OverVieW OVERVIEW2.1

Introduction

Modelling parallel systems
Transition systems —
Modeling hard- and software systems
Parallelism and communication

Linear Time Properties

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

1/628

Transition systems = extended digraphs ..o

real system

semantics l T implementation
abstraction refinement

semantic model

The semantic model yields a formal representation of:

e the states of the system «— nodes
e the stepwise behaviour «—— transitions
e the initial states

e additional information on
communication «—— actions
state properties «— atomic proposition

10/628

Transition system (TS) rot4TS 05

A transition system is a tuple

T = (S, Act,—, So, AP, L)

11/628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,

12 /628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,
e Act is a set of actions,

13/628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)

e S is the state space, i.e., set of states,
e Act is a set of actions,
e — C S X Act X S is the transition relation,

14 /628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S X Act X S is the transition relation,

i.e., transitions have the form s 2,
where 5,5’ € S and o € Act

15/628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S X Act X S is the transition relation,

i.e., transitions have the form s 2,
where 5,5’ € S and o € Act

e 5o C S the set of initial states,

16 /628

Transition system (TS) rot4TS 05

A transition system is a tuple
T = (S, Act,—, Sp, AP, L)
e S is the state space, i.e., set of states,

e Act is a set of actions,
e — C S X Act X S is the transition relation,

i.e., transitions have the form s 4, ¢
where 5,5’ € S and o € Act

e 5o C S the set of initial states,
e AP a set of atomic propositions,
o L : S — 2%P the labeling function

17/628

Transition system for beverage machine 15142

18/628

Transition system for beverage machine 15142

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}

19/628

Transition system for beverage machine 15142

get_sprite actions:
coin

T
get_sprite
get_coke

get_coke

state space S = {pay, select, coke, sprite}
set of initial states: So = {pay}

20/628

Transition system for beverage machine 15142

get_sprite actions:
coin

T
get_sprite
get_coke

get_coke

state space S = {pay, select, coke, sprite}

set of initial states: So = {pay}

set of atomic propositions: AP = {pay, drink}

labeling function: L(coke) = L(sprite) = {drink}
L(pay) = {pay}, L(select) =@

21/628

Transition system for beverage machine 15142

get_sprite actions:
coin

T
get_sprite
get_coke

get_coke

state space S = {pay, select, coke, sprite}

set of initial states: So = {pay}

set of atomic propositions: AP = S

labeling function: L(s) = {s} for each state s

22/628

“Behaviour” of transition systems —_

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

o . «
select nondeterministically a transition s — s’

. execute the action o and put s := ¢’
D

23/628

“Behaviour” of transition systems —_

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

o . Q
select nondeterministically a transition s — s’
execute the action o and put s := ¢’

0D

executions: maximal “transition sequences”

a Q Q .
S0 — 5 —> 85— ... withs €S

24/628

“Behaviour” of transition systems —_

possible behaviours of a TS result from:

select nondeterministically an initial state s € Sg
WHILE s is non-terminal DO

L . Q
select nondeterministically a transition s — s’

- execute the action o and put s := ¢’

executions: maximal “transition sequences”

a Q Q .
S0 — 5 —> 85— ... withs €S

reachable fragment:

Reach(T) = set of all states that are reachable from
an initial state through some execution

25/628

Transition system for parallel actions

parallel execution of independent actions

parallel execution of dependent actions

28/628

Transition system for parallel actions

parallel execution of independent actions

eg x:=x+l|||y:=y-3 «, B independent

action a action

parallel execution of dependent actions

29/628

Transition system for parallel actions

parallel execution of independent actions

eg x:=x+l|||y:=y-3 «, B independent

action a action

parallel execution of dependent actions

eg x:=x+Ll|||y:=2%x «, B dependent

action o action IB

30/628

Transition system for parallel actions

parallel execution of independent actions «—

eg x:=x+l|||y:=y-3 «, Bindep

action a action

Ts1.4-4

interleaving

endent

parallel execution of dependent actions «

competition

eg x:=x+Ll|||y:=2%x «, B dependent

action o action IB

31/628

parallel execution of independent actions «—| interleaving

x=x41||[y=y=3

action « action IB

32/628

parallel execution of independent actions «—| interleaving

e

action « action ﬂ

parallel execution of dependent actions «—| competition

33/628

parallel execution of independent actions «—| interleaving

x=x41||[y=y=3

action « action IB

parallel execution of dependent actions «—| competition

X:=x+L ||| y :==2xx

action « action 8

34/628

OverVieW OVERVIEW2.2

Introduction
Modelling parallel systems

Transition systems
Modeling hard- and software systems «—
Parallelism and communication

Linear Time Properties

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

50 /628

Model checking roL9

system Py]|...||Pa requirements

transition specification spec
system 7 P P

N

model checker
does 7 satisfy spec ?

N

no 4+ error indication

51/628

Model checking roLa9

system Py||.. .|| P

requirements

l

specification spec

/

4 \)
transition
system T
~

model checker
does 7 satisfy spec ?
_ J

/

yes no 4+ error indication

52/628

Model checking roL9

syntactic description

requirements

of Py . .||Pn 1
. \ specification spec
semantics —
a A)
transition
system T
~
model checker
does 7 satisfy spec ?
NS J

/

yes no 4+ error indication

53/628

Modelling of sequential circuits by TS 1$1.4-10

Xiy-ony X .
CRERLECIN - . BSE/CRRRLE L. output bits

input bits

register ry, ..., rg

54/628

Modelling of sequential circuits by TS 1$1.4-10

output

. X1y .., X ’

input bits —"2 7"] Cireuit Yo ¥m_ - finctions
transition ALy - o5 Am
functions
01,-..,0k

register ry, ..., rg

55 /628

Modelling of sequential circuits by TS 1$1.4-10

output
X1, ..., X .. ‘
PR circuit Yo--5¥m_ o inctions

transition ALy Am
functlons
61, .

register ry, .

input bits

b, Ai = switching functions {0,1}" x {0,1}* — {0,1}

56 /628

Modelling of sequential circuits by TS 1$1.4-10

output
X1, ..., X ‘
L0 | ircuit Yo--5¥m_ o inctions

transition ALy Am
functions
61; ceey Ok

register ry, ..., rg

input bits

b, Ai = switching functions {0,1}" x {0,1}* — {0,1}

input values ay, ..., ap output value \;(...)
for the input variables for output variable y;

|—)
+ current values ¢y, . .., ¢ next value 4;(...)
of the registers for register r;

57 /628

Modelling of sequential circuits by TS 1$1.4-10

output

. Xy X ‘

input bits =" J circuit Yo ¥m_ - finctions
transition ALy Am
functlons
617

register ry, .

initial register evaluation [n=cp1, - - -, k=Cok]

58 /628

Modelling of sequential circuits by TS 1$1.4-10

output

. Xy X ‘

input bits X0) iveuit —22 0 Ym o inctions
transition ALy Am
functlons
61;

register ry, .

initial register evaluation [n=cp1, - - -, k=Cok]

transition system:
e states: evaluations of x3,...,Xp, 1, ..., Ik

597628

Modelling of sequential circuits by TS 1$1.4-10

output

. Xy X ‘

input bits X0) iveuit —22 0 Ym o inctions
transition ALy Am
functlons
61;

register ry, .

initial register evaluation [n=cp1, - - -, k=Cok]

transition system:
e states: evaluations of x3,...,Xp, 1, ..., Ik
e transitions represent the stepwise behavior

60/628

Modelling of sequential circuits by TS 1$1.4-10

output

. Xy X ‘

input bits X0) iveuit —22 0 Ym o inctions
transition ALy Am
functlons
617

register ry, .

initial register evaluation [n=cp1, - - -, k=Cok]

transition system:
e states: evaluations of x3,...,Xp, 1, ..., Ik
e transitions represent the stepwise behavior
e values of input bits change nondeterministically

61/628

Modelling of sequential circuits by TS 1$1.4-10

output

. Xy X ‘

input bits X0) iveuit —22 0 Ym o inctions
transition ALy Am
functlons
617

register ry, .

initial register evaluation [n=cp1, - - -, k=Cok]

transition system:
e states: evaluations of x3,...,Xp, 1, ..., Ik
e transitions represent the stepwise behavior
e values of input bits change nondeterministically
e atomic propositions: Xi, ..., Xpy Yis-- - Yms My -- -5 Mk

62/628

Example: sequential circuit

X

XOR

NOT

OR

Ts1.4-11A

63/628

Example: sequential circuit TS14-11a

X XOR NOT y

output function: Ay ="(x®r)

transition function: d,=xVr

64/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|—}—y
Ay = ~(x®r)
—= transition function
Lo o, =xVr

65/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|—}—y
Ay ="(x@r)
— (R transition function
Lo o, =xVr

transition system

66 /628

Example: TS for sequential circuit 181411

] output function
XOR NOT|—}—y
y = ~(x®r)
— (R transition function
L] o, =xVr

transition system
(x=0r=0)

[x=0 r=1] [x=1 r=1]

67 /628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system
\
=)

[x=0 r=1] [x=1 r=1]

initial register evaluation: r=0

68 /628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system
\
=T
@

[x=0 r=1] [x=1 r=1]

initial register evaluation: r=0

69 /628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system

\
[x=0 r=0]

[x=0 r=1] [x=1 r=1]

initial register evaluation: r=0

70/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system

\
[x=0 r=0

@)

[x=0 rzll 1(x=1 r=1]
@ U

initial register evaluation: r=0

71/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system
{yI\
[x=0 r=0

@)

[x=0 rzll 1(x=1 r=1]
@ U

initial register evaluation: r=0

72/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system
{yI\ {x}
[x=0 r=0

@)

[x=0 rzll 1(x=1 r=1]
@ U

initial register evaluation: r=0

73/628

Example: TS for sequential circuit 181411

] output function
XOR NOT|——vy
Ay ="(x@r)
— 1R transition function
Lo o, =xVr

transition system
{yI\
[x=0 r=0

@)

[x=0 rzll 1(x=1 r=1]
{n U @)

initial register evaluation: r=0

{x}

747628

Example: TS for sequential circuit 181411

] output function
XOR NOT|—}—y
Ay ="(x@r)
— (R transition function
Lo o, =xVr

transition system
{yI\
[x=0 r=0

@)

[x=0 rzll 1(x=1 r=1]
{r1 U Ux v}

initial register evaluation: r=0

{x}

75/628

How many states ...

Ts1.4-12

... has the transition system for a circuit of the form?

1000 gates

— Y

<

>

n,...,noo

1 output bit
no input
100 registers

76 /628

How many states ...

Ts1.4-12

... has the transition system for a circuit of the form?

1000 gates

— Y

<

>

n,...,noo

answer: 2100

1 output bit
no input
100 registers

77/628

How

... has the transition system for a circuit of the form?

many states ...

1000 gates (—— ¥

<

>

n,...,noo

answer: 2100

X

Z

=

n,...,noo

Ts1.4-12

1 output bit
no input
100 registers

no output
1 input bit
100 registers

78/628

How

... has the transition system for a circuit of the form?

many states ...

1000 gates — ¥

<

>

n,...,noo

answer: 2100

answer: 2100 4 21

X

L

n,...,noo

— olo1

Ts1.4-12

1 output bit
no input
100 registers

no output
1 input bit
100 registers

79/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

80/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program
WHILE x> 0DO0
x = x—1;

=y+1
ODy y

81/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifXSO

example: sequential program _
WHILE x >0 DO yi=y+1 @ _

X = X—].; .
y:=y+l
0D if x > 0 then

x = x-—1

82/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
WHILE x>0D0 y:=y41 @

X = X—].; .
y = y+1
0D if x > 0 then

x = x-—1

program graph

83/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
{1— WHILE x > 0DO0 y:y-|—]_ @ _

x = x—1: .
lr— y = y_|_]_
0D ‘ if x > 0 then

l3— x :=x—1

program graph

l1, 45, €3 are locations,
i.e., control states

84/628

Data-dependent systems 151413

problem: TS-representation of conditional branchings ?

ifx>y\ifxﬁo

example: sequential program l _
{1— WHILE x > 0DO0 y:y-|—]_ ‘ _

x 1= x—1: .
b= oD =y If x > 0 then

l3— x :=x—1

program graph

states of the transition system:

locations + relevant data (here: values for x and y)

85762

Example: TS for sequential program

initially: x=2,y =0
¢;— WHILE x > 0 DO
x = x—1

lr— y:=y+1
0D
@3—)

program graph

|f x>0 the

x = x—1

Ts1.4-14

86 /628

Example: TS for sequential program 181414

initially: x=2,y =0
{1— WHILE x>0 DO
x = x—1

lr— y:=y+1
0D
63—)

program graph

|fx >0 the

x = x—1

(ly x=2y=0)
(lhx=1y=0)
lx=1y=1)
(lrx=0y=1)
(lix=0y=2)
(lzx=0y=2)

87/628

Example: TS for sequential program 181414

initially: x =2, y =0 (£1x>2y=0)
{i— WHILE x > 0D0
ximx-1 «factona] Gx=iy=D

ly— y ;= y+1 <« action 3 3
0D
l3— ... (le:l.}':l)

«

program graph

bhx=0y=1
‘ if x <0 then (& ﬂy)
B~ loop_exit

|fx 50 loop_exit
then « (lsx=0y=2)

88/628

Ty p ed Va ri a b I es TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

89/628

Typ ed Varia b I eS TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) =N
e variable z with Dom(z) = {yellow, red, blue}

90/628

Ty p ed Va ri a b I es TRANSSYS/PC2.2-TYPED-VARIABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) = N
e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:

type-consistent function n : Var — Values

91/628

Typed Variables TRANSSYS/PC2.2-TYPED: -VARL. ABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}
e integer variable: variable y with Dom(y) = N
e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:

type-consistent function n : Var — Values

i 1
'r’(x) € Dom(x) Values = U Dom(x)
for all x € Var xeVar

92/628

Typed Variables TRANSSYS/PC2.2-TYPED: -VARL. ABLES

typed variable: variable x + data domain Dom(x)

e Boolean variable: variable x with Dom(x) = {0, 1}

e integer variable: variable y with Dom(y) = N

e variable z with Dom(z) = {yellow, red, blue}

evaluation for a set Var of typed variables:
type-consistent function n : Var — Values

T T
'r’(x) c Dom(x) Values = U Dom(x)
for all x € Var x€Var

Notation: Eval(Var) = set of evaluations for Var

93/628

Conditions On typed Variables PC2.2-TYPED-COND

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

94/628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red

where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,
Dom(w) = {yellow, red, blue}

95 /628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red

where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,

Dom(w) = {yellow, red, blue}

satisfaction relation |= for evaluations and conditions

96 /628

Conditions on typed variables ro2.rvpe-conm

If Var is a set of typed variables then

Cond(Var) = set of Boolean conditions
on the variables in Var

Example: (—nx A y<z+3) V w=red
where Dom(x) = {0,1}, Dom(y) = Dom(z) = N,
Dom(w) = {yellow, red, blue}
satisfaction relation |= for evaluations and conditions

Example:
[x=0, y=3, z=6] E —x A y<z

[x=0, y=3, z=6] £ x V y=z

97 /628

Effect-functi()n for aCtiOnS PC2.2-TYPED-EFFECT

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

98/628

Effect-function for actions PC2.2-TYPED-EFFECT

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

99/628

Effect-function for actions e 2ty pE R

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if ais “x:=2x+y" then:
Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]

100/

28

Effect-function for actions e 2ty pE R

Given a set Act of actions that operate on the variables

in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if ais “x:=2x+y" then:

Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]
if Bis “x:=2x+vy; y:=1—x" then:

Effect(3, [x=1,y=3,...]) = [x=5,y=—4,...]

101/

28

Effect-function for actions e 2ty pE R

Given a set Act of actions that operate on the variables
in Var, the effect of the actions is formalized by:

Effect : Actx Eval(Var) — Eval(Var)

if ais “x:=2x+y" then:

Effect(a, [x=1,y=3,...]) = [x=5,y=3,...]
if Bis “x:=2x+vy; y:=1—x" then:

Effect(3, [x=1,y=3,...]) = [x=5,y=—4,...]
if v is “(x,y) :=(2x+y,1—x)" then:

Effect(y, [x=1,y=3,...]) = [x=5,y=0,...]

102/

28

Program graph (PG) R

103 /628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple

P = (Loc, Act, Effect,—, Locy, gy) where

104 /628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

105 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

106 / 628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

107 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

1

function that formalizes the effect of the actions

108 /628

Program graph (PG) SR
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)

1

function that formalizes the effect of the actions

example: if a is the assignment x:=x+y then

Effect(c, [x=1,y=T]) = [x=8, y=T]

109 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

110 /628

Program graph (PG) S
Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- . .. 8-«
specifies conditional transitions of the form £ —— ¢

¢, ¢’ are locations, g € Cond(Var), o € Act

111/628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where

e Loc is a (finite) set of locations, i.e., control states,

e Act a set of actions,

e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- . .. 8-«
specifies conditional transitions of the form £ —— ¢

e Locy C Loc is the set of initial locations,

112 /628

Program graph (PG) S

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, gy) where
e Loc is a (finite) set of locations, i.e., control states,
e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

- g .. 8-«
specifies conditional transitions of the form £ —— ¢
e Locy C Loc is the set of initial locations,
e gy € Cond(Var) initial condition on the variables

113 /628

Program graph (PG)

Let Var be a set of typed variables.
A program graph over Var is a tuple
P = (Loc, Act, Effect,—, Locy, go) where

e Loc is a (finite) set of locations, i.e., control states,
e Act a set of actions,
e Effect : Act x Eval(Var) — Eval(Var)
e — C Loc x Cond(Var) x Act x Loc

specifies conditional transitions of the form ¢ ﬂ 4
e Locy C Loc is the set of initial locations,
e gy € Cond(Var) initial condition on the variables.

114 /628

TS-semantics of a program graph 15-PGsi

115 /628

TS-semantics of a program graph 15-PCsen

program graph P over Var

U

transition system 7p

116 /628

TS-semantics of a program graph PG

program graph P over Var

U

transition system 7p

states in 7p have the form

(¢,)
/N

location variable evaluation

117 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, Sy, AP, L)

118 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, Sy, AP, L)

e state space: S = Loc x Eval(Var)

119/628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
The transition system of P is:

Tp = (S, Act,—>, S0, AP, L)
e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}

120 /628

TS-semantics of a program graph

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
The transition system of P is:

Tp = (S,Act,—, S, AP, L)
e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}
The transition relation — is given by the following rule:
¢ ﬂ ¢ Ankg
(€,m) = (€, Effect(c, 7))

121/628

Structured operational semantics (SOS) S
The transition system of a program graph P is
Tp = (S,Act,—,Sp, AP, L) where
the transition relation — is given by the following rule
e ES 0 A nkEg
(€,n) - (¢, Effect(c, 1))

is a shortform notation in SOS-style.

premise
conclusion

122 /628

Structured operational semantics (SOS) S
The transition system of a program graph P is
Tp = (S,Act,—,Sp, AP, L) where
the transition relation — is given by the following rule
e ES 0 A nkEg
(€,n) - (¢, Effect(c, 1))

is a shortform notation in SOS-style.

It means that — is the smallest relation such that:

if ¢ £ ¢ A 1= g then {£,n) — (', Effect(a,n))

123/628

TS-semantics of a program graph e

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
transition system Tp = (S, Act,—, Sy, AP, L)

e state space: S = Loc x Eval(Var)
e initial states: Sp = {(¢,n) : £ € Locy,n |= g0}
e — is given by the following rule:
/4 ﬁ ! ANnEg
(€,n) — (¢, Effect(c:, n))

124 /628

Labeling of the states rsPGaan

Let P = (Loc, Act, Effect,—, Loy, g) be a PG.
transition system Tp = (S, Act,—, Sy, AP, L)

state space: S = Loc x Eval(Var)
initial states: Sop = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:
¢ & ! ANnkg
(€,n) — (¢, Effect(a, n))

atomic propositions: AP = Loc U Cond(Var)

125 /628

Labeling of the states rsPGaan

Let P = (Loc, Act, Effect,—, Loy, g) be a PG.
transition system Tp = (S, Act,—, Sy, AP, L)

state space: S = Loc x Eval(Var)

initial states: Sop = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:

¢ & ! ANnkg
(¢, n) — (¢, Effect(a, 7))

atomic propositions: AP = Loc U Cond(Var)

labeling function:

L({¢,n)) = {€}u {g € Cond(Var): 1y = g}

126 / 628

TS-semantics of a program graph ..ccocumsonsoms

Let P = (Loc, Act, Effect,—, Locy, gy) be a PG.
transition system 7p = (S, Act,—, Sy, AP, L)

state space: S = Loc x Eval(Var)

initial states: Sp = {(¢,n) : £ € Locy,n |= g0}
— is given by the following rule:

/4 & ! ANnEg
(€,m) — (€', Effect(n, @))

atomic propositions: AP = Loc U Cond(Var)

labeling function:

L({¢,n)) = {€}uU {g € Cond(Var): 7y = g}

127/628

Guarded Command Language (GCL)

by Dijkstra

128 /628

Guarded Command Language (GCL)

by Dijkstra

e high-level modeling language that contains features
of imperative languages and nondeterministic choice

129 /628

Guarded Command Language (GCL)

by Dijkstra

e high-level modeling language that contains features
of imperative languages and nondeterministic choice

e semantics:

GCL-program

!
program graph

!

transition system

130 /628

Guarded Command Language (GCL)

guarded command g = stmt

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

131/628

Guarded Command Language (GCL)

guarded command g = stmt <«—|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

132 /628

Guarded Command Language (GCL)

guarded command g = stmt <«—|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

repetitive command/loop:

DO :: g = stmt OD

133 /628

Guarded Command Language (GCL)

guarded command g = stmt <«—|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

repetitive command/loop:

DO :: g = stmt 0D <« WHILE g DO stmt OD

134 /628

Guarded Command Language (GCL)

guarded command g = stmt «|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

repetitive command/loop:

DO : g = stmt 0D

conditional command:
IF @ g = stmtf
;I g = stmtp

FI

&

WHILE g DO stmt OD

135 /628

Guarded Command Language (GCL)

guarded command g = stmt «|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

repetitive command/loop:

DO : g = stmt 0D

conditional command:
IF @ g = stmtf
;I g = stmtp

FI

&

WHILE g DO stmt OD

— ELSE stmt,

IF g THEN stmt;

FI

136 /628

Guarded Command Language (GCL)

guarded command g = stmt <«—|enabled if g is true

repetitive command/loop:

DO :: g = stmt 0D <« WHILE g DO stmt 0D

conditional command:

IF = g = stmty IF g THEN stmt;

;g = stmb — ELSE stmt,
FI FI

symbol :: stands for the nondeterministic choice
between enabled guarded commands

137 /628

Guarded Command Language (GCL) s

modeling language with nondeterministic choice

stmt & x:=expr | stmty;stmt, |
DO gy = stmty ... :g, = stmt, 0D
IF gy = stmt; ... g, = stmt, F1

where x is a typed variable and expr an expression of
the same type

138 /628

Guarded Command Language (GCL) s

modeling language with nondeterministic choice

stmt & x:=expr | stmty;stmt, |
DO gy = stmty ... :g, = stmt, 0D
IF gy = stmt; ... g, = stmt, F1

where x is a typed variable and expr an expression of
the same type

semantics of a GCL-program: program graph

139 /628

G C L- progra m for b eve rage ma Ch i ne PC2.1-GCL-GETRAENKEAUTOMAT

140/ 628

G C L- progra m for b eve rage ma Ch i ne PC2.1-GCL-GETRAENKEAUTOMAT

uses two variables , #coke € {0,1,..., max}
for the number of available drinks (sprite or coke)

141/ 628

G C L- progra m for b everage ma Ch i ne PC2.1-GCL-GETRAENKEAUTOMAT

uses two variables

, #coke € {0,1,..., max}

for the number of available drinks (sprite or coke)

uses the following actions:

enabled effect
get_coke if #coke > 0 | #coke := #coke —1
get_sprite | if >0 = -1

142 /628

GCL-program for beverage machine

uses two variables , #coke € {0,1,..., max}
for the number of available drinks (sprite or coke)

uses the following actions:

PC2.1-GCL-GETRAENKEAUTOMAT

enabled effect
get_coke if #coke > 0 | #coke := #coke —1
get_sprite | if >0 = -1
refill any time 4coke z Zzi

143 /628

GCL-program for beverage machine

PC2.1-GCL-GETRAENKEAUTOMAT

uses two variables , #coke € {0,1,..., max}
for the number of available drinks (sprite or coke)

uses the following actions:

enabled effect
get_coke if #coke > 0 | #coke := #coke —1
get_sprite | if >0 = -1
refill any time 4coke z Zzi
insert_coin | any time no effect on variables

144 /628

GCL-program for beverage machine

PC2.1-GCL-GETRAENKEAUTOMAT

uses two variables , #coke € {0,1,..., max}
for the number of available drinks (sprite or coke)

uses the following actions:

enabled effect
get_coke if #coke > 0 | #coke := #coke —1
get_sprite | if >0 = -1
refill any time = max
#coke = max
insert_coin | any time no effect on variables
: if machine is empty and user has
return_coin . .
entered a coin (no effect on variables)

145 /628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin;

IF :: #sprite = #coke = 0 = return_coin

#coke > 0 = #coke := #coke — 1

#tsprite > 0 = #tsprite := #sprite—1

FI

true = F£sprite := max; #coke := max

0D

146 / 628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin; (* user inserts a coin *)

IF :: #sprite = #coke = 0 = return_coin

#coke > 0 = #coke := #coke — 1

#tsprite > 0 = #tsprite := #sprite—1

FI

true = #sprite := max; #coke := max

0D

147 /628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin; (* user inserts a coin *)

IF :: = #coke = 0 = return_coin
(* no beverage available *)

#coke > 0 = #coke := #coke — 1

>0=> = -1
FI
true = = max; #coke := max

0D

148 /628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin; (* user inserts a coin *)
IF :: = #coke = 0 = return_coin
(* no beverage available *)

#coke > 0 = #coke := #coke — 1
(* user selects coke *)

>0=> = -1
(* user selects sprite *)
FI
true = = max; #coke := max

* refilling of the machine *
- (g)

149 /628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin; (* user inserts a coin *)

IF :: = #coke = 0 = return_coin
(* no beverage available *)

#coke >0 = get_coke
(* user selects coke *)

> 0 = get sprite
(* user selects sprite *)
FI
true = refill

* refilling of the machine *
- (g)

150 / 628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin;

IF :: #sprite = #coke = 0 = return_coin

#coke >0 = get_coke

#sprite > 0 = get_sprite

FI
true = refill

0D

151/628

GCL-program for beverage machine re21-G0L2

DO :: true = insert_coin;
IF :: = #coke =0
= return_coin
22 Ftcoke >0 = get_coke

i > 0 = get sprite
FI

2 true = refill

0D

... yields a program graph with
e two variables , #coke € {0,1,..., max}

152 /628

GCL-program for beverage machine re21-G0L2

start — DO :: true = insert_coin;
select— IF :: = #tcoke =0
=> return_coin
22 Ftcoke >0 = get_coke

i > 0 = get sprite
FI

2 true = refill

0D

... yields a program graph with
e two variables , #coke € {0,1,..., max}
e two locations start and select

153 /628

refill start | refill

insert_coin

refill get_sprite

get_coke

insert_ézgjé

n .
_sprite
select]
oo

in

154 /628

	Introduction
	Modeling of Parallel Systems

