a typical
sparse graph, most parts of the algorithm are linear except that in
addition we need to sort an array of size also linear in the number
of graph nodes.

We note that existing community extraction approaches vary
considerably in terms of applications and properties of the ex-
tracted subgraphs (e.g., ones that have the largest densities, the
largest modularities, or bipartite structures, etc), which makes
them difficult to compare, but in general a linear time algorithm
equipped with external sorting, such as ours, will be desirable

in facing mega- or giga-scale data. Further, as the study [21]
points out, there tend to be a tradeoff between the quality of the
subgraphs and the computational cost for existing methods. Thus,
we show in Sec. IV extensive experiments demonstrating that our
results are accurate and the extracted subgraphs are semantically
meaningful.

II. DENSE SUBGRAPHS EXTRACTION

Given a sparse graph G(V,E) which consists of the vertex
set V and the edge set E, we are interested in identifying
dense subgraphs of G. To be precise, the candidate subgraphs
should have densities higher than a threshold value in order to
be interesting. We consider the following three types of graphs,
with an appropriate definition of density for each one.

1) Undirected graphs. Undirected graphs are the most common
models of networks, where the directions of the connections
are unimportant, or can be safely ignored. A natural defi-
nition of the graph density is

dG =
|E|

|V |(|V | − 1)/2
. (1)

Note that dG ∈ [0, 1], and a subgraph has the density one
if and only if it is a clique.

2) Directed graphs. The density of a directed graph is

dG =
|E|

|V |(|V | − 1)
, (2)

since the maximum number of possible directed edges
cannot exceed |V |(|V | − 1). In other words, the density
of a directed graph also lies in the range from 0 to 1. It
is interesting to note that if we “undirectify” the graph,
i.e., remove the directions of the edges and combine the
duplicated resulting edges, we yield an undirected graph
G̃(V, Ẽ) with the edge set Ẽ. Then,

1

2
dG̃ ≤ dG ≤ dG̃.

An immediate consequence is that if we extract the sub-
graphs of the undirected version of the graph given a density
threshold, we essentially obtain directed subgraphs with
densities at least half of the threshold.

3) Bipartite graphs. A bipartite graph is an undirected graph
whose vertex set V can be partitioned in two disjoint subsets
V1 and V2, such that every edge connects a vertex from V1
and one from V2. There are several reasons to consider
bipartite graphs separately from general undirected graphs.
The most important one is that a bipartite graph is generally
used to model the connections between two different types
of entities in a data set, such as the relationship between
documents and terms, that between customers and products,
etc. Also, as will soon be discussed, the proposed dense
subgraph extraction algorithm for a general undirected
graph does not directly apply to the bipartite graph case.
Finally, the density of a bipartite graph, as computed by
formula (1) can never reach one for bipartite graphs. Thus,
we consider the following alternative definition for the
density of a bipartite graph:

dG =
|E|

|V1| · |V2|
. (3)

According to this definition, dG ∈ [0, 1], and a subgraph
has the density one if and only if it is a biclique.

3

The adjacency matrix A of the above three types of graphs
has specific patterns. Throughout the paper, we assume that A is
sparse, because we are considering subgraphs of a sparse graph.
We also assume that the entries of A are either 0 or 1, since the
weights of the edges are not taken into account for the density
of a graph. In all cases, the diagonal of A is empty, since we
do not allow self-loops. For undirected graphs, A is symmetric,
whereas for directed graphs, A is only square. A natural matrix
representation of a bipartite graph is a rectangular matrix B,
where B(i, j) is nonzero if and only if there is an edge connecting
i ∈ V1 and j ∈ V2. The adjacency matrix for such a bipartite graph
is indeed

A =

[
0 B

BT 0

]
,

where the vertices from V1 are ordered before those from V2.
Note that there are situations where we do not know that the
given undirected graph is bipartite in advance, i.e., A is given
in a permuted form where the above 2 × 2 block structure is
not revealed. In such a case, a simple strategy adapted from the
breadth first search can be used to check if the inherent undirected
graph is bipartite, and if so to extract the two disjoint subsets.

A. Matrix Blocking

As mentioned earlier, the dense subgraphs extraction methods
proposed in this paper are inspired by the so-called matrix
blocking problem. Fig. 1(b) illustrates a blocking result of a sparse
matrix A. Here we describe a simple yet effective blocking algo-
rithm [28] that accomplishes this result. It exploits the similarities
between a pair of columns in the pattern matrix P of A. Recall
that P is obtained from A by simply replacing its nonzero entries
by ones. The idea is that the nonzero patterns of two columns
corresponding to the same block should be more similar than
those of the two columns that correspond to different blocks. To
be specific, let some dense block of the reordered P correspond
to a subset of vertices Vs. Also, let i, j ∈ Vs and k /∈ Vs; see
Fig. 1(c). The heuristic is that the cosine of the angle between
the i-th and the j-th columns of P is large, whereas that of the
i-th and the k-th (or the j-th and the k-th) columns is small.
The blocking algorithm is to find maximal subsets of V such that
inside the same subset, for each vertex i, there exists a vertex
j 6= i such that the cosine of P (:, i) and P (:, j) is larger than a
predefined threshold.

The adjacency matrix of an undirected graph plays exactly
the same role as P here. Roughly speaking, the goal of dense
subgraph extraction is to reorder the adjacency matrix and to
find the dense diagonal blocks, each of which represents a dense
subgraph. One is tempted to directly apply the above algorithm
on the adjacency matrix of a given graph. However, a difficulty
arises when choosing an appropriate similarity threshold. A
further concern is that each block should employ a different
threshold. For example, two columns corresponding to a larger
block have a higher probability of yielding a larger cosine than
those corresponding to a smaller block.

B. The Case of Undirected Graphs

Consider the matrix M that stores the cosines between any two
columns of the adjacency matrix A:

M(i, j) =
〈A(:, i), A(:, j)〉
‖A(:, i)‖ ‖A(:, j)‖ . (4)

By reordering and partitioning the rows and columns of M in
the same way as A, the above mentioned algorithm (by using
a predefined similarity threshold) effectively yields a specially
structured M : Entries outside the diagonal blocks of M , are
all smaller than the threshold, whereas inside each non-trivial
diagonal block, there exists at least one entry larger than the
threshold for each row/column. Fig. 2(b) shows an illustration.

To avoid setting a fixed similarity threshold, we consider all
possible ones as represented by the nonzero entries of M (ex-
cluding the diagonal). Going in ascending order of these entries,
we set them to zero one by one. At some point after a few entries
have been zeroed, M becomes a 2×2 block-diagonal matrix: the
two off-diagonal blocks are completely zero (Fig. 2(c)). The last
entry that was set to zero is a critical threshold, since by this
value the rows and columns of M are partitioned in two subsets,
and no smaller values can yield a partitioning. Once this initial
partitioning is obtained, the zero-setting procedure is performed
recursively on the two resulting partitions.

The above procedure can be precisely stated in the language
of hierarchical divisive clustering. Given an undirected graph
G(V,E) and its adjacency matrix A, we construct a weighted
graph G′(V,E′) whose weighted adjacency matrix M is defined
in (4). Assume without loss of generality that G′ is connected
(otherwise process each connected component of G′ separately).
A top-down hierarchical clustering of the vertex set V is per-
formed by successively deleting the edges e′ ∈ E′, in ascending
order of the edge weights. When G′ first becomes disconnected,
V is partitioned in two subsets, each of which corresponds to a
connected component of G′. Then, the edge-removal process is
continued on these two components to partition them in turn.

One detail that is left is to decide when to terminate the
recursions. Recall that the objective is to find meaningful dense
subgraphs of G. Therefore, termination will take place when
the density of the partition passes a certain density threshold
dmin. Thus, a subset of the vertices is no longer partitioned
if the corresponding subgraph has a density ≥ dmin. The only
exception is that some subsets never meet this requirement and
are recursively partitioned until they result in trivial subgraphs
consisting of singletons. These singletons bear no interest and
are ignored.

Algorithm 1 summarizes the proposed method. As an example,
we consider a graph with 18 vertices and 29 edges as shown in
Fig. 3(a). (This example comes from a figure in [4].) A visual
inspection results that the graph has a dense component that
contains vertices 1 to 7 (and possibly vertex 10), as well as
a plausible dense, though small, component {14, 15, 16}. The
first step is to compute the similarity matrix M and to sort its
nonzero entries, as listed in (b). We construct the graph G′ using
the weighted adjacency matrix M . Starting from the smallest
entry in the list, we remove edges of G′ one by one until G′

becomes disconnected. The two resulting subsets of vertices are:
{1, . . . , 13, 17, 18} and {14, 15, 16}. The latter subset happens
to yield a subgraph that has a density higher than the desired
threshold 0.75. Hence, it is output as a dense subgraph. On the
other hand, the former subset does not yield a subgraph satisfying
the density requirement, so it is successively partitioned, until the
subset {2, 5, 3, 1, 4, 7, 6} is reached. This gives the other dense
subgraph. Fig. 3(c) shows the resulting hierarchy/dendrogram.
The output dense subgraphs are kept being partitioned in the
hierarchy for illustration purposes.

4

(a) A. (b) A after reordering.

i j k

(c) Three columns of the reordered
matrix A.

Fig. 1. A blocking of a sparse symmetric matrix A.

(a) A. (b) M and its blocking. (c) M with the first batch of
nonzero entries set to zero.

Fig. 2. An adjacency matrix A and its similarity matrix M . Plot (b) shows a partitioning of M by using a similarity threshold 0.5. Plot (c) shows the first
partitioning of M in a recursive partitioning.

12

3

4
5

6

7

8

9
10

11

12 13

14

15

16

17

18

(a) The graph G.

i j M(i, j)

10 3 0.1890

10 5 0.2041

16 3 0.2182
...

...
...

4 1 0.8944

12 11 1.0000

9 8 1.0000

(b) Sorted nonzeros of M .

2 5 3 1 4 7 6 10 18 8 9 11 12 17 13 14 15 16

(c) The dendrogram.

Fig. 3. Two dense subgraphs (encapsulated in the red dashed frames) are found for a sparse undirected graph as shown in (a). The density threshold
dmin = 0.75.

C. The Case of Directed Graphs

The adjacency matrix A of a directed graph is square but not
symmetric. When Algorithm 1 is applied to a non-symmetric
adjacency matrix, it will result in two different dendrograms,
depending on whether M is computed as the cosines of the
columns of A, or the rows of A. There may be applications
where the direction is required and one can choose to perform the
analysis with either A (outgoing edges) or its transpose (incoming
edges). However, in most applications, symmetrizing the graph
is a sensible strategy because an incoming edge and outgoing
edge have a similar “cost” (think in terms of communications in
parallel algorithms for example). This is often performed for the
somewhat related problem of graph partitioning for example. In
the following we symmetrize the matrix A (i.e., replacing A by

the pattern matrix of A + AT) and use the resulting symmetric
adjacency matrix to compute the similarity matrix M . The rest
of the procedure follows Algorithm 1.

Note that this technique is equivalent to removing the directions
of the edges in G, and extracting dense components from the undi-
rected version of the graph. As discussed at the very beginning of
this section, given an input parameter dmin, the output directed
subgraphs have densities guaranteed to be at least dmin/2. If the
occurrence of edge pairs (v1, v2) and (v2, v1), where v1 and v2
are two vertices, is rare, the densities of the output subgraphs will
even be much higher.

5

Algorithm 1 Finding Dense Subgraphs of a Sparse Undirected
Graph
Input: Sparse undirected graph G, density threshold dmin.

1: Construct G′ with the weighted adjacency matrix M as
defined in (4).

2: Let C be the array of tuples (i, j, M(i, j)), for all nonzero
M(i, j) and i < j, sorted in ascending order of M(i, j).

3: Run DENSE-SUBGRAPHS(G, G′, C, dmin).

4: function DENSE-SUBGRAPHS(G, G′, C, dmin)
5: k ← 0

6: while G′ is connected do
7: Delete edge {C[k].i, C[k].j}.
8: k ← k + 1

9: end while
10: Let the two connected components of G′ be

G′
s(Vs, E

′
s) and G′

t(Vt, E
′
t).

11: Let the two corresponding subgraphs of G be
Gs(Vs, Es) and Gt(Vt, Et).

12: if dGs
≥ dmin then

13: Output Gs as a dense subgraph.
14: else if |Vs| > 1 then
15: Let Cs be the subarray of C, where Cs[k].i ∈ Vs

and Cs[k].j ∈ Vs for all k.
16: DENSE-SUBGRAPHS(Gs, G′

s, Cs, dmin)
17: end if
18: Repeat lines 12–17 with Vs, Gs, G′

s, Cs replaced
by Vt, Gt, G′

t, Ct.
19: end function

D. The Case of Bipartite Graphs

Unfortunately, Algorithm 1 does not work for a bipartite graph
where the vertex set V consists of two disjoint subsets V1 and
V2. To see this, consider its adjacency matrix

A =

[
0 B

BT 0

]
,

where B(i, j) = 1 if there is an edge connecting i ∈ V1 and
j ∈ V2, and B(i, j) = 0 otherwise. Then, the matrix M defined
in (4) has the following form:

M =

[
M1 0

0 M2

]
, (5)

where M1 (resp. M2) contains the cosine similarities between the
rows (resp. columns) of B. That is, without any edge removal of
the graph G′ (using M as the weighted adjacency matrix), the
vertex set is already partitioned into two subsets: V1 and V2. Any
subsequent hierarchical partitioning will only further subdivide
these two subsets separately. This dilemma arises because we
characterize the graph vertices inside a community by using the
concept of “sharing neighbors”. The only opportunity for two
vertices to share common neighbors in a bipartite graph is that
they both belong to a same subset Vi. However, when considering
a subgraph which consists of vertices from a single Vi, this
subgraph always has a zero density, thus eventually no subgraphs
will be output from the algorithm.

One way to overcome the difficulty of Algorithm 1 when
applied to bipartite graphs, is to perform a partial clustering
separately for the rows and for the columns of B, by using

the same similarity idea of Algorithm 1. In essence this is
similar to the first approach suggested for directed graphs where
the application warrants to differentiate between incoming and
outgoing edges. It is equivalent to finding subsets of Vi where
vertices share similar neighbors (from the complement of Vi).
However, separate subsets do not directly imply a dense subgraph
of the original bipartite graph. Alternatively, we opt to use an
approach that shares the spirit of co-clustering: Find two subsets,
Vs ⊂ V1 and Vt ⊂ V2, simultaneously, such that they are densely
connected.

A reasonable strategy for this purpose is to augment the original
bipartite graph by adding edges between some of the vertices
that are connected by a path of length two. Clearly, this will add
edges between vertices of the same Vi, making the graph a regular
undirected graph. This will not change the density structure of the
bipartite graph itself; rather, it encourages the discovery of the
dense components. To see this, suppose Vs and Vt are densely
connected. We can add enough edges between the vertices in
Vs and also edges between those in Vt, then all the vertices in
Vs ∪ Vt will appear so densely connected that Vs ∪ Vt can be
easily extracted by a blocking algorithm. Fig. 4 illustrates an
extreme case. The bipartite graph consists of three bicliques. If we
artificially fill in edges between vertices inside the same biclique
as shown in (b), then a blocking algorithm will easily recognize
the three cliques in (c) and hence extract the three corresponding
bicliques.

The question is what edges to add, since we do not know
Vs and Vt. The similarity matrices M1 (and M2) in (5) are
especially useful for answering this question. Consider two ver-
tices, vs1 , vs2 ∈ Vs, for example. The fact that Vs and Vt are
densely connected implies the high likelihood that vs1 and vs2
share similar neighbors. In other words, the two columns in A,
which vs1 and vs2 correspond to, have a large cosine similarity.
Therefore, it is natural to add an edge between vs1 and vs2 .
From the perspective of the similarity matrix, this is to choose
the largest entries of M and add them to A. To be precise, we
modify the adjacency matrix A of a given bipartite graph into

Â =

[
M̂1 B

BT M̂2

]
, (6)

where M̂1 (resp. M̂2) is obtained by erasing the diagonal and
keeping only the 2|E| largest nonzero entries of M1 (resp. M2),
and |E| is the number of edges in the original graph (i.e., it equals
the number of nonzeros of B). Note that by keeping only the 2|E|
largest nonzero entries, the number of edges in the augmented
graph does not asymptotically increase.

Once the densification process yields the modified adjacency
matrix Â, which represents the augmented graph, we proceed to
calculate the similarity matrix M̂ :

M̂(i, j) =

〈
Â(:, i), Â(:, j)

〉∥∥Â(:, i)
∥∥∥∥Â(:, j)

∥∥ , (7)

which is used to build the hierarchy for the vertex set V = V1∪V2.
Algorithm 2 summarizes the steps. Note that the procedure
DENSE-SUBGRAPHS(G, G′, C, dmin) has been introduced in
Algorithm 1.

A toy example is shown in Fig. 5. The blue-green coloring
indicates the two disjoint subsets: V1 = {1, 2, . . . , 8} and V2 =

{9, 10 . . . , 13}. A visual inspection results that the bipartite graph
consists of two dense components: all the vertices to the left

6

(a) Adjacency matrix A. (b) A after edge fill-in. (c) Blocking of the matrix in (b).

Fig. 4. A bipartite graph with the effect of edge fill-in.

Algorithm 2 Finding Dense Subgraphs of a Sparse Bipartite
Graph
Input: Sparse bipartite graph G, density threshold dmin.

1: [Densification:] Modify the adjacency matrix A of G into Â

as defined in (6).
2: Construct G′ with the weighted adjacency matrix M̂ as

defined in (7).
3: Let C be the array of tuples (i, j, M̂(i, j)), for all nonzero

M̂(i, j) and i < j, sorted in ascending order of M̂(i, j).
4: Run DENSE-SUBGRAPHS(G, G′, C, dmin).

of 6 (including 6) contribute to one component, and the rest of
the vertices (arranged in a hexagon shape) form the other. The
densification of the graph, as shown in (b), further convinces
the conjecture of the two dense components. Using the modified
weighted adjacency matrix Â, we compute M̂ and perform a
hierarchical clustering similar to the one shown in Fig. 3(c). By
using a density threshold dmin = 0.5, it happens that two dense
subgraphs are extracted, exactly the same as what we conjecture
by visual inspection: {1, 2, 3, 9, 10, 11} and {4, 5, 6, 7, 8, 12, 13}.

III. IMPLEMENTATION AND COMPUTATIONAL COSTS

Despite the conceptual simplicity of the ideas described in the
previous section, a careful design is needed to obtain efficient
algorithms. This section discusses several important details that
will transform the “conceptual” algorithms (Algo. 1 and 2) to
more practical ones (Algo. 3 and 4). In particular, we address three
issues: (A) How to efficiently compute the weighted adjacency
matrix M (M̂); (B) How to replace the costly routine DENSE-
SUBGRAPHS by an equivalent but more efficient process for
constructing the hierarchy; and (C) How to compute the densities
for all the subgraphs in the hierarchy as needed for extracting
dense ones. Each issue is discussed in a separate subsection, and
we present the final improved algorithms at the end of this section.

The computational complexities of the proposed implementa-
tions will also be considered. As will soon be seen, most of the
steps have a computational cost only linear to the number of
vertices in the graph, except that in addition we need to sort
an array of size also linear in this number. Thus, the proposed
methods have the potential of being scalable to very large data
sets. However, it is noted that there may be large prefactors in this
simple big-O notation. As a result, to complement this incomplete
theoretical analysis, we show in Section IV-B actual run times for
a collection of real-life graphs from various application domains.

Some additional notation is needed. For a given graph G(V,E),
the number of vertices is |V | = n, and the number of edges is

|E|. Since G is sparse, we typically assume that |E| = O(|V |).
We denote the number of nonzero entries of the adjacency matrix
A, nz(A). For undirected graphs and bipartite graphs nz(A) =

2|E|, and for directed graphs nz(A) = |E|. In all cases, we have
nz(A) = O(n).

A. The Computation of M (M̂)

According to Eqn. (4), a naive way of computing M has the
time complexity O(nz(A)2) = O(n2), since to compute an entry
M(i, j) takes time proportional to the sum of the numbers of
nonzeros of A(:, i) and A(:, j). However, note that M is equal to
XTX, where X is the matrix A with each column normalized. A
further investigation of Eqn. (6) (or (5)) indicates that the matrices
M1 and M2 also take the form XTX. Thus, an efficient way of
computing M and M̂ is to exploit the fact that X is sparse.

In the sequel, we consider how to multiply a sparse matrix X

by its transpose:
Y = XTX := ZX,

where Z = XT . The most efficient way in practice is to compute
Y row by row. Note that

Y (i, :) =
∑
j

Z(i, j)X(j, :).

Thus, we first transpose X into Z, then for each row i of Z, we
compute a weighted sum of the rows of X which correspond to
the nonzero elements in row i of Z. A particular issue is how
to compute this weighted sum in time proportional to the total
number of nonzeros involved, instead of to the length of a row of
X. The technique is to pre-allocate two working arrays a and b,
each of which has a size the same as a row of X. When computing
row i of Y , we find the nonzero entries Z(i, j), and for each j, we
add the nonzeros of X(j, :) multiplied by Z(i, j) into the working
array a, and store the information of which locations of a has been
changed in the working array b. Then after the weighted sum is
computed, we use the information in b to reset the array a to zero
and also erase the content in b, then proceed to the next i.

Let the maximum number of nonzeros per row of X be p.
Then the upper bound of the time cost of the above technique
for computing XTX is O(p · nz(X)), since to compute the i-th
row of Y takes time O(p ·nz(Z(i, :))). In the average case, p can
be considered a constant, thus the total time cost simplifies to
O(nz(X)). Also, transposing X has the same time complexity. In
the graph language, X is the column-normalized A (or AT), and
p means the maximum number of neighbors for a vertex. Thus,
the time cost of computing M (or M̂) is O(nz(A)) = O(n).

7

1

2

3

4

5

6

7

8

9

10 11

12

13

(a) Bipartite graph G.

1

2

3

4

5

6

7

8

9

10 11

12

13

(b) Densification of G. Weights of the fill-in
edges (dashed) have not been shown.

1 11 2 9 3 10 6 5 7 8 4 12 13

(c) The dendrogram constructed from (b).

Fig. 5. Two dense subgraphs (encapsulated in the red dashed frames) are found for a sparse bipartite graph as shown in (a). The density threshold dmin = 0.5.

We should note that the above method is a standard technique
used for sparse matrix-matrix multiplications (cf. e.g., [29]).
Perhaps the only important point to stress here is the fact that
it takes time only linear in n to multiply two sparse matrices,
assuming that the maximum number p of nonzeros per row is
bounded by a constant. Note that for some real-life graphs the
degree of a vertex may follow a power low distribution, which
means that p can become large for large graphs of a given
application. It suffices to have one column/row pair of n entries
for the cost of the product to rise to O(n2) (because the product
becomes dense). Nevertheless, this situation is rare and it is
also rare that p will be O(n), and so the situation where the
computational cost will rise to the forbidding O(n2) is rare in
practice.

B. The Computation of the Hierarchy/Dendrogram

The routine DENSE-SUBGRAPHS (cf. Algorithm 1) essentially
computes a hierarchy of the graph vertices in a top-down fashion.
Recursive calls of this routine are very time consuming since
between lines 5 and 9, with each removal of an edge in G′, a graph
traversal procedure (such as the breadth first search) is needed to
examine the connectivity of the graph. However, as the two toy
examples (cf. Fig. 3(c) and 5(c)) suggest, it is entirely possible
to build the dendrogram T in an opposite (but equivalent) way:
the bottom-up fashion.

The key is the array C which is sorted in ascending order of
the nonzero entries M(i, j) (or M̂(i, j))1. It indicates the order of
the merges in the hierarchy/dendrogram T . Initially, each vertex
v ∈ V is a separate tree in the forest. Beginning from the end of
the array C, each time we have a pair (i, j). We find the roots
ri and rj of i and j, respectively. If ri and rj are different, we
make a new root r with the left child ri and the right child rj
(see Fig. 6). After iterating the whole array C, a single tree is
returned, which is nothing but T .

Note that the above process is equivalent to monitoring the
connected components of a graph when edges are successively
inserted (a.k.a. incremental connected components [33]). Initially
we have a virtual graph with the vertex set V but without edges.
When reversely iterating the array C, we merge the two subsets si
and sj , which i and j belongs to respectively, if si 6= sj . Finally,
a single set, which contains all the vertices in V , is returned.

1To reduce the complication in reading, we thereafter omit the text “(or
M̂)” in this subsection. Readers are reminded that whenever the analysis is
applied to a bipartite graph, all the notions involving M should be replaced
by M̂ .

r

ri rj

i j

T

Fig. 6. The dendrogram T as a binary tree. Node r is the lowest common
ancestor of i and j, and ri and rj are the children of r.

Therefore, we can utilize the two standard disjoint-set opera-
tions SET-FIND and SET-UNION to assist the process of building
T . When we iterate C and get a pair (i, j) each time, we first do
SET-FIND(i) → si and SET-FIND(j) → sj . If si = sj , nothing
is done. On the other hand, if si 6= sj , we call SET-UNION to
combine si and sj . Meanwhile, we make a new node r which has
the ri and rj (stored with the disjoint-set data structure) as the
two children, and associate r with the combined set s = si ∪ sj .

The total time of the above process can be split in two parts: (a)
the time of all the SET-FIND and SET-UNION calls, and (b) the
gross time to build T . Part (a) is indeed the incremental connected
component process, which takes time O(n + nz(M)), since the
graph G′ has n vertices and O(nz(M)) edges. Part (b), which
consists of making new nodes and assigning children, has a time
complexity linear to the size of T , which is O(n).

We still can improve the performance. Recall that the whole
bottom-up process is nothing but to yield the graph G′ from a
collection of isolated vertices by successively inserting edges. We
can stop the insertion of edges at some point. This essentially
yield an incomplete hierarchy, which is the part of T below
some level. We opt to stop after we have inserted O(n) edges. In
practice, the number of inserted edges can be simply set as nz(A),
or as τ ·nz(A) by introducing some coefficient parameter τ . This
may greatly reduce the cost of part (a) from O(n + nz(M)) to
O(n), and also some minimal cost of part (b). By doing this, the
negative impact on the final dense subgraphs extraction process is
hoped to be minimal, since we only miss, if any, large subgraphs
that have not been formed by merging in the hierarchy. We still
are able to extract the dense parts of the hypothetically missing

8

large subgraphs. Another advantage is that instead of sorting the
nonzeros of M in O(nz(M) log(nz(M))) time to make the array
C, we only need to sort the O(n) largest nonzeros in O(n logn)

time (plus finding the largest nonzeros in O(nz(M)) time, which
is negligible compared with O(n logn).)

C. Collecting Density Information and Extracting Subgraphs

Recall that in the hierarchy T , each internal node r represents
a subgraph of G whose vertices are the leaf nodes of the subtree
rooted at r. The dense subgraphs extraction process starts from
visiting the root of T . If the subgraph corresponding to the current
node has the density higher than the input threshold dmin, it is
output; otherwise the two children of the current node are visited
and the whole process is recursive. Thus, the extraction process
is equivalent to a traversal of T and is very cheap, given that the
densities of all the subgraphs have been computed and stored in
the internal nodes r.

In the following we discuss how the subgraph densities are
computed. For each internal node r of T , it is sufficient to store
two values: the number nr of vertices the corresponding subgraph
contains, and the number er of edges. The number of vertices can
be easily computed in a recursive way: nr = nri +nrj , where ri
and rj are the two children of r. However, the computation of er
is not that straightforward. It is the sum of eri , erj and ec(ri,rj),
where ec(ri,rj) is the number of edges crossing the subgraphs
ri and rj represent. Thus, the computation of er can be split
in two phases. The first phase is to compute ec(ri,rj) for each
internal node r. The second phase is to recursively compute er =

eri + erj + ec(ri,rj) for node r from its two children.
Further explanations on how ec(ri,rj) is counted are in order.

Recall in Fig. 6 that r is the lowest common ancestor (LCA) of i
and j. Thus, we initialize er = 0 for all r. For each edge {i, j} in
the graph, we find the lowest common ancestor r of i and j and
add 1 to er . After iterating all the edges, the temporary er value
for each internal node r in the hierarchy is exactly ec(ri,rj), thus
finishing phase one as mentioned in the previous paragraph.

Currently, the most efficient LCA data structure answers
queries in constant time after a linear time preprocessing [34],
[35]. Thus, the time cost for phase one is O(n+nz(A)) = O(n),
since the tree T has O(n) nodes and we need to find the lowest
common ancestors for O(nz(A)) pairs. This complexity applies
to all the three types of graphs, since even after modifications,
the adjacency matrix of the graph always has O(nz(A)) nonzeros.
Therefore, the time cost of computing nr and er for all nodes r

in the hierarchy takes time O(n). This is also the cost of the final
dense subgraphs extraction process, which simply consists of a
traversal of T .

D. The Final Algorithms

In summary, the improved versions of the two algorithms
presented in Sec. II are shown in Algorithms 3 and 4, by in-
corporating the above discussions. These supersede Algorithms 1
and 2 in the rest of the paper. In the pseudocodes, the hierar-
chy/dendrogram T is a tree with the root T.root. A node r in
the tree has the left child left, the right child right, and the
density density which is computed from num vertex (nr) and
num edge (er) according to the appropriate definition of density
introduced at the beginning of Sec. II.

Algorithm 3 Finding Dense Subgraphs of a Sparse Undirected
Graph (equivalent to Algorithm 1, more efficient)
Input: Sparse undirected graph G, density threshold dmin.

1: Compute the matrix M as defined in (4).
2: Sort the largest t nonzero entries of M in ascending order,

where t = nz(A). Denote C the sorted array.
3: Construct the hierarchy T according to the sorted vertex pairs

designated by C.
4: COUNT-VERTICES-AND-EDGES(T , G)
5: Compute r.density for all nodes r of T according to (1).
6: EXTRACT-SUBGRAPHS(T.root)

7: function COUNT-VERTICES-AND-EDGES(T , G)
8: Initialize r.num edge← 0 for all nodes r of T .
9: Construct the LCA data structure for T .

10: for all edge {i, j} of G do
11: Find the lowest common ancestor r of i and j.
12: r.num edge← r.num edge+ 1

13: end for
14: COUNT-VERTICES-AND-EDGES-WRAP-UP(T.root)
15: end function

16: function COUNT-VERTICES-AND-EDGES-WRAP-UP(r)
17: if r.left 6= nil and r.right 6= nil then
18: COUNT-VERTICES-AND-EDGES-WRAP-UP(r.left)
19: COUNT-VERTICES-AND-EDGES-WRAP-UP(r.right)
20: end if
21: if r.left 6= nil and r.right 6= nil then
22: r.num vertex←

r.left.num vertex+ r.right.num vertex

23: r.num edge←
r.left.num edge+ r.right.num edge+ r.num edge

24: else
25: r.num vertex← 1

26: end if
27: end function

28: function EXTRACT-SUBGRAPHS(r)
29: if r.density > dmin then
30: Output the leaves of the subtree rooted at r.
31: else if r.left 6= nil and r.right 6= nil then
32: EXTRACT-SUBGRAPHS(r.left)
33: EXTRACT-SUBGRAPHS(r.right)
34: end if
35: end function

IV. EXPERIMENTAL RESULTS AND APPLICATIONS

This section shows extensive experimental results to illustrate
the efficiency and the effectiveness of the proposed algorithms
for extracting dense subgraphs. The experiments were performed
under a Linux desktop with four AMD Opteron Processors
(2.20GHz) and 16GB memory. The programs were not parallel
and used only one processor. The algorithms were implemented
in C/C++, and the programs were compiled using g++ with -O2
level optimization.

A. Simulations and Accuracies

In this subsection we show the dense subgraphs extraction
results of two simulated graphs. A visualization is shown in

9

Algorithm 4 Finding Dense Subgraphs of a Sparse Bipartite
Graph (equivalent to Algorithm 2, more efficient)
Input: Sparse bipartite graph G, density threshold dmin.

1: [Densification:] Modify the adjacency matrix A of G into Â

as defined in (6).
2: Compute the matrix M̂ as defined in (7).
3: Sort the largest t nonzero entries of M̂ in ascending order,

where t = nz(Â). Denote C the sorted array.
4: Construct the hierarchy T according to the sorted vertex pairs

designated by C.
5: COUNT-VERTICES-AND-EDGES(T , G). [Instead of counting

the number of vertices r.num vertex for each subgraph,
count the number of vertices that belong to each partite set
for each subgraph, in a similar way.]

6: Compute r.density for all nodes r of T according to (3).
7: EXTRACT-SUBGRAPHS(T.root)

Fig. 7. The graphs were randomly generated subject to the
parameters given in Tab. I. The simulated undirected graph has
three dense components/subgraphs, and the bipartite graph has
four. We computed the densities of the dense components for
each graph, and used the smallest of the densities as the input
parameter dmin to our algorithms. The aim of this experiment
is to show that the proposed algorithms are able to discover the
intended dense components when a good parameter is provided.
Other experiments for the situation when the density threshold is
unknown in advance will be discussed in later subsections.

TABLE I
SIMULATION PARAMETERS FOR THE GRAPHS IN FIG. 7. FOR THE

UNDIRECTED GRAPH, EACH (s, t) PAIR MEANS A (SUB)GRAPH WITH s

VERTICES AND APPROXIMATELY t EDGES. FOR THE BIPARTITE GRAPH,
EACH (s1, s2, t) PAIR MEANS A (SUB)GRAPH WITH s1 + s2 VERTICES AND

APPROXIMATELY t EDGES.

Graph Undirected Bipartite
Whole (100, 2000) (100, 170, 1940)
Component 1 (25, 420) (20, 40, 370)
Component 2 (30, 550) (20, 35, 280)
Component 3 (20, 290) (17, 30, 260)
Component 4 (15, 45, 340)

The criterion we use to measure the “accuracy” of the ex-
tracted dense subgraphs is the F-score. Here, the term “accuracy”
only states how much the extracted subgraphs deviate from the
intended dense components. Indeed, a precise determination of
the dense subgraphs in each simulated case does not exist. As
long as the output subgraphs have densities higher than the input
threshold, there is no harm in considering that the result is as
good as the “ground truth”. For each dense component i in the
intended construction, let Vi be its vertex set. We compare Vi
with the extraction result Ṽi, and the F-score is defined as

Fi =
2

1

precision
+

1

recall

=
2

|Vi|
|Vi ∩ Ṽi|

+
|Ṽi|

|Vi ∩ Ṽi|

.

Tab. II shows the average F-score for each component i by
simulating the graphs 100 times. It can be seen that the extraction
results match the intended constructions quite well.

TABLE II
ACCURACY OF THE EXTRACTED DENSE SUBGRAPHS. THE UPPER TABLE IS

FOR THE UNDIRECTED GRAPH, AND THE BOTTOM ONE IS FOR THE

BIPARTITE GRAPH.

Dense component 1 2 3
Average F-score 0.9844 0.9882 0.9694

Dense component 1 2 3 4
Average F-score 0.9720 0.9310 0.9755 0.9730

B. Real Graphs and Running Times

We tested the performance of our algorithms on real-life graphs
with different sizes and from various application domains. The
graphs are listed in Tab. III; they include a social network
(polblogs), a biological network (yeast), a citation network
(hep), a trust network (epinions), an information network
(NDwww), and graphs that represent the relationships between
words (Reuters911, foldoc, dictionary28), between
users and movies (MovieLens), and between words and doc-
uments (newsgroup, cmuSame, cmuDiff, cmuSim). In this
subsection, we are mainly interested in the running times of the
algorithms as opposed to the graph sizes. Some of the graphs
will be mentioned again in later subsections for analyzing the
extraction results and understanding community structures. For
such graphs, more information related to the semantics of the
graphs will be presented when appropriate.

TABLE III
SOME REAL-LIFE GRAPHS.

Graph Description
polblogs [36] A directed network of hyperlinks between web-

blogs on US politics.
yeast [37] Protein-protein interaction network.

Reuters911 [38] Reuters terror news network.
foldoc Free on-line dictionary of computing.

http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
foldoc.html

hep The citation graph of the hep-th portion of arXiv.
http://www.cs.cornell.edu/
projects/kddcup/datasets.html

epinions [39] Trust network of the users on Epinions.com.
dictionary28 Dictionary.

http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
dictionary28.html

NDwww [40] Webpages within nd.edu domain.
cmuSame [41] The 20 Newsgroups data set (three subsets).

cmuDiff, cmuSim
MovieLens [42] The MovieLens data set.
newsgroup [43] The 20 Newsgroups data set.

The running times are shown in Tab. IV. Two aspects of the
experimental design are noted. First, the density threshold dmin is
the least important parameter in this experiment, since it affects
only the extraction time (the last column in the table), which
is almost negligible compared with other times. This meanwhile
indicates that the parameter dmin does not constitute a weakness
of our algorithms—we can always tune the parameter in real time.
We fixed dmin to be 0.1 in this experiment. The second aspect
is the parameter τ , where recall that in Sec. III-B we insert τ ·
nz(A) edges in the incremental connected component process.
This constructs an incomplete, yet probably sufficient, hierarchy
T . The parameter τ directly affects the sorting time and the time

10

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 2000

(a) An undirected graph.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 2000

(b) Dense subgraphs of (a).

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

nz = 1939

(c) A bipartite graph.

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

nz = 1939

(d) Dense subgraphs of (c).

Fig. 7. The extracted dense subgraphs of two simulated graphs.

to compute the hierarchy. In most of the cases τ = 1 is sufficient
to yield meaningful dense subgraphs, except that in a few cases
we tune the parameter to an appropriate value such that desirable
subgraphs are extracted. The values of τ are listed in the table.

From Tab. IV we see that the proposed algorithms are efficient.
A large part of the running time is spent on the matrix-matrix
multiplication (computing M or M̂), which is not difficult to
parallelize. Note that all the graphs are run on a single desktop
machine. In the future we will investigate parallel versions of the
algorithms that can deal with massive graphs.

C. Power Law Distribution of the Dense Subgraph Sizes

To further understand the extraction results, we plot in Fig. 8
the distribution of the dense subgraph sizes. We experimented
with two graphs: a collaboration network (hep) and a dictio-
nary graph (dictionary28), using various density thresholds.
Within each plot, the horizontal axis is the size of a subgraph, and
each plotted point shows the number of dense subgraphs of this
size. Remarkably, all the plots seem to indicate that the subgraph
sizes follow the power law distribution—roughly speaking, the
number P (x) of dense subgraphs is a power function of the
subgraph size x, in the form P (x) ∝ xγ with γ < 0. This adds
yet one more instance to the family of power laws previously
discovered on social and information networks [44], [45], the
most notable of which is the power law distribution of the vertex
degrees. Each plot of Fig. 8 also shows a line that is the least
squares fit to the plotted data in log-log scale. The slope of the
line, which is essentially the exponent γ, is typically in the range
from −3.5 to −1.5.

It is clear from our algorithms that the extracted dense com-
ponents resulting from a larger dmin are all subgraphs of those
resulting from a smaller dmin. This effectively means that in
the power law expression P (x) ∝ xγ , the exponent γ tends
to decrease as the threshold dmin increases, since the extracted
subgraphs become smaller and smaller. This can be seen from
Fig. 8, where in general the fitted line becomes steep when dmin

is increasing. Further, the total number of vertices that belong to
the extracted subgraphs will naturally decrease. A plot (Fig. 9)
indicates that this decrease looks linear.

D. A Blog Network Example

In this subsection we analyze the structure of a blog network
polblogs. The data set, a network that connects bloggers of
different political orientations, was originally constructed around
the time of the 2004 U.S. presidential election, to study the
interactions between the two groups: liberal and conservative [36].
The graph contains 1,490 vertices, among which the first 758 are

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

d
min

pe
rc

en
ta

ge
 (

%
)

(a) hep

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

d
min

pe
rc

en
ta

ge
 (

%
)

(b) dictionary28

Fig. 9. Percentage of vertices that belong to the extracted dense subgraphs.

liberal blogs, and the remaining 732 are conservative. An edge
in the graph indicates the existence of citations between the two
blogs. As can be seen from Figure 10(a), there are much denser
links between blogs that hold the same political orientation than
between those with different leanings.

We ran our algorithm on this graph by using different density
thresholds. A typical result is shown in plot (b), where dmin = 0.4.
Indeed, for all the thresholds we tried, only two dense subgraphs
(of size larger than 4) were identified. These two subgraphs
perfectly correspond to the two politically oriented groups: The
smaller subgraph (except for one vertex in the situation of low
density thresholds) consists of conservative blogs, whereas the
larger subgraph consists of liberal blogs. Hence, these two subsets
of blogs are truly representative of the two groups.

It is observed that the density of the smaller subgraph is in
general larger than that of the larger subgraph. One conclusion
from this is that conservative blogs tend to make a larger number
of citations to each other than liberal ones. This happens to be
in agreement with the point made in [36] that “right-leaning
(conservative) blogs have a denser structure of strong connections
than the left (liberal)”, a result of a different analysis using
the number of citations between different blogs. However, since
the size of the liberal subgraph is much larger than that of the
conservative (cf. plot (c)), an alternative conclusion is that more
liberal blogs are willing to cite each other than conservative ones.
This is somehow opposite to the dense citations in conservative
blogs.

It is interesting to note here that plot (c) can suggest a way to
select an “optimal” threshold dmin. In this particular case, dmin =

0.4 seems optimal, because beyond this point, the size of one of
the subgraphs starts decreasing significantly, whereas there is no
change when dmin grows from smaller values.

11

TABLE IV
RUNNING TIMES (UNIT: SECONDS) FOR THE GRAPHS IN TABLE III.

Graph Type |V | |E| τ Similaritya Sortingb Hierarchyc Densityd Extractione

polblogs directed 1,490 19,022 1 0.07 0.06 0.00 0.01 0.00
yeast undirected 2,361 6,646 1 0.00 0.03 0.00 0.01 0.00

Reuters911 undirected 13,332 148,038 1 1.58 0.59 0.02 0.05 0.00
foldoc directed 13,356 120,238 1 0.21 0.18 0.01 0.04 0.00
hep directed 27,770 352,768 1 2.10 1.14 0.06 0.15 0.00

epinions directed 49,288 487,182 3 3.86 2.04 0.12 0.17 0.02
dictionary28 undirected 52,652 89,038 1 0.22 0.11 0.04 0.08 0.01

NDwww directed 325,729 1,469,679 30 13.98 42.07 2.46 0.67 0.07

Graph Type |V1| |V2| |E| τ Similaritya Sortingb Hierarchyc Densityd Extractione

cmuSame bipartite 3,000 5,932 263,325 1 11.81 0.51 0.01 0.08 0.00
cmuDiff bipartite 3,000 7,666 185,680 1 2.94 0.55 0.02 0.06 0.00
cmuSim bipartite 3,000 10,083 288,989 1 5.46 1.03 0.01 0.10 0.00

MovieLens bipartite 3,706 6,040 1,000,209 10 40.26 5.59 0.58 0.28 0.00
newsgroup bipartite 18,774 61,188 2,435,219 1 140.32 11.15 0.21 0.87 0.02
a The time to compute M or M̂ , including the modification of A in the bipartite graph case (cf. Sec. III-A).
b The time to sort τ · nz(A) nonzeros of M or M̂ (cf. Sec. III-B).
c The time to construct the hierarchy T (cf. Sec. III-B).
d The time to compute the densities of all the subgraphs in the hierarchy (cf. Sec. III-C).
e The time to extract the dense subgraphs given a density threshold (cf. Sec. III-C).

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

γ = −1.5353

(a) hep: dmin = 0.2.
10

0
10

1
10

2
10

310
0

10
1

10
2

10
3

γ = −1.9247

(b) hep: dmin = 0.4.
10

0
10

1
10

2
10

310
0

10
1

10
2

10
3

γ = −2.2506

(c) hep: dmin = 0.6.
10

0
10

1
10

2
10

310
0

10
1

10
2

10
3

γ = −2.5836

(d) hep: dmin = 0.8.

10
0

10
1

10
210

0

10
1

10
2

10
3

γ = −2.5444

(e) dictionary28: dmin = 0.2.
10

0
10

1
10

210
0

10
1

10
2

10
3

γ = −3.3714

(f) dictionary28: dmin = 0.4.
10

0
10

1
10

210
0

10
1

10
2

10
3

γ = −3.3915

(g) dictionary28: dmin = 0.6.
10

0
10

1
10

210
0

10
1

10
2

10
3

γ = −3.4242

(h) dictionary28: dmin = 0.8.

Fig. 8. Statistics of the extracted dense subgraphs for different density thresholds. The vertical axis is the number of subgraphs, and the horizontal axis is
the subgraph cardinality. The plots are in log-log scale. Each red line is a least squares fit to the data, with its slope γ indicated at the upper right corner of
each plot.

E. A Text Network Example

Words can be organized to form a network, where the struc-
tures of the relations between words can be exploited in or-
der to analyze word usage and to understand linguistics. The
data set Reuters911 “is based on all stories released dur-
ing 66 consecutive days by the news agency Reuters con-
cerning the September 11 attack on the U.S., beginning at
9:00 AM EST 9/11/01.” [38] It consists of 13,332 words from
these news reports, and two words are connected if they ap-
pear in the same semantic unit (sentence here). By our tech-
nique (using a density threshold dmin = 0.5), we extracted

words that tend to be used together under such a context,
such as those related to politics: house of reps, senate,
house, committee, capitol, hill, congressional,
republican, senator, democrat, those related to Arabic
countries and names: tunisia, yahya, benaissa, ben,
habib, morocco, riziq, syihab, and those related to the
economic impacts: market, stock, exchange, trade, wall
street.

Perhaps the most important group of words (the largest ex-
tracted subgraph) is listed in Tab. V. They can be used as key
words to summarize the 911 tragedy and the stories behind it.

12

0 500 1000

0

200

400

600

800

1000

1200

1400

nz = 19022

(a) Original graph.

0 500 1000

0

200

400

600

800

1000

1200

1400

nz = 19022

(b) Two dense subgraphs.

0.2 0.4 0.6 0.8 1
0

50

100

150

d
min

su
bg

ra
ph

 s
iz

e

smaller subgraph
larger subgraph

(c) Subgraph size.

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

d
min

su
bg

ra
ph

 d
en

si
ty

smaller subgraph
larger subgraph

(d) Subgraph density.

Fig. 10. Dense subgraph extraction of a political blog network as shown in (a). Only two subgraphs (of size larger than 4) are identified for all the density
thresholds experimented with. Plot (b) shows the two subgraphs (using dmin = 0.4) in red boxes. Plots (c) and (d) show the changes in the sizes and the
densities as dmin varies.

TABLE V
THE LARGEST GROUP OF WORDS THAT TEND TO APPEAR TOGETHER IN

911-RELATED NEWS REPORTS.

attack united states pres bush official people
washington afghanistan taliban country bin laden
afghan american kabul al quaeda force
troop tuesday wednesday military day
week government friday thursday monday
nation support pakistan saudi-born strike
new york city time terrorism terrorist
security report war world sunday
raid network new air alliance
opposition capital america pakistani militant
hijack suicide hijacker aircraft plane
flight authority leader bomb pentagon
kandahar southern stronghold anthrax case
bacterium target airport possible white house
group information campaign operation jet
fbi letter mail test dissident
deadly month part threat federal
tower twin 110-story world trade ctr sept
state saturday islamic muslim 11
man member fighter agency

F. A Bipartite Graph Example

Bipartite graph models are common in text mining, rec-
ommender systems, and other research fields. We show the
newsgroup example where the dense subgraph extraction re-
sults can be interpreted as a partial co-clustering of the terms and
the documents. Unlike existing co-clustering approaches [46]–
[49] that return a complete clustering of the data matrix, our
method returns only a subset of the entities where dense con-
nections exist in each cluster.

The data set newsgroup (see Tab. III) is organized as a
term-document matrix, where there are approximately 18,774
documents from 20 different newsgroups. The dictionary (number
of terms) has size 61,188. The matrix represents a sparse graph
where connections are drawn between two types of entities:
terms and documents. We extracted dense subgraphs using the
parameter dmin ranging from 0.1 to 0.9, and required that a
subgraph should consist of at least 5 documents and 3 terms.
To measure the clustering quality of the documents, we compute
the entropy and the purity [50] of the document clusters. Fig. 11
shows the plot. It indicates that the document clusters are pure,
especially when the density threshold is high. The plot also shows
the total number of clustered documents. It varies from 10% to
30% of the whole document set. From the document clusters, we
inspect the corresponding terms. We use the extraction results of

dmin = 0.9. In Tab. VI, we list the largest four term clusters, and
the newsgroup to which they (or most of them) correspond. It
can be seen that the words are very relevant to the topics of the
newsgroups.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
min

entropy
purity
clustered documents

Fig. 11. Clustering quality of the documents in newsgroup: entropy
and purity. “Clustered documents” is the percentage of documents that are
clustered.

TABLE VI
THE LARGEST TERM CLUSTERS AND THE CORRESPONDING NEWSGROUPS.

talk.politics.mideast talk.politics.guns sci.crypt misc.forsale
injuries overwhelmed transfering cruising
comatose conceded betwen barreling
boyhood crudely keyboards liscence
pranks detractors numlock occurance
devalued outraged micronics reknowned
murderous revocation speedier copious
municipalities mailbombing phantom loper
...

...
...

...
(368 in total) (29 in total) (28 in total) (28 in total)

G. Comparisons with the CNM Approach

We compare our approach with the one proposed by Clauset,
Newman and Moore [10] (CNM). The CNM approach is in
nature a close competitor to ours; it performs an agglomerative
clustering on the graph vertices by greedily maximizing the
modularity in each merge step. We would also like to include
in the comparisons the divisive clustering approach [11] based
on edge betweenness; however, the algorithm was very slow (at
least with cubic time complexity) and did not terminate within
hours even on a graph with around 10,000 vertices and 100,000
edges. Therefore, the approach [11] is not compared here. We

13

demonstrate the comparisons using the dataset foldoc, which
was extracted from the free on-line dictionary of computing
(http://foldoc.org/). The vertices in the graph are terms
related to computing, and there is an edge connecting two terms
if one is used in the description/definition of the other.

Note first that it is difficult to find a single quantitative
measure on the quality of the results. Criteria such as modularity,
entropy or normalized mutual information are not appropriate for
evaluating the subgraphs extracted from our algorithm, where
the clustering is only partial and there lacks label information
as the “ground truth”. On the one hand, the subgraphs are
trivially accurate in the sense that they are guaranteed to pass the
density threshold. On the other hand, statistical properties may
be considered when interpreting and evaluating the subgraphs.
Using a density threshold dmin = 0.2, we extracted 899 dense
subgraphs, which contained in total 86.64% of the vertices of the
whole network. The CNM approach divided the network into 30

clusters, where the four largest clusters contained 86.59% of the
vertices, and the rest of the clusters were much smaller in size.
Fig. 12 plots for each subgraph its size and its density. There is a
clear trend for both approaches that larger subgraphs have smaller
densities. The four largest subgraphs from the CNM approach are
considered too large in the sense that their densities are very low
and the theme, if any, represented by the terms in each subgraph
is unclear. On the other hand, the subgraphs extracted from our
approach are interpretable, which we will elaborate next.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

S
ub

gr
ap

h
si

ze
 (

o)

Sorted subgraphs
0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

S
ub

gr
ap

h
de

ns
ity

 (
+

)

(a) Our approach

0 5 10 15 20 25 30
0

2000

4000

S
ub

gr
ap

h
si

ze
 (

o)

Sorted subgraphs
0 5 10 15 20 25 30

0

0.5

1

S
ub

gr
ap

h
de

ns
ity

 (
+

)

(b) CNM approach

Fig. 12. Subgraph sizes and densities.

By manual inspection, each of the small subgraphs, such as
{refutable, regex, regexp}, {aliasing bug, precedence lossage,
smash the stack, stale pointer bug}, {BCD, Binary Compatibility
Standard, binaries, binary coded decimal, binary counter, binary
file, packed decimal}, contains terms under a similar topic. In
these examples, the topics are language patterns/expressions,
programming errors, and data/number representation, respectively.
Even for the large subgraphs (not listed here), we can also identify
the themes. From the largest subgraph counted backwards, they
represent advanced technology, device control and virtual ma-
chine, JAVA, Internet, etc. This interpretability reveals semantic
structures of a network consisting of a large number of com-
munities with moderate sizes, where members of a community
tend to exhibit a common theme. On the contrary, the CNM
approach tends to yield a small number of large clusters, which
may be suitable for a network that can be divided into only a few
categories.

V. CONCLUDING REMARKS

We have proposed a method to extract meaningful dense
subgraphs from a given sparse graph (either undirected, directed,

or bipartite). There are two major distinctions between the pro-
posed method and previous ones that exploit complete clustering
techniques. First, the output subgraphs are guaranteed to have
high densities (above a certain prescribed threshold). Second, the
number of clusters, which is in general difficult to estimate, is no
longer a required parameter. The proposed algorithm is inspired
by a matrix blocking technique which utilizes the cosine similarity
of matrix columns. It effectively builds a hierarchy for the graph
vertices, and computes a partial clustering for them. The real-life
examples of Section IV indicate that the uses of the algorithm
are flexible and the results are meaningful.

In the proposed algorithm, we introduced a density threshold
parameter dmin to control the density of the output subgraphs.
This parameter provides the flexibility needed to interactively
explore the graph structure and the resulting communities. It can
be tuned in real time, and results are easily visualized. The blog
example in Sec. IV-D has shown the appeal of exploiting such a
tunable parameter in understanding the extraction results.

The experiment in Sec. IV-C unraveled what appeared to be a
new power law for large sparse graphs: the power law distribution
of the dense subgraph sizes. It is still unclear if this interesting
phenomenon is intrinsic to real-life complex systems. This newly
discovered structure may have an influence on understanding the
sizes of the communities in social networks.

A future avenue of research is to design algorithms to iden-
tify overlapping dense subgraphs. Many social and biological
networks have shown empirically overlapping structures, where
communities do not have a distinct borderline. The identification
of such characters that connect different communities together
may help better understand the network systems. We intend to
explore how the algorithm proposed in this paper can be adapted
for this task.

ACKNOWLEDGEMENTS

This research was supported by NSF grant DMS-0810938
and by the Minnesota Supercomputer Institute. The first author
was supported in part by a University of Minnesota Doctoral
Dissertation Fellowship. The authors would like to thank Arindam
Banerjee for introducing us to the dense subgraph problem and in
particular for bringing to our attention the importance of finding
a partial clustering of the graph vertices.

REFERENCES

[1] D. Gibson, J. Kleinberg, and P. Raghavan, “Inferring web communities
from link topology,” in Proceedings of HYPERTEXT, 1998.

[2] M. E. Newman, “Detecting community structure in networks,” Eur. Phys.
J. B, vol. 38, pp. 321–330, 2004.

[3] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification of
web communities,” in Proceedings of ACM SIGKDD, 2000.

[4] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
properties of community structure in large social and information
networks,” in Proceedings of WWW, 2008.

[5] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical review E, vol. 74, no. 3, p. 036104,
2006.

[6] S. White and P. Smyth, “A spectral clustering approach to finding
communities in graphs,” in Proceedings of SDM, 2005.

[7] J. Abello, M. G. C. Resende, and S. Sudarsky, “Massive quasi-clique
detection,” in Proceedings of LATIN, 2002.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling
the web for emerging cyber-communities,” Computer Networks: The
International Journal of Computer and Telecommunications Networking,
vol. 31, no. 11–16, pp. 1481–1493, 1999.

14

[9] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and classi-
fication of dense communities in the web,” in Proceedings of WWW,
2007.

[10] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[11] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, 2004.

[12] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale
social networks,” in Proceedings of WWW, 2007.

[13] J. P. Scott, Social Network Analysis: A Handbook, 2nd ed. Sage
Publications Ltd, 2000.

[14] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed
membership stochastic blockmodels,” J. Machine Learning Research,
vol. 9, no. June, pp. 1981–2014, 2008.

[15] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for
stochastic blockstructures,” Journal of the American Statistical Asso-
ciation, vol. 96, no. 455, pp. 1077–1087, 2001.

[16] K. Yu, S. Yu, and V. Tresp, “Soft clustering on graphs,” in Proceedings
of NIPS, 2005.

[17] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[18] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in random
networks,” Physical Review Letters, vol. 94, no. 16, 2005.

[19] L. Tang and H. Liu, “Graph mining applications to social network
analysis,” in Managing and Mining Graph Data (Advances in Database
Systems), C. C. Aggarwal and H. Wang, Eds., 2010.

[20] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms
for dense subgraph discovery,” in Managing and Mining Graph Data
(Advances in Database Systems), C. C. Aggarwal and H. Wang, Eds.,
2010.

[21] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2005, p. P09008, 2005.

[22] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.

[23] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 96–
129, 1998.

[24] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in Proceedings of IPDPS, 2006.

[25] S. V. Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM J. Matrix Anal. Appl., vol. 30, no. 1, pp. 121–141, 2008.

[26] D. S. Hochbaum, “Polynomial time algorithms for ratio regions and a
variant of normalized cut,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 32, no. 5, pp. 889–898, 2010.

[27] J. O’Neil and D. B. Szyld, “A block ordering method for sparse
matrices,” SIAM J. Sci. Comput., vol. 11, no. 5, pp. 811–823, 1990.

[28] Y. Saad, “Finding exact and approximate block structures for ILU
preconditioning,” SIAM J. Sci. Comput., vol. 24, no. 4, pp. 1107–1123,
2002.

[29] ——, Iterative methods for sparse linear systems, 2nd ed. SIAM, 2003.
[30] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-

duction to Cluster Analysis. John Wiley & Sons Ltd., 1990.
[31] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Natural communities

in large linked networks,” in Proceedings of ACM SIGKDD, 2003.
[32] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense

subgraphs in massive graphs,” in Proceedings of VLDB, 2005.
[33] D. Eppstein, Z. Galil, and G. F. Italiano, “Dynamic graph algorithms,” in

CRC Handbook of Algorithms and Theory of Computation, 1997, ch. 22.
[34] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common

ancestors,” SIAM J. Comput., vol. 13, no. 2, pp. 338–355, 1984.
[35] M. A. Bender and M. Farach-Colton, “The LCA problem revisited,” in

Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2000,
pp. 88–94.

[36] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
u.s. election: divided they blog,” in Proceedings of LinkKDD, 2005.

[37] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,
L. Ling, N. Zhang, G. Li, and R. Chen, “Topological structure analysis
of the protein-protein interaction network in budding yeast,” Nucl. Acids
Res., vol. 31, no. 9, pp. 2443–2450, 2003.

[38] S. R. Corman, T. Kuhn, R. D. McPhee, and K. J. Dooley, “Studying
complex discursive systems: Centering resonance analysis of communi-
cation,” Human Communication Research, vol. 28, no. 2, pp. 157–206,
2002.

[39] P. Massa and P. Avesani, “Trust-aware recommender systems,” in
Proceedings of RecSys, 2007.

[40] R. Albert, H. Jeong, and A. L. Barabási, “The diameter of the world
wide web,” Nature, vol. 401, pp. 130–131, 1999.

[41] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, “Clustering on the unit
hypersphere using von mises-fisher distributions,” J. Machine Learning
Research, vol. 6, pp. 1345–1382, 2005.

[42] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Proceedings of
SIGIR, 1999.

[43] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of
ICML, 1995.

[44] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proceedings of SIGCOMM, 1999.

[45] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[46] I. S. Dhillon, “Co-clustering documents and words using bipartite
spectral graph partitioning,” in Proceedings of ACM SIGKDD, 2001.

[47] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-
clustering,” in Proceedings of ACM SIGKDD, 2003.

[48] M. Rege, M. Dong, and F. Fotouhi, “Co-clustering documents and
words using bipartite isoperimetric graph partitioning,” in Proceedings
of ICDM, 2006.

[49] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A
generalized maximum entropy approach to Bregman co-clustering and
matrix approximation,” J. Machine Learning Research, vol. 8, pp. 1919–
1986, 2007.

[50] Y. Zhao and G. Karypis, “Empirical and theoretical comparisons of
selected criterion functions for document clustering,” Machine Learning,
vol. 55, no. 3, pp. 311–331, 2004.

