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OUTLINE

1. Motivation, vision, and proposal 
1. Automated analysis with statistical guarantees for ABMs 
2. The MultiVeStA Statistical Model Checker 

2. Transient Analysis of a large-scale financial macro ABM 
1. Estimation of expected outcome and Confidence Interval 
2. Counterfactual analysis for different model configurations 

3. Steady-state analysis of a prediction market model 
1. Steady-state analysis by Replication and Deletion (RD) 
2. Warmup estimation 
3. Steady-state analysis by Batch Means (BM) 
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What is an Economic Agent-Based Model?
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NON ABMs 
‣ ‘Mainstream economists’ tend to reason in terms of models that  

‣ Are given as a unique monolithic model  
‣ Do not have focus on their single components, but on the overall dynamics of the model 
‣ What the system does, rather than how the system does 

‣ Have explicit representations of the laws governing the economic system 
‣ Can be analysed analytically 

ABMs 
‣ Some economists are getting interested in modeling an economic system in terms of its components 

‣ The agents that operate in it: firms, households, banks… 
‣ The modeller does specify explicitly the laws governing the model.  
‣ It describes explicitly 

‣ The behaviour of every agent 
‣ The interactions among the agents 
‣ The laws governing the model then emerge from these behaviours and interactions 

‣ These types of models are often denoted as ABMs.  
‣ These are typically too difficult to be solved analytically 
‣ We need to do simulations 

‣ My message: we need to do simulations well!  
‣ A variant of model checking, statistical model checking, can help on this

https://bit.ly/MultiVeStATool
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What is SMC?
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The Model Checking problems 
‣ Model Checking (MC): 

‣ To decide whether a non-deterministic model satisfies a temporal logic property 

‣ Probabilistic MC (PMC): 
‣ To decide whether a stochastic model satisfies a temporal logic property with a probability 

greater than a certain threshold 

‣ Statistical MC (SMC): 
‣ Simulation-based technique to statistically approximate the PMC problem 
‣ Only requires independent and identically distributed samplings (simulations) 

‣ Highly parallelizable 
‣ Many tools supporting it. E.g. 

‣ MultiVeStA, PRISM,  UPPAAL, APMC, COSMOS, YMER, SAM, BIP,(P)VeStA... 
‣ Two main approaches: Probability estimation VS Hypothesis testing 

‣ Probability estimation → Real-valued property estimation

https://bit.ly/MultiVeStATool
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‘Quality’ of Statistical Analysis on 55 ABM from Management & Organisational Research
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‣ The importance of designing well simulation-based analysis. 
‣ Power analysis on ‘are the expected outcomes of different configurations of parameters the same’? 

‣ Power is 1 - P(Type II error) 
‣ Roughly,  P(test=‘outcomes are different’ | outcomes are different)  
‣ “The value that seems to be more commonly accepted is 80%“ 

‣ “We need to encourage researchers to be more precise in the determination of the number of runs”

80%

Adapted from Secchi, Seri, Computational and Mathematical Organization Theory, 2017

https://bit.ly/MultiVeStATool
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Similar studies can be found also in other communities
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97.5% CI 
100 Simulations

97.5% CI 
MultiVeStA 

‘Right’ number of  
simulations

Welch’s t-test Welch’s t-test

Power of the test 
P(Test=0 | Real=0)

Power of the test 
P(Test=0 | Real=0)

The Class in 3 Slides: Statistically Meaningful Counterfactual Analysis
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The Class in 3 Slides: Steady-State Analysis: Market Selection

Agents wealth at steady state

Does the market  price match ?π*

Arbitrary choice of  
- Number of sims 
- Warmup period 
- Time horizon 
from [Kets et al2014]

Automated choice of  
- Number of sims 
- Warmup period 
- Time horizon 

MultiVeStA 
Same as analytical solution 
from [Bottazzi,Giachini2019]

https://bit.ly/MultiVeStATool
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The Class in 3 Slides: a Methodology for Ergodicity Diagnostics
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Our Proposed Approach to Simulation-Based Analysis

16
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Our Proposed Approach to Simulation-Based Analysis
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Handcrafted 
▸ Mainly manual process 
▸ Time-consuming 
▸ Problems with replicability 
▸ Error-prone 
▸ Modify model, interpret CSV 

▸ Ad-hoc implementations 
▸ Reliability? Efficiency?
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▸ Error-prone 
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▸ Ad-hoc implementations 
▸ Reliability? Efficiency?

Query

Statistical  

confidence 
Statistical Model Checking 

▸ Automatic 
▸ Time-saving and Reproducible 
▸ Promotes use of standard analysis 

▸ Reference implementation 
▸ Reliable and Efficient

, α δ
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Auto 
Batch Means

More to come

Plotter

CSV 
Generator

Visualizer
Auto 

Replication & 
Deletion

Auto Warmup 
Estimation

Post-processing Steady state Analyser
MultiVeStA Client

MultiQuaTEx
Compiler

Query Editor Further features

More to comeMore to come
Auto 

Transient 
Analysis

Transient Analyser

Ergodicity 
Diagnosis

Compare results
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Would you like to join the MultiVeStA family?
▸ Projects available 
▸ As an exam for this course 
▸ As starting points for Master projects? 
▸ As starting points for longer collaborations!?

20

RisQFLan - Security NetLogo multi-agent modeling 
millions of students/teachers/researchers

Mesa: ABM in Python

Matlab Simulink
Maude - rewriting logic More…
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Transient Analysis by autoIR: Large Macro ABM

22

Large-scale macro financial ABM from Caiani et al, JEDC, 2016 
‣ An economy with households, consumption/capital firms, commercial banks, government, central bank  
‣ Thousands of agents 
‣ Implemented in JMAB: Java framework for macro stock-flow consistent ABM models. 

‣ Side product: any model implemented in JMAB is now natively integrated with MultiVeStA
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- Decision depends on chosen parameters
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This is a rediscovery of part of the Batch Means (BM) method 
- First proposal in [Conway1963] 
- First automatic version in [Law,Carson1979]  
- Approach for steady state analysis  

- Alternative to Replication and Deletion based on 1 long simulation 

Our automated warmup estimation procedure builds on BM-related results 
- We also propose a simple novel version of BM for steady-state analysis 
- Based on [Law,Carson1979] [Steiger et al 2005] [Tafazzoli et al 2011] [Gilmore et al 2017]

1.    Do 1 long simulation of a given large length  
2.    Divide it in a given number wi of windows of consecutive steps 
3.    Compute the mean  within each window 
4.    Perform a randomness test on the computed means 
5.    If the test passes, then the transient is completed
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1.    Do 1 long simulation of length m 
2.    Divide it in B batches of consecutive steps 
3.    Compute the mean  within each batch 
4.    Perform statistical tests to check if m is large enough 

Discard the first 4 batches 
Perform a normality test on the computed means 
Check for low lag-1 autocorrelation on the means 

5.1  If all tests pass, we conclude that the warmup has ended 
Compute the grand mean (mean of the means) 
Compute the width d of the CI of grand mean  
Adjust d according to the residual correlation in the means 

5.2  If one test fails 
Double b squeezing the batches in the first B/2 ones 
Double m by performing m new simulation steps 
Go back to step 3

Bi

Warmup Estimation by autoWarmup: our Automated Proposal

38
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∑
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Bj

n − l
= B(l) ≈ E[Y ] = lim
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E[Yt](i)
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Steady-State Analysis: How To Do It in MultiVeStA?

40

A query to study the wealth of each agent and the market price at steady-state

Simple repetitive betting market from Kets et al, AAAI 2014 
‣ 1 event realises at every step with a fixed probability  
‣ 3 Fractional Kelly bettors. Have a belief on  and place bets accordingly

π*
π*
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A Methodology for Ergodicity Diagnostics
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OUTLINE

1. Motivation, vision, and proposal 
1. Automated analysis with statistical guarantees for ABMs 
2. The MultiVeStA Statistical Model Checker 

2. Transient Analysis of a large-scale financial macro ABM 
1. Estimation of expected outcome and Confidence Interval 
2. Statistical comparison of different model configurations 

3. Steady-state analysis of a prediction market model 
1. Steady-state analysis by Replication and Deletion (RD) 
2. Warmup estimation 
3. Steady-state analysis by Batch Means (BM) 
4. A methodology for ergodicity analysis based on RD and BM 

4. Conclusions & Future works

43

http://www.lem.sssup.it/WPLem/2020-31.html


https://bit.ly/MultiVeStAToolAndrea Vandin

CONCLUSIONS
▸ Fully automated framework for statistical analysis of ABMs 

▸ Transient analysis with statistical tests to compare model configurations 
▸ Warmup estimation 
▸ Steady-state analysis by Replication and Deletion and by Batch Means 
▸ Ergodicity diagnostics 

▸ Tool-supported one-click analysis: 
▸ Less manual error-prone tasks => more reproducibility & reliability 
▸ Automatically parallelise simulations: 15 days => 15 hours 
▸ Implemented in the statistical analyser MultiVeStA 

▸ Supports simulators written in Java, Python, R, C++, JMAB, NetLogo 
▸ Validated on two models from the literature:  

▸ Large-scale macro financial ABM, Small-scale prediction market model 
▸ We obtained new insights on the considered models 
▸ We avoid analysis errors from previous publications 

▸ Our approach is rooted in results from: 
▸ Communities of Simulation, Computer Science, Operations Research 
▸ We aim at strengthening the cross-fertilisation of these communities with the ABM one
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FUTURE WORK
▸ Add more techniques 
▸ Detection of multiple stationary points 
▸ Advanced SMC techniques to 
▸ Handle rare events, Reduce number of simulations required 

▸ More!? Model calibration, Sensitivity analysis, … 
▸ Apply the approach to further models and domains 
▸ Any JMAB model is now natively supported 
▸ We have integrated a ‘classic’ ABM model, Islands model [FagioloDosi2003] 
▸ We wish to natively support further frameworks for ABM modelling  
▸ LSD, JASMINE, Mesa, … 

▸ Would you like to use MultiVeStA to analyse your models? 
▸ Just contact us andrea.vandin@santannapisa.it 

▸ Interested in projects related to MultiVeStA? 
▸ Just contact us! andrea.vandin@santannapisa.it
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Would you like to join the MultiVeStA family?
▸ Projects available 
▸ As an exam for this course 
▸ As starting points for Master projects? 
▸ As starting points for longer collaborations!?
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