AUTOMATED ANALYSIS OF ECONOMIC AGENT-BASED MODELS BY (STATISTICAL) MODEL CHECKING

Andrea Vandin

Associate Professor in Computer Science

School of Advanced Studies - Pisa
Institute of Economics

Adjoint Associate Professor

Danmarks

Tekniske
Universitet

MOST RELEVANT RESEARCH AREAS

Quantitative Analysis of Large Models

- Scalable techniques and tools for the modelling and analysis
- Massive many entities (agents, species, computing nodes...)
- Possibly interacting over large-scale networks
- Boolean networks
- Pl of prestigious 3.5 years Danish grant ~365K EUR

Simulation/statistical analysis of large-scale models
High level languages to ease/automate modelling and analysis

- Domain-specific languages hiding loops, variables,...
- Models automatically compiled down in simulators
- One-click analysis
- MultiVeStA: Statistical Model Checking for any simulator
- Product lines, Business process models, Threats models

Agent-based economic models ...

PISA
END 2019 Tenure-track Assistant Professor @ Sant'Anna 2023-NOW Associate Professor @ Sant'Anna

COPENHAGEN
2019 Associate Professor @ DTU
2017-2019 Tenure-track Assistant Professor @ DTU 2019 Visiting professor @ IMT

LUCCA

2015-2017 Assistant Professor @ IMT

SOUTHAMPTON

2013-2015 Post-Doc @ University of Southampton

LUCCA

2010-2013 Phd in Computer Science and Engineering @ IMT Six months @ University of Leicester

PISA

2003-2009 BSc/MSc in Computer Science @ UniPi
One semester@Queen Mary College London 2009 Software Developer @ ION Trading

LA SPEZIA
Hometown

MOST RELEVANT RESEARCH AREAS

Quantitative Analysis of Large Models

- Scalable techniques and tools for the modelling and analysis
- Massive many entities (agents, species, computing nodes...)
- Possibly interacting over large-scale networks
- Boolean networks
- Pl of prestigious 3.5 years Danish grant ~365K EUR

Simulation/statistical analysis of large-scale models
High level languages to ease/automate modelling and analysis

- Domain-specific languages hiding loops, variables,...
- Models automatically compiled down in simulators
- One-click analysis

MultiVeStA: Statistical Model Checking for any simulator

- Product lines, Business process models, Threats models - Agent-based economic models ...

Institute of Economics Dept. Excell. EMBedDS

PISA
END 2019 Tenure-track Assistant Professor @ Sant'Anna 2023-NOW Associate Professor @ Sant'Anna

COPENHAGEN
2019 Associate Professor @ DTU
2017-2019 Tenure-track Assistant Professor @ DTU 2019 Visiting professor @ IMT

LUCCA

2015-2017 Assistant Professor @ IMT

SOUTHAMPTON

2013-2015 Post-Doc @ University of Southampton

LUCCA

2010-2013 Phd in Computer Science and Engineering @ IMT Six months @ University of Leicester

PISA

2003-2009 BSc/MSc in Computer Science @ UniPi
One semester@Queen Mary College London 2009 Software Developer @ ION Trading

LA SPEZIA

Hometown

Large funding as 'Department of Excellence' 2018-2022 -> 2023-2027

- Led by Prof. Francesca Chiaromonte
- Statistician, also working at PennState University, USA
- Involves a wide range of profiles: economics, management, law, statistics, computer science

The mission of L'EMbeDS is to

* Foster data-driven statistical and computational approaches in the Social Sciences

ABOUT INSTITUTE OF ECONOMICS

Research Areas

Complexity Economics

The dynamics of industries and markets

Data Science for economics and social science

Data Science for economics and social science

Statistical learning; analysis and methods for big \& complex data; data mining; patterns of causality in economic data; statistical model checking; calibration and validation of economic models

Automated and Distributed Statistical Analysis of Economic Agent-Based Models

Andrea Vandin ${ }^{\text {a }}$, Daniele Giachini ${ }^{\text {a }}$, Francesco Lampertia ${ }^{\mathrm{a}, \mathrm{c}}$, Francesca Chiaromonte ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{a}$ Institute of Economics and EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.
${ }^{b}$ Dept. of Statistics and Huck Institutes of the Life Sciences, Penn State University, USA ${ }^{c}$ RFF-CMCC European Institute on Economics and the Environment, Milan, Italy.

PUBLISHED AT HIGH-QUALITY ECONOMIC VENUE JEDC!

Abstract

We propose a novel approach to the statistical analysis of simulation models and, especially, agent-based models (ABMs). Our main goal is to provide a fully automated and model-independent tool-kit to inspect simulations and perform counter-factual analysis. Our approach: (i) is easy-to-use by the modeller, (ii) improves reproducibility of results, (iii) optimizes running time given the modeller's machine, (iv) automatically chooses the number of required simulations and simulation steps to reach user-specified statistical confidence, and (v) automatically performs a variety of statistical tests. In particular, our framework is designed to distinguish the transient dynamics of the model from its steady state behaviour (if any), estimate properties of the model in both "phases", and provide indications on the ergodic (or non-ergodic) nature of the simulated processes - which, in turns allows one to gauge the reliability of a steady state analysis. Estimates are equipped with statistical guarantees, allowing for robust comparisons across computational experiments. To demonstrate the effectiveness of our approach, we apply it to two models from the literature: a large scale macro-financial ABM and a small scale prediction market model. Compared to prior analyses of these models, we obtain new insights and we are able to identify and fix some erroneous conclusions.

Keywords: ABM, Statistical Model Checking, Ergodicity analysis, Steady state analysis, Transient analysis, Warmup estimation, T-test and power, Prediction markets, Macro ABM

AUTOMATED and DISTRIBUTED STATISTICAL ANALYSIS of ECONOMIC AGENT-BASED MODELS

Andrea Vandin

Sant'Anna

School of Advanced Studies - Pisa Institute of Economics
Department of Excellence 2018-2022
Economics and Management
in the era of Data Science

Joint work with
Daniele Giachini, Francesco Lamperti, Francesca Chiaromonte
Paper, tool and models available at:
https://bit.ly/MultiVeStATool
Classes 21t 22t, Software Validation and Verification, Unipi, 04-05/12/2023

1. Motivation, vision, and proposal
2. Automated analysis with statistical guarantees for ABMs
3. The MultiVeStA Statistical Model Checker
4. Transient Analysis of a large-scale financial macro ABM
5. Estimation of expected outcome and Confidence Interval
6. Counterfactual analysis for different model configurations
7. Steady-state analysis of a prediction market model
8. Steady-state analysis by Replication and Deletion (RD)
9. Warmup estimation
10. Steady-state analysis by Batch Means (BM)
11. A methodology for ergodicity analysis based on RD and BM
12. Conclusions \& Future works

1. Motivation, vision, and proposal

1. Automated analysis with statistical guarantees for $A B M$ s
2. The MultiVeStA Statistical Model Checker
3. Transient Analysis of a large-scale financial macro ABM
4. Estimation of expected outcome and Confidence Interval
5. Counterfactual analysis for different model configurations
6. Steady-state analysis of a prediction market model
7. Steady-state analysis by Replication and Deletion (RD)
8. Warmup estimation
9. Steady-state analysis by Batch Means (BM)
10. A methodology for ergodicity analysis based on RD and BM
11. Conclusions \& Future works

What is an Economic Agent-Based Model?

NON ABMs

- 'Mainstream economists' tend to reason in terms of models that
- Are given as a unique monolithic model
- Do not have focus on their single components, but on the overall dynamics of the model
- What the system does, rather than how the system does
- Have explicit representations of the laws governing the economic system
-Can be analysed analytically

ABMs

- Some economists are getting interested in modeling an economic system in terms of its components
- The agents that operate in it: firms, households, banks...
- The modeller does specify explicitly the laws governing the model.
- It describes explicitly
- The behaviour of every agent
- The interactions among the agents
- The laws governing the model then emerge from these behaviours and interactions
" These types of models are often denoted as ABMs.
- These are typically too difficult to be solved analytically
- We need to do simulations
- My message: we need to do simulations well!
- A variant of model checking, statistical model checking, can help on this

What is SMC?

The Model Checking problems

- Model Checking (MC):
- To decide whether a non-deterministic model satisfies a temporal logic property
- Probabilistic MC (PMC):
- To decide whether a stochastic model satisfies a temporal logic property with a probability greater than a certain threshold
- Statistical MC (SMC):
- Simulation-based technique to statistically approximate the PMC problem
- Only requires independent and identically distributed samplings (simulations)
- Highly parallelizable
- Many tools supporting it. E.g.
' MultiVeStA, PRISM, UPPAAL, APMC, COSMOS, YMER, SAM, BIP,(P)VeStA...
- Two main approaches: Probability estimation VS Hypothesis testing
- Probability estimation \rightarrow Real-valued property estimation

‘Quality’ of Statistical Analysis on 55 ABM from Management \& Organisational Research

Adapted from Secchi, Seri, Computational and Mathematical Organization Theory, 2017

- The importance of designing well simulation-based analysis.
- Power analysis on 'are the expected outcomes of different configurations of parameters the same'?
- Power is $1-\mathrm{P}$ (Type II error)
- Roughly, P(test='outcomes are different' |outcomes are different)
" "The value that seems to be more commonly accepted is 80% "
" "We need to encourage researchers to be more precise in the determination of the number of runs"

Similar studies can be found also in other communities

A systematic review of statistical power in software engineering experiments

Tore Dybå ${ }^{\text {a,b,* }}$, Vigdis By Kampenes ${ }^{\text {a }}$, Dag I.K. Sjøberg ${ }^{\text {a }}$
${ }^{\text {a }}$ Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
${ }^{\mathrm{b}}$ SINTEF ICT, NO-7465 Trondheim, Norway

Received 11 May 2005; revised 24 August 2005; accepted 31 August 2005
Available online 3 November 2005

Abstract

Statistical power is an inherent part of empirical studies that employ significance testing and is essential for the planning of studies, for the interpretation of study results, and for the validity of study conclusions. This paper reports a quantitative assessment of the statistical power of empirical software engineering research based on the 103 papers on controlled experiments (of a total of 5,453 papers) published in nine major software engineering journals and three conference proceedings in the decade 1993-2002. The results show that the statistical power of software engineering experiments falls substantially below accepted norms as well as the levels found in the related discipline of information systems research. Given this study's findings, additional attention must be directed to the adequacy of sample sizes and research designs to ensure acceptable levels of statistical power. Furthermore, the current reporting of significance tests should be enhanced by also reporting effect sizes and confidence intervals.

The Class in 3 Slides: Statistically Meaningful Counterfactual Analysis

97.5\% Cl MultiVeStA
'Right' number of simulations

Welch's t-test

Power of the test
P(Test=0 | Real=0)

The Class in 3 Slides: Steady-State Analysis: Market Selection

Arbitrary choice of

- Number of sims
- Warmup period

Time horizon
from [Kets et al2014]

Automated choice of

- Number of sims
- Warmup period
- Time horizon

MultiVeStA
Same as analytical solution from [Bottazzi,Giachini2019]

Does the market price match π^{*} ?

The Class in 3 Slides: a Methodology for Ergodicity Diagnostics

Our Proposed Approach to Simulation-Based Analysis

newstalkzb.co.nz/news/education/modern-lego-sets-more-complex-less-inspiring/

Our Proposed Approach to Simulation-Based Analysis

newstalkzb.co.nz/news/education/modern-lego-sets-more-complex-less-inspiring/
https://www.alamy.com/

Handcrafted

, Mainly manual process

- Time-consuming
- Problems with replicability
, Error-prone
- Modify model, interpret CSV

Ad-hoc implementations

- Reliability? Efficiency?

Our Proposed Approach to Simulation-Based Analysis

newstalkzb.co.nz/news/education/modern-lego-sets-more-complex-less-inspiring/
https://www.alamy.com/

Handcrafted

- Mainly manual process
- Time-consuming
- Problems with replicability
- Error-prone
- Modify model, interpret CSV
- Ad-hoc implementations

Reliability? Efficiency?

MultiVeStA: SMC For Discrete-Event Simulators

Would you like to join the MultiVeStA family?

- Projects available
- As an exam for this course
- As starting points for Master projects?
- As starting points for longer collaborations!?

RisQFLan - Security

Matlab Simulink

NetLogo multi-agent modeling
 Homophlily
STEP

Mesa: ABM in Python millions of students/teachers/researchers

Maude - rewriting logic

1. Motivation, vision, and proposal
2. Automated analysis with statistical guarantees for ABMs
3. The MultiVeStA Statistical Model Checker
4. Transient Analysis of a large-scale financial macro ABM
5. Estimation of expected outcome and Confidence Interval
6. Counterfactual analysis for different model configurations
7. Steady-state analysis of a prediction market model
8. Steady-state analysis by Replication and Deletion (RD)
9. Warmup estimation
10. Steady-state analysis by Batch Means (BM)
11. A methodology for ergodicity analysis based on RD and BM
12. Conclusions \& Future works

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

Fig. 1. Flow diagram of the model. Arrows point from paying sectors to receiving sectors.

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA
Evolution of bankruptcies

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

```
y 1
```


Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
" Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.
Side product: any model implemented in JMAB is now natively integrated with MultiVeStA
$\begin{array}{llll}y_{1,1} & y_{1,2} & \ldots & y_{1,400}\end{array}$

$$
\begin{array}{llll}
y_{2,1} & y_{2,2} & \ldots & y_{2,400}
\end{array}
$$

$\vdots \quad \vdots \quad \vdots \quad \vdots$
$\begin{array}{llll}y_{n, 1} & y_{n, 2} & \ldots & y_{n, 400}\end{array}$

Evolution of bankruptcies

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents

Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.
Side product: any model implemented in JMAB is now nativelv intearated with MultiVeStA

Evouti Does This Remind You Anything?

$y_{1,1}$	$y_{1,2}$	\ldots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\ldots	$y_{2,400}$
\vdots	\vdots	\vdots	\vdots
$y_{n, 1}$	$y_{n, 2}$	\cdots	$y_{n, 400}$
n	$y_{i, 2}$		
$\sum_{i=1}^{n}$	$\bar{Y}_{2} \approx E\left[Y_{2}\right]$		

Linear Temporal Logic (LTL)

LTLSF3.1-2

$$
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

where $a \in A P$
$\mathrm{O} \widehat{=} \mathrm{next}$
$\mathbf{U} \hat{=}$ until
atomic proposition $a \in A P$

next operator

until operator $a \mathrm{U} b$

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now nativelv integrated with MultiVeStA

Does This Remind You Anything?

Interpretation of LTL formulas over TS
given: $\quad \mathrm{TS} \mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$
without terminal states
LTL formula φ over $\boldsymbol{A P}$
$\mathcal{T} \models \varphi$ iff $s_{0} \models \varphi$ for all $s_{0} \in S_{0}$
iff $\operatorname{trace}(\pi) \models \varphi$ for all $\pi \in \operatorname{Paths}(\mathcal{T})$
iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$
iff $\mathcal{T} \vDash \operatorname{Words}(\varphi)$
\uparrow
satisfaction relation for LT properties

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
" Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.
Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

y_{1}	y_{2}	\ldots	y_{4}
$y_{2,1}$	$y_{2,2}$	\cdots	$y_{2,400}$
\vdots	\vdots	\vdots	\vdots
$y_{n, 1}$	$y_{n, 2}$	\cdots	$y_{n, 400}$
$\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=$	$\bar{Y}_{2} \approx E\left[Y_{2}\right]$		

What is the correct value of n ?

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
" Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.
Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

y_{1}	y_{2}	\ldots	y_{4}
$y_{2,1}$	$y_{2,2}$	\cdots	$y_{2,400}$
\vdots	\vdots	\vdots	\vdots
$y_{n, 1}$	$y_{n, 2}$	\cdots	$y_{n, 400}$
$\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=$	$\bar{Y}_{2} \approx E\left[Y_{2}\right]$		

What is the correct value of \mathbf{n} ?

Typical answer: 100

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

$y_{1,1}$	$y_{1,2}$	\cdots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\cdots	$y_{2,400}$
\vdots	\vdots	\vdots	\vdots
$y_{n, 1}$	$y_{n, 2}$	\cdots	$y_{n, 400}$
$\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=$	$\bar{Y}_{2} \approx E\left[Y_{2}\right]$		

Our answer:
What is the correct value of n ? The question itself is ill-posed
Typical answer: 100
Each property and time step might require a different \mathbf{n}

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

$$
\bar{Y}_{t} \pm \mathbf{t}_{n-1,1-\frac{\alpha}{2}} \cdot \sqrt{\frac{s_{t}^{2}}{n}}
$$

$y_{1,1}$	$y_{1,2}$	\ldots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\ldots	$y_{2,400}$

Our answer:
What is the correct value of n ? The question itself is ill-posed
Typical answer: 100
Each property and time step might require a different n

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

$$
\bar{Y}_{t} \pm \mathbf{t}_{n-1,1-\frac{\alpha}{2}} \cdot \sqrt{\frac{s_{t}^{2}}{n}}
$$

$y_{1,1}$	$y_{1,2}$	\ldots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\ldots	$y_{2,400}$

$$
\begin{array}{c:c:cc}
\vdots & \vdots & \vdots & \vdots \\
\cline { 1 - 2 } & y_{n, 2} & \ldots & y_{n, 400}
\end{array}
$$

$$
\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=\bar{Y}_{2} \approx E\left[Y_{2}\right]
$$

What is the correct value of \mathbf{n} ?
Typical answer: 100

Confidence Intervals width

Our answer:
The question itself is ill-posed
Each property and time step might require a different \mathbf{n}

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

$$
\bar{Y}_{t} \pm \mathbf{t}_{n-1,1-\frac{\alpha}{2}} \cdot \sqrt{\frac{s_{t}^{2}}{n}}
$$

$y_{1,1}$	$y_{1,2}$	\ldots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\ldots	$y_{2,400}$

\vdots	\vdots	\vdots
$\vdots y_{n, 1}$	$y_{n, 2}$	\ldots
$\sum_{n, 400}$		
$\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=\bar{Y}_{2} \approx E\left[Y_{2}\right]$		

What is the correct value of n ? Typical answer: 100

Intermediate Cls width by MultiVeStA

- Required $\delta \leq 0.5$ - Cl with 42 sims - Cl with 84 sims - Cl with 126 sims - CI with 168 sims - Cl with 210 sims - CI with 252 sims - CI with 294 sims Cl with 336 sims - CI with 378 sims

Our answer:
The question itself is ill-posed
Each property and time step might require a different n

Transient Analysis by autolR: Large Macro ABM

Large-scale macro financial ABM from Caiani et al, JEDC, 2016

- An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

$$
\bar{Y}_{t} \pm \mathbf{t}_{n-1,1-\frac{\alpha}{2}} \cdot \sqrt{\frac{s_{t}^{2}}{n}}
$$

$y_{1,1}$	$y_{1,2}$	\ldots	$y_{1,400}$
$y_{2,1}$	$y_{2,2}$	\ldots	$y_{2,400}$

\vdots	\vdots	\vdots	\vdots
$y_{n, 1}$	$y_{n, 2}$	\ldots	$y_{n, 400}$

$$
\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=\bar{Y}_{2} \approx E\left[Y_{2}\right]
$$

What is the correct value of n ?

Typical answer: 100

More simulations required here We save a lot of time halting the last simulations to 150 steps

Confidence Intervals width
MultiVeStA VS by 100 sims

2.00

- Required $\delta \leq 0.5$ - Cl with 42 sims - CI with 84 sims - CI with 126 sims CI with 168 sims - Cl with 210 sims - CI with 252 sims CI with 294 sims - CI with 336 sims CI with 378 sims

Our answer:

The question itself is ill-posed

Each property and time step might require a different \mathbf{n}

Transient Analysis by autolR: Large Macro ABM

Statistically Meaningful Counterfactual Analysis

97.5\% CI 100 Simulations

(a) CIs width for $\alpha=0.025$ and $N=100$ simulations

Statistically Meaningful Counterfactual Analysis

97.5\% Cl 100 Simulations

$97.5 \% \mathrm{Cl}$ MultiVeStA
$\delta=0.5$

Statistically Meaningful Counterfactual Analysis

$97.5 \% \mathrm{Cl}$ 100 Simulations

Welch's t-test with significance $\alpha=2.5 \%$
[Welch1947]

(a) CIs width for $\alpha=0.025$ and $N=100$ simulations

(c) T-test are means in (a) point-wise equal for significance $\alpha=0.025$

(b) CIs width for $\alpha=0.025$ and $\delta=0.5$

(d) T-test are means in (b) point-wise equal for significance $\alpha=0.025$
97.5\% CI MultiVeStA
$\delta=0.5$

Welch's t-test with significance $\alpha=2.5 \%$
[Welch1947]

Statistically Meaningful Counterfactual Analysis

$97.5 \% \mathrm{Cl}$ 100 Simulations

Welch's t-test with significance $\alpha=2.5 \%$
[Welch1947]

Power of the test P(Test=0 | Real=0) 1 - P(Type II error) [Chow2002]

(a) CIs width for $\alpha=0.025$ and $N=100$ simulations

(c) T-test are means in (a) point-wise equal for significance $\alpha=0.025$

(e) Power of t-test in (c) for difference $\varepsilon=0.5$

(b) CIs width for $\alpha=0.025$ and $\delta=0.5$

(d) T-test are means in (b) point-wise equal for significance $\alpha=0.025$

(f) Power of t-test in (d) for difference $\varepsilon=0.5$
97.5\% CI MultiVeStA
$\delta=0.5$

Welch's t-test with significance $\alpha=2.5 \%$
[Welch1947]

Power of the test P(Test=0 | Real=0) 1 - P(Type II error) [Chow2002]

Width of the Confidence Intervals and T-Test Power

Power of the test P(Test=0 | Real=0) 1 - P(Type II error) [Chow2002]

Confidence Intervals width
MultiVeStA VS by 100 sims

(e) Power of t-test in (c) for difference $\varepsilon=0.5$

(f) Power of t-test in (d) for difference $\varepsilon=0.5$

Power of the test P(Test=0 | Real=0) 1 - P(Type II error) [Chow2002]

Transient Analysis by autolR: How To Do It in MultiVeStA?

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank

- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

A query to study the evolution of bankruptcies

```
obsAtStep(t,obs) = if (s.eval("steps") == t)
                        then s.eval(obs)
    else next(obsAtStep(t,obs))
    fi ;
eval autoIR(E[ obsAtStep(t,"bankruptcy") ],


\section*{Transient Analysis by autolR: How To Do It in MultiVeStA?}

Large-scale macro financial ABM from Caiani et al, JEDC, 2016
' An economy with households, consumption/capital firms, commercial banks, government, central bank
- Thousands of agents
- Implemented in JMAB: Java framework for macro stock-flow consistent ABM models.

Side product: any model implemented in JMAB is now natively integrated with MultiVeStA

A query to study the evolution of bankruptcies and unemployment rate

\[
\delta=0.005
\]

\[
\delta=0.5
\]


\section*{Does This Remind You Anything?}

Evolution of bankruptcies


Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathbf{U} \varphi_{2}
\]
\[
\text { where } a \in A P \quad \bigcirc \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \cup b\)


\section*{Does This Remind You Anything?}

Evolution of bankruptcies

\(y_{1}\)

Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
\]
\[
\text { where } a \in A P \quad \bigcirc \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \cup b\)


\section*{Does This Remind You Anything?}

Evolution of bankruptcies

\(y_{1} y_{2}\)

Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathbf{U} \varphi_{2}
\]
\[
\text { where } a \in A P \quad \bigcirc \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \cup b\)


\section*{Does This Remind You Anything?}

Evolution of bankruptcies


Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
\]
\[
\text { where } a \in A P \quad \bigcirc \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \mathrm{U} b\)


\section*{Does This Remind You Anything?}

Evolution of bankruptcies

\begin{tabular}{|llll}
\(y_{1,1}\) & \(y_{1,2}\) & \(\ldots\) & \(y_{1,400}\) \\
\hline\(y_{2,1}\) & \(y_{2,2}\) & \(\ldots\) & \(y_{2,400}\)
\end{tabular}
\begin{tabular}{cccc}
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(y_{n, 1}\) & \(y_{n, 2}\) & \(\ldots\) & \(y_{n, 400}\)
\end{tabular}

Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathbb{U} \varphi_{2}
\]
\[
\text { where } a \in A P \quad O \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \mathrm{U} b\)


\section*{Does This Remind You Anything?}

Evolution of bankruptcies

\begin{tabular}{|c:c:cc}
\hline\(y_{1,1}\) & \(y_{1,2}\) & \(\ldots\) & \(y_{1,400}\) \\
\hdashline\(y_{2,1}\) & \(y_{2,2}\) & \(\ldots\) & \(y_{2,400}\)
\end{tabular}
\[
y_{n, 1} y_{n, 2} \ldots y_{n, 400}
\]
\[
\sum_{i=1}^{n} \frac{y_{i, 2}}{n}=\bar{Y}_{2} \approx E\left[Y_{2}\right]
\]

Linear Temporal Logic (LTL)
LTLSF3.1-2
\[
\varphi::=\text { true } \mid \text { a }\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
\]
\[
\text { where } a \in A P \quad \bigcirc \hat{=} \text { next } \quad \mathbf{U} \hat{=} \text { until }
\]
atomic
proposition
\(a \in A P\)

next operator


until operator \(a \cup b\)

1. Motivation, vision, and proposal
1. Automated analysis with statistical guarantees for \(A B M\) s
2. The MultiVeStA Statistical Model Checker
2. Transient Analysis of a large-scale financial macro ABM
1. Estimation of expected outcome and Confidence Interval
2. Counterfactual analysis for different model configurations
3. Steady-state analysis of a prediction market model
1. Steady-state analysis by Replication and Deletion (RD)
2. Warmup estimation
3. Steady-state analysis by Batch Means (BM)
4. A methodology for ergodicity analysis based on RD and BM
4. Conclusions \& Future works

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly

Agents wealth at steady state


\section*{Steady-State Analysis by autoRD: Market Selection}

\section*{Simple repeated betting market from Kets et al, AAAI 2014}

1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly
\begin{tabular}{llll}
\(y_{1,1}\) & \(y_{1,2}\) & \(\ldots\) & \(y_{1, m}\)
\end{tabular}
\begin{tabular}{llll}
\(y_{2,1}\) & \(y_{2,2}\) & \(\ldots\) & \(y_{2, m}\)
\end{tabular}
\begin{tabular}{cccc}
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(y_{n, 1}\) & \(y_{n, 2}\) & \(\ldots\) & \(y_{n, m}\)
\end{tabular}

Agents wealth at steady state


\section*{Steady-State Analysis by autoRD: Market Selection}


\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


What are the correct values for \(\mathbf{w}, \mathrm{m}, \mathrm{n}\) ?

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly

\[
\sum_{i=1}^{n} \frac{\bar{Y}_{i}(W)}{n}=\bar{Y}(w) \approx E[Y]=\lim _{t \rightarrow \infty} E\left[Y_{t}\right]
\]

Replication and deletion (RD), [Law,Kelton2015]
What are the correct values for \(w, m, n\) ?

\section*{THESE ARE DIFFICULT QUESTIONS ARE THEY CRUCIAL?}

\section*{YES}

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly


Replication and deletion (RD), [Law,Kelton2015]
What are the correct values for \(w, m, n\) ?
THESE ARE DIFFICULT QUESTIONS ARE THEY CRUCIAL?

YES

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly

\[
\sum_{i=1}^{n} \frac{\bar{Y}_{i}(w)}{n}=\bar{Y}(w) \approx E[Y]=\lim _{t \rightarrow \infty} E\left[Y_{t}\right]
\]

Replication and deletion
What are the correct values for \(w, m, n\) ?

\section*{THESE ARE DIFFICULT QUESTIONS ARE THEY CRUCIAL?}

YES

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly

\[
\sum_{i=1}^{n} \frac{\bar{Y}_{i}(w)}{n}=\bar{Y}(w) \approx E[Y]=\lim _{t \rightarrow \infty} E\left[Y_{t}\right]
\]

Wrong Cl on wrong \(w, m, n\) from [Kets et al AAAI2014]


Correct Cl on wrong \(\mathrm{w}, \mathrm{m}, \mathrm{n}\) from [Kets et al AAAI2014]

Replication and deletion
What are the correct values for \(\mathbf{w}, \mathrm{m}, \mathrm{n}\) ?

\section*{THESE ARE DIFFICULT QUESTIONS ARE THEY CRUCIAL? \\ YES}

\section*{Steady-State Analysis by autoRD: Market Selection}

Simple repeated betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors with a belief on \(\pi^{*}\) and place bets accordingly

\[
\sum_{i=1}^{n} \frac{\bar{Y}_{i}(w)}{n}=\bar{Y}(w) \approx E[Y]=\lim _{t \rightarrow \infty} E\left[Y_{t}\right]
\]

Replication and deletion
What are the correct values for \(\mathbf{w}, \mathrm{m}, \mathrm{n}\) ?

\section*{THESE ARE DIFFICULT OUESTIONS ARE THEY CRUCIAL? \\ YES}

Wrong Cl on wrong w, m, \(n\) from [Kets et al AAAI2014]



Does the market price match \(\pi^{*}\) ?

Correct Cl on wrong w, m, n from [Kets et al AAAI2014]

Correct by MultiVeStA Same as analytical solution from [Bottazzi, Giachini, Quantitative Finance 2019]
1. Motivation, vision, and proposal
1. Automated analysis with statistical guarantees for ABMs
2. The MultiVeStA Statistical Model Checker
2. Transient Analysis of a large-scale financial macro ABM
1. Estimation of expected outcome and Confidence Interval
2. Counterfactual analysis for different model configurations
3. Steady-state analysis of a prediction market model
1. Steady-state analysis by Replication and Deletion (RD)
2. Warmup estimation
3. Steady-state analysis by Batch Means (BM)
4. A methodology for ergodicity analysis based on RD and BM
4. Conclusions \& Future works

\section*{Warmup Estimation in the ABM Community}


\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3.
4.1.
4.2 .
\[
\sum_{i=1}^{n} \frac{y_{i, t}}{n}=\bar{Y}_{t}
\]

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points 4.1
4.2.


Example from a reference book on simulation [Law,Kelton2015]

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge 4.2.


Example from a reference book on simulation [Law,Kelton2015]

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations


Example from a reference book on simulation [Law,Kelton2015]

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

No statistical guarantees
Not automatic:
- Depends on chosen parameters
- Decision is human-made


Example from a reference book on simulation [Law,Kelton2015]

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

No statistical guarantees
Not automatic:
- Depends on chosen parameters
- Decision is human-made

A more recent approach by the ABM community [Grazzini2012]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(y_{1,1} \ldots y_{1, b}\) & \(\ldots y_{1,2 b}\) & \(\cdots\) & \(\cdots y_{1, n b}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
1. Do 1 long simulation of a given large length \(m\) \\
2. Divide it in a given number wi of windows of consecutive steps
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & 5. & \\
\hline
\end{tabular}

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

No statistical guarantees
Not automatic:
- Depends on chosen parameters
- Decision is human-made

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4.
5.

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

\section*{No statistical guarantees}

\section*{Not automatic:}
- Depends on chosen parameters
- Decision is human-made

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4. Perform a randomness test on the computed means
5.

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

\section*{No statistical guarantees}

\section*{Not automatic:}
- Depends on chosen parameters
- Decision is human-made

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4. Perform a randomness test on the computed means
5. If the test passes, then the transient is completed

\section*{Warmup Estimation in the ABM Community}

Typical approach used in the ABM community
Based on Welch's graphical method [Welch1983]
1. Do \(n\) simulations of a given large length \(m\)
2. Compute \(\bar{Y}_{t}\) for each \(t \in[1, m]\)
3. Plot all \(\bar{Y}_{t}\) Can smooth by averaging with a window of neighbour time points
4.1. Choose the time point \(w\) after which the plot seems to converge
4.2. If no such point exists, go back to point 1 and compute \(n\) new simulations

\section*{No statistical guarantees}

\section*{Not automatic:}
- Depends on chosen parameters
- Decision is human-made

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4. Perform a randomness test on the computed means
5. If the test passes, then the transient is completed

Has statistical guarantees

\section*{Not automatic:}
- "with appropriate settings the tests can detect non-stationarity"
- Decision depends on chosen parameters

\section*{Warmup Estimation in the ABM Community}

This is a rediscovery of part of the Batch Means (BM) method
First proposal in [Conway1963]
First automatic version in [Law,Carson1979]
Approach for steady state analysis
- Alternative to Replication and Deletion based on 1 long simulation

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4. Perform a randomness test on the computed means
5. If the test passes, then the transient is completed

Has statistical guarantees

\section*{Not automatic:}
- "with appropriate settings the tests can detect non-stationarity"
- Decision depends on chosen parameters

\section*{Warmup Estimation in the ABM Community}

This is a rediscovery of part of the Batch Means (BM) method
First proposal in [Conway1963]
First automatic version in [Law,Carson1979]
Approach for steady state analysis
- Alternative to Replication and Deletion based on 1 long simulation

Our automated warmup estimation procedure builds on BM-related results We also propose a simple novel version of BM for steady-state analysis Based on [Law,Carson1979] [Steiger et al 2005] [Tafazzoli et al 2011] [Gilmore et al 2017]

A more recent approach by the ABM community [Grazzini2012]

1. Do 1 long simulation of a given large length \(m\)
2. Divide it in a given number wi of windows of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each window
4. Perform a randomness test on the computed means
5. If the test passes, then the transient is completed

Has statistical guarantees

\section*{Not automatic:}
- "with appropriate settings the tests can detect non-stationarity"
- Decision depends on chosen parameters

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}
1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}
\[
\begin{aligned}
& 0 \text {. Set } m=B^{*} b \text {, } \\
& B=128 \text { is the number of simulation batches } \\
& b=16 \text { is the number of steps in each batch }
\end{aligned}
\]
1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}
1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}

1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}
1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough

Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means
5.1 If all tests pass, we conclude that the warmup has ended

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}

1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough

Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means
5.1 If all tests pass, we conclude that the warmup has ended
5.2 If one test fails

Double \(b\) squeezing the batches in the first \(B / 2\) ones
Double \(m\) by performing \(m\) new simulation steps
Go back to step 3

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}

1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough

Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means
5.1 If all tests pass, we conclude that the warmup has ended
5.2 If one test fails

Double \(b\) squeezing the batches in the first \(B / 2\) ones
Double \(m\) by performing \(m\) new simulation steps
Go back to step 3

\section*{Warmup Estimation by autoWarmup: our Automated Proposal}

1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough

Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means
5.1 If all tests pass, we conclude that the warmup has ended
5.2 If one test fails

Double \(b\) squeezing the batches in the first \(B / 2\) ones Double \(m\) by performing \(m\) new simulation steps Go back to step 3

\section*{Steady State Analysis by autoBM: our BM-Based Proposal}
1. Do 1 long simulation of length \(m\)
2. Divide it in \(B\) batches of consecutive steps
3. Compute the mean \(\bar{B}_{i}\) within each batch
4. Perform statistical tests to check if \(m\) is large enough

Discard the first 4 batches
Perform a normality test on the computed means
Check for low lag-1 autocorrelation on the means
5.1 If all tests pass, we conclude that the warmup has ended

Compute the grand mean (mean of the means)
Compute the width \(d\) of the Cl of grand mean
Adjust \(d\) according to the residual correlation in the means
5.2 If one test fails

Double \(b\) squeezing the batches in the first \(B / 2\) ones
Double \(m\) by performing \(m\) new simulation steps
Go back to step 3

\section*{Steady-State Analysis: How To Do It in MultiVeStA?}

Simple repetitive betting market from Kets et al, AAAI 2014
1 event realises at every step with a fixed probability \(\pi^{*}\)
3 Fractional Kelly bettors. Have a belief on \(\pi^{*}\) and place bets accordingly

A query to study the wealth of each agent and the market price at steady-state
```

obs(o) = s.eval(o) ;
//Only one of the three commands below should be used
eval warmup(E[obs(0)],E[obs(1)],E[obs(2)],E[obs("price")]) ;
eval autoBM(E[obs(0)],E[obs(1)],E[obs(2)],E[obs("price")]) ;
eval autoRD(E[obs(0)],E[obs(1)],E[obs(2)],E[obs("price")]) ;

```

1. Motivation, vision, and proposal
1. Automated analysis with statistical guarantees for \(A B M\) s
2. The MultiVeStA Statistical Model Checker
2. Transient Analysis of a large-scale financial macro ABM
1. Estimation of expected outcome and Confidence Interval
2. Counterfactual analysis for different model configurations
3. Steady-state analysis of a prediction market model
1. Steady-state analysis by Replication and Deletion (RD)
2. Warmup estimation
3. Steady-state analysis by Batch Means (BM)
4. A methodology for ergodicity analysis based on RD and BM
4. Conclusions \& Future works

\section*{A Methodology for Ergodicity Diagnostics}

1. Motivation, vision, and proposal
1. Automated analysis with statistical guarantees for ABMs
2. The MultiVeStA Statistical Model Checker
2. Transient Analysis of a large-scale financial macro ABM
1. Estimation of expected outcome and Confidence Interval
2. Statistical comparison of different model configurations
3. Steady-state analysis of a prediction market model
1. Steady-state analysis by Replication and Deletion (RD)
2. Warmup estimation
3. Steady-state analysis by Batch Means (BM)
4. A methodology for ergodicity analysis based on RD and BM
4. Conclusions \& Future works

\section*{CONCLUSIONS}
- Fully automated framework for statistical analysis of ABMs
- Transient analysis with statistical tests to compare model configurations
- Warmup estimation
- Steady-state analysis by Replication and Deletion and by Batch Means
- Ergodicity diagnostics
- Tool-supported one-click analysis:
- Less manual error-prone tasks => more reproducibility \& reliability
- Automatically parallelise simulations: 15 days => 15 hours
- Implemented in the statistical analyser MultiVeStA
- Supports simulators written in Java, Python, R, C++, JMAB, NetLogo
- Validated on two models from the literature:
- Large-scale macro financial ABM, Small-scale prediction market model
- We obtained new insights on the considered models
- We avoid analysis errors from previous publications
- Our approach is rooted in results from:
- Communities of Simulation, Computer Science, Operations Research
- We aim at strengthening the cross-fertilisation of these communities with the ABM one

\section*{FUTURE WORK}
- Add more techniques
- Detection of multiple stationary points
- Advanced SMC techniques to
- Handle rare events, Reduce number of simulations required
- More!? Model calibration, Sensitivity analysis, ...
- Apply the approach to further models and domains
- Any JMAB model is now natively supported
- We have integrated a 'classic' ABM model, Islands model [FagioloDosi2003]
- We wish to natively support further frameworks for ABM modelling - LSD, JASMINE, Mesa, ...
- Would you like to use MultiVeStA to analyse your models?
- Just contact us andrea.vandin@santannapisa.it
- Interested in projects related to MultiVeStA?
- Just contact us! andrea.vandin@santannapisa.it

\section*{REFERENCES}
[Secchi,Seri2017] Secchi, D. and R. Seri (2017). Controlling for false negatives in agent-based models: a review of power analysis in organizational research. Computational and Mathematical Organization Theory 23(1), 94-121.
[Caiani et al2016] Caiani, A., A. Godin, E. Caverzasi, M. Gallegati, S. Kinsella, and J. E. Stiglitz (2016). Agent based-stock flow consistent macroeconomics: Towards a benchmark model. Journal of Economic Dynamics and Control 69, 375-408
[Welch1947] Welch, B. L. (1947). The generalization ofstudent's' problem when several different population variances are involved. Biometrika 34(1/2), 28-35.
[Chow2002] Chow, S.-C., J. Shao, and H. Wang (2002). A note on sample size calculation for mean comparisons based on noncentral tstatistics. Journal of biopharmaceutical statistics 12(4), 441-456.
[Law,Kelton2015] Law, A. M. and D. M. Kelton (2015). Simulation Modeling and Analysis (5th ed.). McGraw-Hill Higher Education, http:// www.averill-law.com/simulation-book/
[Kets et al2014] Kets, W., D. M. Pennock, R. Sethi, and N. Shah (2014). Betting strategies, market selection, and the wisdom of crowds. In Twenty-Eighth AAAI Conference on Artificial Intelligence.
[Bottazzi,Giachini2019] Bottazzi, G. and D. Giachini (2019b). Far from the madding crowd: Collective wisdom in prediction markets. Quantitative Finance 19(9), 1461-1471
[Conway1963] Conway, R. W. (1963). Some tactical problems in digital simulation. Management Science 10(1), 47-61.
[Law,Carson1979] Law, A. M. and J. S. Carson (1979). A sequential procedure for determining the length of a steady-state simulation. Operations Research 27(5), 1011-1025.
[Steiger et al 2005] Steiger, N. M., E. K. Lada, J. R. Wilson, J. A. Joines, C. Alexopoulos, and D. Goldsman (2005). Asap3: A batch means procedure for steady-state simulation analysis. ACM Transactions on Modeling and Computer Simulation (TOMACS) 15(1), 39-73.
[Tafazzoli et al 2011] Tafazzoli, A., J. R. Wilson, E. K. Lada, and N. M. Steiger (2011). Performance of skart: A skewness-and autoregressionadjusted batch means procedure for simulation analysis. INFORMS Journal on Computing 23(2), 297-314.
[Gilmore et al 2017] Gilmore, S., D. Reijsbergen, and A. Vandin (2017). Transient and steady-state statistical analysis for discrete event simulators. In Integrated Formal Methods - 13th International Conference, IFM 2017, Proceedings, pp. 145-160.

\section*{Would you like to join the MultiVeStA family?}
- Projects available
- As an exam for this course
- As starting points for Master projects?
- As starting points for longer collaborations!?


RisQFLan - Security


Matlab Simulink


NetLogo multi-agent modeling
 Homophlily
STEP


Mesa: ABM in Python millions of students/teachers/researchers


Maude - rewriting logic

\title{
THANK YOU FOR YOUR ATTENTION!
}

\section*{QUESTIONS? FEEDBACK?}

\author{
JEDC Paper
}
https://www.sciencedirect.com/science/article/abs/pii/S0165188922001634
Tool and models available at:
https://bit.ly/MultiVeStATool```

