## Software Validation and Verification First Exercise Sheet

## Exercise 1

For this exercise we give the following definition:
Definition 1. Deterministic Transition System Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system.

1. TS is called action-deterministic if $|I| \leq 1$ and $|\operatorname{Post}(s, \alpha)| \leq 1$ for all states $s$ and actions $\alpha$.
2. $T S$ is called AP-deterministic if $|I| \leq 1$ and $\left|\operatorname{Post}(s) \cap\left\{s^{\prime} \in S \mid L\left(s^{\prime}\right)=A\right\}\right| \leq 1$ for all states $s$ and $A \in 2^{A P}$.

Consider the following the transition system $\mathrm{TS}_{1}$.

a) Give the formal definition of $\mathrm{TS}_{1}$.
b) Specify a finite and an infinite execution of $\mathrm{TS}_{1}$.
c) Decide whether $\mathrm{TS}_{1}$ is an $A P$-deterministic or an action-deterministic transition system. Justify your answer.

## Exercise 2

Consider the following mutual exclusion algorithm that uses the shared variables $y_{1}$ and $y_{2}$ (which are initially both 0 ):

```
Process P}\mp@subsup{P}{1}{}\mathrm{ :
while true do
    ... non-critical section ..
    y}:==\mp@subsup{y}{2}{}+
    wait until (y2=0)}\vee(\mp@subsup{y}{1}{}\leq\mp@subsup{y}{2}{}
        critical section ...
    y}:=
    ... non-critical section ...
od
Process P}\mp@subsup{P}{2}{}\mathrm{ :
while true do
    ... non-critical section ...
    y2:= y 
    wait until (y}=0)\sqrt{}{=
    ... critical section ...
    y2:=0
    ... non-critical section ...
od
```

Questions:
a) Give the program graph representation of both processes.
(A pictorial representation suffices)
b) Give the reachable part of the transition system of $P_{1} \| \mid P_{2}$ where $y_{1} \leq 2$ and $y_{2} \leq 2$.

## Exercise 3

The circuit $C_{1}$ describes the layout of a hardware adder that stores a 2-bit binary number represented by the registers $r_{0}$ and $r_{1}$. In each cycle, the value of $x$ is added to the currently stored value; $y$ is used as the carry bit:


Give the transition system representation $T S_{1}$ of the circuit $C_{1}$.

## Exercise 4

In the following, whenever transition systems are compared via $=$ or $\neq$, this means (in)equality up to renaming of states (i.e. isomorphism).
a) Show that, the handshaking $\|_{H}$ operator is not associative, i.e. that in general

$$
\left(\mathrm{TS}_{1} \|_{H} T S_{2}\right)\left\|_{H^{\prime}} \mathrm{TS}_{3} \neq \mathrm{TS}_{1}\right\|_{H}\left(\mathrm{TS}_{2} \|_{H^{\prime}} \mathrm{TS}_{3}\right)
$$

b) The handshaking operator $\|$ that forces transition systems to synchronize over their common actions is associative. Show that

$$
\underbrace{\left(T S_{1} \| \mathrm{TS}_{2}\right) \| \mathrm{TS}_{3}}_{L}=\underbrace{T \mathrm{~S}_{1} \|\left(\mathrm{TS}_{2} \| \mathrm{TS}_{3}\right)}_{R}
$$

where $\mathrm{TS}_{1}, \mathrm{TS}_{2}, \mathrm{TS}_{3}$ are arbitrary (finite) transition systems. To this end, show that the bijective function $f_{\approx}:\left(S_{1} \times S_{2}\right) \times S_{3} \rightarrow S_{1} \times\left(S_{2} \times S_{3}\right)$ given by $f_{\approx}\left(\left\langle\left\langle s_{1}, s_{2}\right\rangle, s_{3}\right\rangle\right)=\left\langle s_{1},\left\langle s_{2}, s_{3}\right\rangle\right\rangle$ preserves the transition relation in the sense that

$$
\begin{equation*}
I \xrightarrow{\alpha} L I^{\prime} \Longleftrightarrow f_{\approx}(I) \xrightarrow{\alpha} R f_{\approx}\left(I^{\prime}\right) \tag{1}
\end{equation*}
$$

where $I, I^{\prime} \in S_{L}, S_{L}$ is the state space of transition system $L$ and $\longrightarrow_{L}, \longrightarrow_{R}$ are the transition relations of $L$ and $R$, respectively.
Hint: When considering an action $\alpha$, you need only distinguish the cases
(i) $\alpha \in A c t_{1} \backslash\left(A c t_{2} \cup A c t_{3}\right)$
(ii) $\alpha \in\left(\mathrm{Act}_{1} \cap \mathrm{Act}_{2}\right) \backslash A c t_{3}$
(iii) $\alpha \in A c t_{1} \cap A c t_{2} \cap A c t_{3}$
( $A c t_{i}$ is the action set of $\mathrm{TS}_{i}$ ) as all other cases are symmetric. Also, for simplicity, it suffices to show the direction " $\Longrightarrow$ " of condition (1). However, keep in mind that $L$ and $R$ are not necessarily action-deterministic (see exercise sheet 1 ).

## Exercise 5

Consider the following leader election algorithm: For $n \in \mathbb{N}, n$ processes $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ are located in a ring topology where each process is connected by an unidirectional, asynchronous channel to its neighbour as outlined below.


To distinguish the processes, each process $i$ is assigned a unique identifier $\operatorname{id}\left(\mathcal{P}_{i}\right) \in\{1, \ldots, n\}$ that is written to private variable $i d_{j}$. The aim of the algorithm is to elect the process with the highest identifier as the (unique) leader within the ring. Therefore each process executes the following algorithm using another private variable $m_{i}$ (which is initially 0 ):

```
send(id}\mp@subsup{|}{i}{\prime}); // send own id to next process
while (true) do {
    receive ( }\mp@subsup{m}{i}{}\mathrm{ );
    if ( mi == id i) then stop; // process i is the leader
    if ( }\mp@subsup{m}{i}{}>>i\mp@subsup{d}{i}{}) then send( (mi); // forward other identifier
}
```

a) Model the leader election protocol for $n$ processes as a channel system.
b) Give an initial execution fragment of $\operatorname{TS}\left(\left[\mathcal{P}_{1}\left|P_{2}\right| \mathcal{P}_{3}\right]\right)$ such that at least one process has executed its send-statement within the body of the while-loop. Assume for $1 \leq i \leq 3$, that process $P_{i}$ has identifier $i d_{i}=i$.

