Software Validation and Verification Third Exercise Sheet – Regular Properties

Exercise 1

Consider the following transition system TS

and the regular safety property

$$P_{\text{safe}} =$$
 "always if *a* is valid and $b \land \neg c$ was valid somewhere before,
then neither *a* nor *b* holds thereafter at least until *c* holds"

As an example, it holds:

$$\{b\}\emptyset\{a, b\}\{a, b, c\} \in pref(P_{safe})$$

$$\{a, b\}\{a, b\}\emptyset\{b, c\} \in pref(P_{safe})$$

$$\{b\}\{a, c\}\{a\}\{a, b, c\} \in BadPref(P_{safe})$$

$$\{b\}\{a, c\}\{a, c\}\{a\} \in BadPref(P_{safe})$$

- **a)** Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- **b)** Decide whether $TS \models P_{\text{safe}}$ using the $TS \otimes A$ construction. Provide a counterexample if $TS \not\models P_{\text{safe}}$.

a) Give the language for the following three NBA:

b) Give an NBA for:

- "initially *a* occurs, and at some point *b* occurs" with $\Sigma = \{a, b, c\}$.
- "if *a* occurs somewhere, then afterwards (*b* occurs infinitely often iff *c* occurs infinitely often).

- **a)** Provide NBA A_1 and A_2 for the languages given by the expressions $(AC + B)^*B^{\omega}$ and $(B^*AC)^{\omega}$.
- **b)** Apply the product construction to obtain an GNBA \mathcal{G} and an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$. *Hint: Do not apply simplifications in these steps*
- c) Justify, why $\mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$ where \mathcal{G} denotes the GNBA accepting the intersection.

Formally prove that there is no DBA \mathcal{A} over the alphabet $\Sigma = \{a, b\}$ that accepts the language

 $\mathcal{L} := \mathcal{L}_{\omega}((a+b)^*.a^{\omega}).$

Let the ω -regular LT properties P_1 and P_2 over the set of atomic propositions AP = {a, b} be given by

 $P_1 :=$ "if *a* holds infinitely often, then *b* holds finitely often" $P_2 :=$ "*a* holds infinitely often and *b* holds infinitely often"

The model is given by the transition system TS as follows:

Algorithmically check whether $TS \models P_1$ and $TS \models P_2$. For this, proceed as follows.

- a) Derive suitable NBA A_{P1}, A_{P2}, where suitable means "appropriate for part b)-d)".
 Hint: For P1 you can find an automaton with 3 states and for P2 4 states suffice. Derive the automata directly.
- **b)** Outline the reachable fragments of the product transition systems $TS \otimes A_{P_1}$ and $TS \otimes A_{P_2}$.
- c) Decide whether $TS \models P_1$ by checking an appropriate persistence property via nested depth-first search on $TS \otimes A_{P_1}$. Document *all* changes to the contents of U, V, π and ξ (the state sets and stacks of the nested depth-first search, see lecture). If the property is violated, provide a counterexample *based on the execution of the algorithm*.
- **d)** Decide whether $TS \models P_2$ by checking an appropriate persistence property via SCC analysis on $TS \otimes A_{P_2}$. If the property is violated, provide a counterexample *based on your analysis*.