Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic
Equivalences and Abstraction
Trace equivalence

\mathcal{T}_1:

\mathcal{T}_2:

$\hat{=} = \emptyset$

$\hat{=} = \{a\}$

$\hat{=} = \{b\}$
Trace equivalence

\mathcal{T}_1:

\mathcal{T}_2:

Traces$(\mathcal{T}_1) = \{ \emptyset \emptyset a^\omega, \emptyset \emptyset b^\omega \} =$ Traces(\mathcal{T}_1)

- $\emptyset \equiv \emptyset$
- $\{a\} \equiv \{a\}$
- $\{b\} \equiv \{b\}$
Trace equivalence

\[\mathcal{T}_1: \]

\[\mathcal{T}_2: \]

\[\text{Traces}(\mathcal{T}_1) = \{ \emptyset \emptyset a^\omega, \emptyset \emptyset b^\omega \} = \text{Traces}(\mathcal{T}_1) \]

\[\text{CTL-formula } \Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b) \]
Trace equivalence

\[\mathcal{T}_1: \]

\[\mathcal{T}_2: \]

\[Traces(\mathcal{T}_1) = \{ \emptyset \emptyset a^\omega, \emptyset \emptyset b^\omega \} = Traces(\mathcal{T}_1) \]

CTL-formula \(\Phi = \exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b) \)

\(\mathcal{T}_1 \not\models \Phi \) and \(\mathcal{T}_2 \models \Phi \)
Trace equivalence is not compatible with CTL

\[\mathcal{T}_1 : \]

\[\mathcal{T}_2 : \]

\[\text{Traces}(\mathcal{T}_1) = \{ \emptyset \emptyset a^\omega, \emptyset \emptyset b^\omega \} = \text{Traces}(\mathcal{T}_1) \]

CTL-formula \(\Phi \) = \(\exists \bigcirc (\exists \bigcirc a \land \exists \bigcirc b) \)

\[\mathcal{T}_1 \not\models \Phi \text{ and } \mathcal{T}_2 \models \Phi \]
Implementation relations

• for the design of complex systems
 \[\sim\] comparison of 2 transition systems
Implementation relations

- for the **design** of complex systems
 \[\sim \] comparison of 2 transition systems

- for the **analysis** of complex systems
Implementation relations

- for the **design** of complex systems
 ⟷ comparison of 2 transition systems

- for the **analysis** of complex systems
 ⟷ homogeneous model checking approach
Implementation relations

- for the **design** of complex systems
 - comparison of 2 transition systems

- for the **analysis** of complex systems
 - homogeneous model checking approach
 - graph minimization
Implementation relations

- for the **design** of complex systems
 → comparison of 2 transition systems

- for the **analysis** of complex systems
 → homogeneous model checking approach
 → graph minimization

use equivalence relation ~ for the states of a single transition system T and analyze the quotient T/\sim
Implementation relations

• for the design of complex systems
 \[\sim\] comparison of 2 transition systems

• for the analysis of complex systems
 \[\sim\] homogeneous model checking approach
 \[\sim\] graph minimization

use equivalence relation \(\sim\) for the states of a single transition system \(T\) and analyze the quotient \(T/\sim\)

goal: define the equivalence \(\sim\) in such a way that

\[T \models \Phi \iff T/\sim \models \Phi\]

for all “relevant” properties \(\Phi\)
Linear-time implementation relations
finite trace inclusion and equivalence:
 e.g., $\text{Traces}_{\text{fin}}(T_1) \subseteq \text{Traces}_{\text{fin}}(T_2)$

trace inclusion and trace equivalence:
 e.g., $\text{Traces}(T_1) \subseteq \text{Traces}(T_2)$
Linear-time implementation relations

finite trace inclusion and equivalence:

e.g., $\text{Tracesfin}(\mathcal{T}_1) \subseteq \text{Tracesfin}(\mathcal{T}_2)$

preserves all linear-time safety properties

trace inclusion and trace equivalence:

e.g., $\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2)$
Linear-time implementation relations

finite trace inclusion and equivalence:
 e.g., $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$

 preserves all linear-time safety properties

trace inclusion and trace equivalence:
 e.g., $\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2)$

 preserves all LTL properties
Linear-time implementation relations

finite trace inclusion and equivalence:
 e.g., $\text{Traces}_{\text{fin}}(\mathcal{T}_1) \subseteq \text{Traces}_{\text{fin}}(\mathcal{T}_2)$
 preserves all linear-time safety properties

trace inclusion and trace equivalence:
 e.g., $\text{Traces}(\mathcal{T}_1) \subseteq \text{Traces}(\mathcal{T}_2)$
 preserves all LTL properties

* none of the LT relations is compatible with CTL
Linear-time implementation relations

finite trace inclusion and equivalence:

\[\text{Traces}_{\text{fin}}(T_1) \subseteq \text{Traces}_{\text{fin}}(T_2) \]

preserves all linear-time safety properties

trace inclusion and trace equivalence:

\[\text{Traces}(T_1) \subseteq \text{Traces}(T_2) \]

preserves all LTL properties

* none of the LT relations is compatible with CTL

* checking LT relations is computationally hard
Linear-time implementation relations

finite trace inclusion and equivalence:
 e.g., \(\text{Traces}^{\text{fin}}(I_1) \subseteq \text{Traces}^{\text{fin}}(I_2) \)
 preserves all linear-time safety properties

trace inclusion and trace equivalence:
 e.g., \(\text{Traces}(I_1) \subseteq \text{Traces}(I_2) \)
 preserves all LTL properties

* none of the LT relations is compatible with CTL
* checking LT relations is computationally hard
* minimization ???
Minimization w.r.t. trace equivalence?

\mathcal{T}_1:

\mathcal{T}_2:
Minimization w.r.t. trace equivalence?

\mathcal{T}_1:

\mathcal{T}_2:

- $\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2)$
Minimization w.r.t. trace equivalence?

\(\mathcal{T}_1: \)

\(\mathcal{T}_2: \)

- \(\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) \)

but \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) are not isomorphic
Minimization w.r.t. trace equivalence?

\[\mathcal{T}_1: \]
\[\mathcal{T}_2: \]

- \(\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) \)
- but \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) are not isomorphic
- \(\mathcal{T}_1, \mathcal{T}_2 \) have 5 states and 7 transitions each
Minimization w.r.t. trace equivalence?

\(\mathcal{T}_1: \)

\begin{itemize}
 \item \(\text{Traces}(\mathcal{T}_1) = \text{Traces}(\mathcal{T}_2) \)
 \item but \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) are not isomorphic
 \item \(\mathcal{T}_1, \mathcal{T}_2 \) have 5 states and 7 transitions each
 \item there is no smaller TS that is trace-equivalent to \(\mathcal{T}_i \)
\end{itemize}
Classification of implementation relations

- linear vs. branching time
 - linear time: trace relations
 - branching time: (bi)simulation relations
Classification of implementation relations

• linear vs. branching time
 * linear time: trace relations
 * branching time: (bi)simulation relations

• (nonsymmetric) preorders vs. equivalences:
 * preorders: trace inclusion, simulation
 * equivalences: trace equivalence, bisimulation
Classification of implementation relations

- **linear vs. branching time**
 * linear time: trace relations
 * branching time: (bi)simulation relations

- **(nonsymmetric) preorders vs. equivalences**:
 * preorders: trace inclusion, simulation
 * equivalences: trace equivalence, bisimulation

- **strong vs. weak relations**
 * strong: reasoning about all transitions
 * weak: abstraction from stutter steps
Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic

Equivalences and Abstraction

bisimulation
CTL, CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps
simulation relations
Bisimulation for two transition systems

let \(\mathcal{T}_1 = (S_1, \text{Act}_1, \rightarrow_1, S_{0,1}, \text{AP}, L_1) \),
\(\mathcal{T}_2 = (S_2, \text{Act}_2, \rightarrow_2, S_{0,2}, \text{AP}, L_2) \)
be two transition systems
Bisimulation for two transition systems

let \(T_1 = (S_1, \text{Act}_1, \rightarrow_1, S_{0,1}, AP, L_1) \),
\(T_2 = (S_2, \text{Act}_2, \rightarrow_2, S_{0,2}, AP, L_2) \)

be two transition systems

- with the same set \(AP \)
let $\mathcal{T}_1 = (S_1, Act_1, \rightarrow_1, S_{0,1}, AP, L_1)$,
$\mathcal{T}_2 = (S_2, Act_2, \rightarrow_2, S_{0,2}, AP, L_2)$
be two transition systems

- with the same set AP
- possibly containing terminal states
Bisimulation for two transition systems

let \(\mathcal{T}_1 = (S_1, Act_1, \rightarrow_1, S_{0,1}, AP, L_1) \),
\(\mathcal{T}_2 = (S_2, Act_2, \rightarrow_2, S_{0,2}, AP, L_2) \)

be two transition systems

- with the same set \(AP \)
- possibly containing terminal states

Bisimulation equivalence of \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) requires that \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) can simulate each other in a stepwise manner.
Bisimulation for two transition systems

let $T_1 = (S_1, \text{Act}_1, \rightarrow_1, S_{0,1}, AP, L_1),$
$T_2 = (S_2, \text{Act}_2, \rightarrow_2, S_{0,2}, AP, L_2)$

be two transition systems

- with the same set AP observables
- possibly containing terminal states

Bisimulation equivalence of T_1 and T_2 requires that T_1 and T_2 can simulate each other in a stepwise manner.
Bisimulation for \((T_1, T_2)\)
Bisimulation for \((\mathcal{T}_1, \mathcal{T}_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):
Bisimulation for \((T_1, T_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):

\[(1) \quad L_1(s_1) = L_2(s_2)\]
Bisimulation for \((T_1, T_2)\)

binary relation \(R \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in R\):

1. \(L_1(s_1) = L_2(s_2)\)

2. \(\forall s'_1 \in \text{Post}(s_1) \exists s'_2 \in \text{Post}(s_2)\) s.t. \((s'_1, s'_2) \in R\)
Bisimulation for \((\mathcal{T}_1, \mathcal{T}_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):

1. \(L_1(s_1) = L_2(s_2)\)

2. \(\forall s'_1 \in \text{Post}(s_1) \exists s'_2 \in \text{Post}(s_2)\) s.t. \((s'_1, s'_2) \in \mathcal{R}\)

\[
\begin{array}{c}
\text{s}_1 \xrightarrow{\mathcal{R}} \text{s}_2 \\
\downarrow \\
\text{s}'_1
\end{array}
\quad \text{can be completed to}
\quad \begin{array}{c}
\text{s}_1 \xrightarrow{\mathcal{R}} \text{s}_2 \\
\downarrow \\
\text{s}'_1 \xrightarrow{\mathcal{R}} \text{s}'_2
\end{array}
\]
Bisimulation for \((\mathcal{T}_1, \mathcal{T}_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):

1. \(L_1(s_1) = L_2(s_2)\)

2. \(\forall s'_1 \in \text{Post}(s_1) \exists s'_2 \in \text{Post}(s_2)\) s.t. \((s'_1, s'_2) \in \mathcal{R}\)

3. \(\forall s'_2 \in \text{Post}(s_2) \exists s'_1 \in \text{Post}(s_1)\) s.t. \((s'_1, s'_2) \in \mathcal{R}\)
Bisimulation for \((\mathcal{T}_1, \mathcal{T}_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):

1. \(L_1(s_1) = L_2(s_2)\)

2. \(\forall s_1' \in \text{Post}(s_1) \exists s_2' \in \text{Post}(s_2)\) s.t. \((s_1', s_2') \in \mathcal{R}\)

\[
\begin{array}{ccc}
 s_1 & \mathcal{R} & s_2 \\
 \downarrow & & \downarrow \\
 s_1' & & s_2'
\end{array}
\]

can be completed to

\[
\begin{array}{ccc}
 s_1 & \mathcal{R} & s_2 \\
 \downarrow & & \downarrow \\
 s_1' & \mathcal{R} & s_2'
\end{array}
\]

3. \(\forall s_2' \in \text{Post}(s_2) \exists s_1' \in \text{Post}(s_1)\) s.t. \((s_1', s_2') \in \mathcal{R}\)

and such that the following initial condition holds:

1. \(\forall s_{0,1} \in S_{0,1} \exists s_{0,2} \in S_{0,2}\) s.t. \((s_{0,1}, s_{0,2}) \in \mathcal{R}\)
Bisimulation for \((\mathcal{T}_1, \mathcal{T}_2)\)

binary relation \(\mathcal{R} \subseteq S_1 \times S_2\) s.t. for all \((s_1, s_2) \in \mathcal{R}\):

1. \(L_1(s_1) = L_2(s_2)\)

2. \(\forall s'_1 \in Post(s_1) \exists s'_2 \in Post(s_2)\) s.t. \((s'_1, s'_2) \in \mathcal{R}\)

\[
\begin{array}{|c|c|}
\hline
s_1 & s_2 \\
\hline
s'_1 & \mathcal{R} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
s_1 & s_2 \\
\hline
s'_1 & \mathcal{R} \\
\hline
\end{array}
\]

can be completed to

3. \(\forall s'_2 \in Post(s_2) \exists s'_1 \in Post(s_1)\) s.t. \((s'_1, s'_2) \in \mathcal{R}\)

\[
\begin{array}{|c|c|}
\hline
s_1 & s_2 \\
\hline
s'_1 & \mathcal{R} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
s_1 & s_2 \\
\hline
s'_1 & \mathcal{R} \\
\hline
\end{array}
\]

and such that the following initial condition holds:

(I) \(\forall s_{0,1} \in S_{0,1} \exists s_{0,2} \in S_{0,2}\) s.t. \((s_{0,1}, s_{0,2}) \in \mathcal{R}\)

\[
\forall s_{0,2} \in S_{0,2} \exists s_{0,1} \in S_{0,1}\) s.t. \((s_{0,1}, s_{0,2}) \in \mathcal{R}\)
Bisimulation equivalence ~
Bisimulation equivalence \sim

bisimulation for $(\mathcal{T}_1, \mathcal{T}_2)$: relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

for all $(s_1, s_2) \in \mathcal{R}$:

(1) labeling condition

(2) mutual stepwise simulation

(3) initial condition

and initial condition (I)
Bisimulation equivalence \(\sim \)

bisimulation for \((T_1, T_2)\): relation \(R \subseteq S_1 \times S_2 \) s.t.

for all \((s_1, s_2) \in R\):

\begin{align*}
(1) & \text{ labeling condition} \\
(2) & \text{ mutual stepwise simulation} \\
(3) & \text{ initial condition (I)}
\end{align*}

\textbf{bisimulation equivalence \(\sim \) for TS:}
Bisimulation equivalence \sim

bisimulation for $(\mathcal{T}_1, \mathcal{T}_2)$: relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

for all $(s_1, s_2) \in \mathcal{R}$:

(1) labeling condition

(2) mutual stepwise simulation

and initial condition (I)

bisimulation equivalence \sim for TS:

$\mathcal{T}_1 \sim \mathcal{T}_2$ iff there is a bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$
Bisimulation equivalence \sim

bisimulation for (T_1, T_2): relation $R \subseteq S_1 \times S_2$ s.t.

for all $(s_1, s_2) \in R$:

1. labeling condition
2. mutual stepwise simulation
3. initial condition

and initial condition (I)

bisimulation equivalence \sim for TS:

$T_1 \sim T_2$ iff there is a bisimulation R for (T_1, T_2)

for state s_1 of T_1 and state s_2 of T_2:

$s_1 \sim s_2$ iff there exists a bisimulation R for (T_1, T_2) such that $(s_1, s_2) \in R$
Two beverage machines

T_1

T_2

AP = \{ pay, coke, soda \}
Two beverage machines

\mathcal{T}_1

- pay
- select
- coke
- soda

\mathcal{T}_2

- pay
- select
- coke\textsubscript{1}
- coke\textsubscript{2}
- soda

$AP = \{\text{pay, coke, soda}\}$
Two beverage machines

\[\mathcal{T}_1 \sim \mathcal{T}_2 \text{ as there is a bisimulation for } (\mathcal{T}_1, \mathcal{T}_2): \]

\[\{ (\text{pay, pay}), (\text{select, select}), (\text{soda, soda}), (\text{coke, coke}_1), (\text{coke, coke}_2) \} \]

AP = \{ pay, coke, soda \}
Two beverage machines

T_1

pay

paid_1

paid_2

coke

soda

T_2

pay

select

coke

soda

$AP = \{ \text{pay, coke, soda} \}$
Two beverage machines

\[\mathcal{T}_1 \] and \[\mathcal{T}_2 \]

\[\mathcal{T}_1 \not\sim \mathcal{T}_2 \]

because there is no state in \(\mathcal{T}_1 \) that has both

- a successor labeled with \textit{coke} and
- a successor labeled with \textit{soda}

\[AP = \{ \text{pay, coke, soda} \} \]
Simulation condition of bisimulations

\[
\begin{array}{c|c|c}
 s_1 & \mathcal{R} & s_2 \\
 \downarrow & & \downarrow \\
 s'_1 & \mathcal{R} & s'_2 \\
\end{array}
\]

can be completed to

\[
\begin{array}{c|c|c}
 s_1 & \mathcal{R} & s_2 \\
 \downarrow & \downarrow & \downarrow \\
 s'_1 & \mathcal{R} & s'_2 \\
\end{array}
\]
Path lifting for bisimulation \mathcal{R}
Path lifting for bisimulation \mathcal{R}

can be completed to
Path lifting for bisimulation \mathcal{R}

can be completed to
Path lifting for bisimulation \mathcal{R}

can be completed to
Path lifting for bisimulation \mathcal{R}

can be completed to

\[
\begin{array}{c}
\vdots \\
S_{1,4} \\
\vdots \\
S_{1,3} \\
\vdots \\
S_{1,2} \\
\vdots \\
S_{1,1} \\
\vdots \\
S_1
\end{array}
\quad \mathcal{R} \quad
\begin{array}{c}
\vdots \\
S_{1,4} \\
\vdots \\
S_{1,3} \\
\vdots \\
S_{1,2} \\
\vdots \\
S_{1,1} \\
\vdots \\
S_1
\end{array}
\quad \quad
\begin{array}{c}
\vdots \\
S_{2,4} \\
\vdots \\
S_{2,3} \\
\vdots \\
S_{2,2} \\
\vdots \\
S_{2,1} \\
\vdots \\
S_2
\end{array}
\quad \mathcal{R} \quad
\begin{array}{c}
\vdots \\
S_{2,4} \\
\vdots \\
S_{2,3} \\
\vdots \\
S_{2,2} \\
\vdots \\
S_{2,1} \\
\vdots \\
S_2
\end{array}
\]
Path lifting for bisimulation \mathcal{R}

\[
\begin{array}{c}
S_1 \\
\downarrow \\
S_{1,1} \\
\downarrow \\
S_{1,2} \\
\downarrow \\
S_{1,3} \\
\downarrow \\
S_{1,4} \\
\downarrow \\
\vdots
\end{array}
\quad
\begin{array}{c}
S_2 \\
\downarrow \\
S_{2,1} \\
\downarrow \\
S_{2,2} \\
\downarrow \\
S_{2,3} \\
\downarrow \\
S_{2,4} \\
\downarrow \\
\vdots
\end{array}
\]

\mathcal{R}

\[
\begin{array}{c}
\begin{array}{c}
S_1 \\
\downarrow \\
S_{1,1} \\
\downarrow \\
S_{1,2} \\
\downarrow \\
S_{1,3} \\
\downarrow \\
S_{1,4} \\
\downarrow \\
\vdots
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
S_2 \\
\downarrow \\
S_{2,1} \\
\downarrow \\
S_{2,2} \\
\downarrow \\
S_{2,3} \\
\downarrow \\
S_{2,4} \\
\downarrow \\
\vdots
\end{array}
\end{array}
\end{array}
\]

can be completed to
Properties of bisimulation equivalence
Properties of bisimulation equivalence

\[\sim \text{ is an equivalence} \]
Properties of bisimulation equivalence

\[\sim \] is an equivalence, i.e.,

- reflexivity: \(\mathcal{T} \sim \mathcal{T} \) for all transition systems \(\mathcal{T} \).
Properties of bisimulation equivalence

\[\sim \] is an equivalence, i.e.,

- reflexivity: \(T \sim T \) for all transition systems \(T \)

If \(S \) is the state space of \(T \) then

\[R = \{(s, s) : s \in S\} \]

is a bisimulation for \((T, T) \)
Properties of bisimulation equivalence

∼ is an equivalence, i.e.,

• reflexivity: \(\mathcal{T} \sim \mathcal{T} \) for all transition systems \(\mathcal{T} \)

• symmetry: \(\mathcal{T}_1 \sim \mathcal{T}_2 \) implies \(\mathcal{T}_2 \sim \mathcal{T}_1 \)
Properties of bisimulation equivalence

∼ is an equivalence, i.e.,

- reflexivity: \(T \sim T \) for all transition systems \(T \)
- symmetry: \(T_1 \sim T_2 \) implies \(T_2 \sim T_1 \)

If \(R \) is a bisimulation for \((T_1, T_2)\) then

\[R^{-1} = \{(s_2, s_1) : (s_1, s_2) \in R\} \]

is a bisimulation for \((T_2, T_1)\)
Properties of bisimulation equivalence

\[\sim \] is an equivalence, i.e.,

- reflexivity: \(\mathcal{T} \sim \mathcal{T} \) for all transition systems \(\mathcal{T} \)
- symmetry: \(\mathcal{T}_1 \sim \mathcal{T}_2 \) implies \(\mathcal{T}_2 \sim \mathcal{T}_1 \)
- transitivity: if \(\mathcal{T}_1 \sim \mathcal{T}_2 \) and \(\mathcal{T}_2 \sim \mathcal{T}_3 \) then \(\mathcal{T}_1 \sim \mathcal{T}_3 \)
Properties of bisimulation equivalence

\[\sim \] is an equivalence, i.e.,

- reflexivity: \(T \sim T \) for all transition systems \(T \)
- symmetry: \(T_1 \sim T_2 \) implies \(T_2 \sim T_1 \)
- transitivity: if \(T_1 \sim T_2 \) and \(T_2 \sim T_3 \) then \(T_1 \sim T_3 \)

Let \(R_{1,2} \) be a bisimulation for \((T_1, T_2)\), \(R_{2,3} \) be a bisimulation for \((T_2, T_3)\).
Properties of bisimulation equivalence

\(\sim \) is an equivalence, i.e.,

- reflexivity: \(T \sim T \) for all transition systems \(T \)
- symmetry: \(T_1 \sim T_2 \) implies \(T_2 \sim T_1 \)
- transitivity: if \(T_1 \sim T_2 \) and \(T_2 \sim T_3 \) then \(T_1 \sim T_3 \)

Let \(R_{1,2} \) be a bisimulation for \((T_1, T_2) \), \(R_{2,3} \) be a bisimulation for \((T_2, T_3) \).

\[R \overset{\text{def}}{=} \{ (s_1, s_3) : \exists s_2 \text{ s.t. } (s_1, s_2) \in R_{1,2} \text{ and } (s_2, s_3) \in R_{2,3} \} \]

is a bisimulation for \((T_1, T_3) \)
Correct or wrong?
Correct or wrong?

\[\sim \]

\textit{Wrong}
Correct or wrong?

$s_1 \rightarrow u$, but $s_2 \not\rightarrow \text{blue}$ (thus $s_1 \not\sim s_2$)
Correct or wrong?

\[s_1 \rightarrow u, \text{ but } s_2 \not\rightarrow \text{blue} \quad (\text{thus } s_1 \not\sim s_2) \]
Correct or wrong?

\[s_1 \rightarrow u, \text{ but } s_2 \not\rightarrow \text{blue} \]

(Thus \(s_1 \not\sim s_2 \))

\[s_1 \sim s_2 \]

Correct
Correct or wrong?

\[s_1 \not\sim s_2 \]

\[s_1 \rightarrow u, \text{ but } s_2 \not\rightarrow \text{blue} \quad (\text{thus } s_1 \not\sim s_2) \]

bisimulation:
\[\{(w_1, w_2), (w_1', w_2), (s_1, s_2), (s_1, s_2'), (u, x), (u, y)\} \]
Correct or wrong?
Correct or wrong?

Correct
Correct or wrong?

bisimulation

\{ (s_1, s_2), (s'_1, s'_2), (s'_1, s''_2), (t_1, t_2), (t'_1, t_2), (t''_1, t_2) \}
Correct or wrong?

Bisimulation

\[\{(s_1, s_2), (s_1', s_2'), (s_1', s_2''), (t_1, t_2), (t_1', t_2), (t_1'', t_2)\} \]
Correct or wrong?

\[
\text{bisimulation } \{ (s_1, s_2), (s'_1, s'_2), (s'_1, s''_2), (t_1, t_2), (t'_1, t_2), (t''_1, t_2) \}
\]

\[
\text{correct}
\]
Correct or wrong?

Correct bisimulation: \[\{(s_1, s_2), (t_1, t_2), (t'_1, t_2), (u_1, u_2), (v_1, v_2)\} \]
Bisimulation vs. trace equivalence
Bisimulation vs. trace equivalence

\[\mathcal{I}_1 \sim \mathcal{I}_2 \implies \text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2) \]
Bisimulation vs. trace equivalence

\[\mathcal{I}_1 \sim \mathcal{I}_2 \implies \text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2) \]

proof: ... path fragment lifting ...
Bisimulation vs. trace equivalence

\[T_1 \sim T_2 \implies \text{Traces}(T_1) = \text{Traces}(T_2) \]

proof: ... path fragment lifting ...

\[\text{Traces}(T_1) = \text{Traces}(T_2) \iff T_1 \sim T_2 \]
Bisimulation vs. trace equivalence

\[T_1 \sim T_2 \implies \text{Traces}(T_1) = \text{Traces}(T_2) \]

proof: ... path fragment lifting ...

\[\text{Traces}(T_1) = \text{Traces}(T_2) \nleftrightarrow T_1 \sim T_2 \]

trace equivalent, but not bisimulation equivalent
Bisimulation vs. trace equivalence

\[\mathcal{I}_1 \sim \mathcal{I}_2 \implies \text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2) \]

proof: ... path fragment lifting ...

\[\text{Traces}(\mathcal{I}_1) = \text{Traces}(\mathcal{I}_2) \nRightarrow \mathcal{I}_1 \sim \mathcal{I}_2 \]

Trace equivalence is \textit{strictly coarser} than bisimulation equivalence.
Bisimulation vs. trace equivalence

$$T_1 \sim T_2 \implies \text{Traces}(T_1) = \text{Traces}(T_2)$$

Proof: ... path fragment lifting ...

$$\text{Traces}(T_1) = \text{Traces}(T_2) \not\implies T_1 \sim T_2$$

Trace equivalence is strictly coarser than bisimulation equivalence.

Bisimulation equivalent transition systems satisfy the same LT properties (e.g., LTL formulas).
Bisimulation equivalence ...

- as a relation that compares 2 transition systems
Bisimulation equivalence ... as a relation that compares 2 transition systems
Bisimulation equivalence ...

- as a relation that compares 2 transition systems

\[\mathcal{T}_1 \]
\[\mathcal{T}_2 \]

- as a relation on the states of 1 transition system
Bisimulation equivalence ...

- as a relation that compares 2 transition systems

- as a relation on the states of 1 transition system
Bisimulation equivalence ...

• as a relation that compares 2 transition systems

\[\mathcal{T}_1 \]

\[\mathcal{T}_2 \]

• as a relation on the states of 1 transition system

\[\mathcal{T} \]

\[s_1 \sim s_2 \text{ iff } \mathcal{T}_{s_1} \sim \mathcal{T}_{s_2} \]
Bisimulation equivalence ...

- as a relation that compares 2 transition systems

- as a relation on the states of 1 transition system

\[S_1 \sim S_2 \iff T_{s_1} \sim T_{s_2} \]
Bisimulation equivalence ...

• as a relation that compares 2 transition systems

\[\mathcal{T}_1 \]

\[\mathcal{T}_2 \]

• as a relation on the states of 1 transition system

\[\mathcal{T} \]

\[\mathcal{T}_{s_1} \]

\[\mathcal{T}_{s_2} \]

\[s_1 \sim s_2 \quad \text{iff} \quad \mathcal{T}_{s_1} \sim \mathcal{T}_{s_2} \quad \text{iff} \quad \text{there exists a bisimulation } \mathcal{R} \text{ for } \mathcal{T} \text{ s.t. } (s_1, s_2) \in \mathcal{R} \]
Let T be a TS with proposition set AP.
Bisimulations on a single TS

Let \mathcal{T} be a TS with proposition set AP.

A bisimulation for \mathcal{T} is a binary relation R on the state space of \mathcal{T} s.t. for all $(s_1, s_2) \in R$:

1. $L(s_1) = L(s_2)$
2. $\forall s_1' \in Post(s_1) \exists s_2' \in Post(s_2)$ s.t. $(s_1', s_2') \in R$
3. $\forall s_2' \in Post(s_2) \exists s_1' \in Post(s_1)$ s.t. $(s_1', s_2') \in R$
Bisimulation equivalence $\sim_{\mathcal{T}}$ on a single TS

Let \mathcal{T} be a TS with proposition set AP.

A bisimulation for \mathcal{T} is a binary relation R on the state space of \mathcal{T} s.t. for all $(s_1, s_2) \in R$:

1. $L(s_1) = L(s_2)$
2. $\forall s_1' \in Post(s_1) \exists s_2' \in Post(s_2)$ s.t. $(s_1', s_2') \in R$
3. $\forall s_2' \in Post(s_2) \exists s_1' \in Post(s_1)$ s.t. $(s_1', s_2') \in R$

bisimulation equivalence $\sim_{\mathcal{T}}$:

$s_1 \sim_{\mathcal{T}} s_2$ iff there exists a bisimulation R for \mathcal{T} s.t. $(s_1, s_2) \in R$
Let \mathcal{T} be a transition system with state space S.

Bisimulation equivalence $\sim_{\mathcal{T}}$ is

- the coarest bisimulation on \mathcal{T}
- and an equivalence on S
Bisimulation equivalence

Let \mathcal{T} be a transition system with state space S.

Bisimulation equivalence $\sim_\mathcal{T}$ is the coarsest equivalence on S s.t. for all states $s_1, s_2 \in S$ with $s_1 \sim_\mathcal{T} s_2$:

1. $L(s_1) = L(s_2)$
2. each transition of s_1 can be mimicked by a transition of s_2:

\[
\begin{array}{ccc}
s_1 & \sim_\mathcal{T} & s_2 \\
\downarrow & & \downarrow \\
s'_1 & & s'_2
\end{array}
\]

can be completed to

\[
\begin{array}{ccc}
s_1 & \sim_\mathcal{T} & s_2 \\
\downarrow & & \downarrow \\
s'_1 & \sim_\mathcal{T} & s'_2
\end{array}
\]
Two variants of bisimulation equivalence

\[\sim \] relation that compares 2 transition systems

\[\sim_T \] equivalence on the state space of a single TS \(T \)
Two variants of bisimulation equivalence

\(\sim\) relation that compares 2 transition systems
\(\sim_T\) equivalence on the state space of a single TS \(T\)

1. \(\sim_T\) can be derived from \(\sim\)

\[
\text{for all states } s_1 \text{ and } s_2 \text{ of } T:
\]

\[
s_1 \sim_T s_2 \quad \text{iff} \quad T_{s_1} \sim T_{s_1}
\]

where \(T_s\) agrees with \(T\), except that state \(s\) is declared to be the unique initial state
Two variants of bisimulation equivalence

\[\sim \] relation that compares 2 transition systems

\[\sim_T \] equivalence on the state space of a single TS \(T \)

1. \(\sim_T \) can be derived from \(\sim \)

\[
\text{for all states } s_1 \text{ and } s_2 \text{ of } T:
\]

\[s_1 \sim_T s_2 \quad \text{iff} \quad T_{s_1} \sim T_{s_1} \]

where \(T_s \) agrees with \(T \), except that state \(s \) is declared to be the unique initial state

2. \(\sim \) can be derived from \(\sim_T \)
Derivation of \sim from \sim_T

given two transition systems \mathcal{T}_1 and \mathcal{T}_2

\mathcal{T}_1 with state space S_1

\mathcal{T}_2 with state space S_2
Derivation of \sim from \sim_T

given two transition systems \mathcal{T}_1 and \mathcal{T}_2

\mathcal{T}_1 with state space S_1

\mathcal{T}_2 with state space S_2

consider $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$
(state space $S_1 \cup S_2$)
Derivation of \sim from \sim_T

given two transition systems \mathcal{T}_1 and \mathcal{T}_2

\mathcal{T}_1 with state space S_1

\mathcal{T}_2 with state space S_2

consider $\mathcal{T} = \mathcal{T}_1 \uplus \mathcal{T}_2$
(state space $S_1 \uplus S_2$)

$\mathcal{T}_1 \sim \mathcal{T}_2$ iff \forall initial states s_1 of \mathcal{T}_1
\exists initial state s_2 of \mathcal{T}_2 s.t. $s_1 \sim_T s_2$.
Derivation of \sim from \sim_T

given two transition systems T_1 and T_2

T_1 with state space S_1

T_2 with state space S_2

consider $T = T_1 \uplus T_2$
(state space $S_1 \uplus S_2$)

$T_1 \sim T_2$ iff \forall initial states s_1 of T_1

\exists initial state s_2 of T_2 s.t. $s_1 \sim_T s_2$
and vice versa
Bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient \mathcal{T}/\sim arises from \mathcal{T} by collapsing bisimulation equivalent states
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L)$ be a TS.

bisimulation quotient:

$\mathcal{T} / \sim = (S', \text{Act}', \rightarrow', S'_0, \text{AP}, L')$
Bisimulation quotient

Let \(\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L) \) be a TS.

bisimulation quotient:

\[\mathcal{T} / \sim = (S', \text{Act}', \rightarrow', S'_0, \text{AP}, L') \]

- state space:
 \[S' = S / \sim_\mathcal{T} \]

set of bisimulation equivalence classes
Bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient:

$\mathcal{T} / \sim = (S', Act', \rightarrow', S'_0, AP, L')$

- state space: $S' = S/\sim_T$
- set of initial states: $S'_0 = \{ [s]_{\sim_T} : s \in S_0 \}$
Bisimulation quotient

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient:

$\mathcal{T}/\sim = (S', \text{Act}', \rightarrow', S'_0, AP, L')$

- state space: $S' = S/\sim_{\mathcal{T}}$
- set of initial states: $S'_0 = \{[s]_{\sim_{\mathcal{T}}} : s \in S_0\}$
- labeling function: $L'([s]_{\sim_{\mathcal{T}}}) = L(s)$
Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

Bisimulation quotient:

$$T / \sim = (S', Act', \rightarrow', S_0', AP, L')$$

- **state space:** $S' = S/\sim_T$
- **set of initial states:** $S_0' = \{ [s]_{\sim_T} : s \in S_0 \}$
- **labeling function:** $L'([s]_{\sim_T}) = L(s)$

Well-defined by the labeling condition of bisimulations.
Bisimulation quotient

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient:

$\mathcal{T}/\sim = (S', Act', \rightarrow', S'_0, AP, L')$

- state space: $S' = S/\sim_T$
- set of initial states: $S'_0 = \{ [s]_{\sim_T} : s \in S_0 \}$
- labeling function: $L'([s]_{\sim_T}) = L(s)$
- transition relation:

$$
\begin{align*}
\frac{s \rightarrow s'}{[s]_{\sim_T} \rightarrow [s']_{\sim_T}}
\end{align*}
$$
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a TS.

Bisimulation quotient:

$$\mathcal{T} / \sim = (S', \text{Act}', \rightarrow', S'_0, AP, L')$$

- **state space:** $S' = S / \sim_T$
- **set of initial states:** $S'_0 = \{ [s]_\sim_T : s \in S_0 \}$
- **labeling function:** $L'([s]_\sim_T) = L(s)$
- **transition relation:**
 $$s \rightarrow s' \quad [s]_\sim_T \rightarrow [s']_\sim_T$$
 action labels irrelevant
Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient:

$$T/\sim = (S', \{\tau\}, \rightarrow', S'_0, AP, L')$$

- state space: $S' = S/\sim_T$
- set of initial states: $S'_0 = \{[s]_{\sim_T} : s \in S_0\}$
- labeling function: $L'([s]_{\sim_T}) = L(s)$
- transition relation:

$$s \xrightarrow{\alpha} s' \quad \quad \quad [s]_{\sim_T} \xrightarrow{\tau} [s']_{\sim_T}$$

action labels irrelevant
Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a TS.

bisimulation quotient:

$\mathcal{T}/\sim = (S', \{\tau\}, \rightarrow', S'_0, AP, L')$

- state space: $S' = S/\sim_T$
- set of initial states: $S'_0 = \{[s]_{\sim_T} : s \in S_0\}$
- labeling function: $L'([s]_{\sim_T}) = L(s)$
- transition relation:

$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim_T} \xrightarrow{\tau} [s']_{\sim_T}}$$
Example: interleaving of n printers

parallel system $\mathcal{T} = \underbrace{Printer || Printer || \ldots || Printer}_{n \text{ printer}}$
Example: interleaving of n printers

parallel system $\mathcal{T} = \text{Printer} \ || \ \text{Printer} \ || \ldots \ || \ \text{Printer}$

n printer

transition system for each printer
Example: interleaving of n printers

parallel system $\mathcal{T} = \underbrace{\text{Printer} || \ldots || \text{Printer}}_{n \text{ printer}}$

$\mathcal{AP} = \{0, 1, \ldots, n\}$
“number of available printers”

transition system for each printer
Example: $n=3$ printers

parallel system $\mathcal{I} = \text{Printer} \ || \ \text{Printer} \ || \ \ldots \ || \ \text{Printer}$

$AP = \{0, 1, 2, 3\}$

p: is printing

r: ready to print
Example: $n=3$ printers

Parallel system $\mathcal{T} = \underbrace{\text{Printer} \ || \ \text{Printer} \ || \ \ldots \ || \ \text{Printer}}_{n \ \text{printer}}$

$AP = \{0, 1, 2, 3\}$

p: is printing

r: ready to print
Example: $n=3$ printers

parallel system $\mathcal{I} = \text{Printer} \parallel\text{Printer} \parallel \ldots \parallel \text{Printer}$

$AP = \{0, 1, 2, 3\}$

p: is printing
r: ready to print

bisimulation quotient
Example: $n=3$ printers

parallel system $\mathcal{T} = \text{Printer} \ || \ || \dots \ || \text{Printer}$

$AP = \{0, 1, 2, 3\}$

2^n states

$n+1$ states
Mutual exclusion

solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
Mutual exclusion: Bakery algorithm

solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm
Mutual exclusion: Bakery algorithm

solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm

given two concurrent processes P_1 and P_2
Mutual exclusion: Bakery algorithm

solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm

given two concurrent processes P_1 and P_2

- two additional shared variables: $x_1, x_2 \in \mathbb{N}$
solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm

given two concurrent processes P_1 and P_2

- two additional shared variables: $x_1, x_2 \in \mathbb{N}$
- if P_1 and P_2 are waiting then:
solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm

given two concurrent processes \(P_1 \) and \(P_2 \)

- two additional shared variables: \(x_1, x_2 \in \mathbb{N} \)
- if \(P_1 \) and \(P_2 \) are waiting then:

 if \(x_1 < x_2 \) then \(P_1 \) enters its critical section

 if \(x_2 < x_1 \) then \(P_2 \) enters its critical section
solutions for mutual exclusion problems:

- semaphore
- Peterson’s algorithm
- Bakery algorithm

given two concurrent processes P_1 and P_2

- two additional shared variables: $x_1, x_2 \in \mathbb{N}$
- if P_1 and P_2 are waiting then:
 - if $x_1 < x_2$ then P_1 enters its critical section
 - if $x_2 < x_1$ then P_2 enters its critical section
- $x_1 = x_2$: cannot happen
Bakery algorithm

protocol for P_1:

\[
\begin{align*}
\text{LOOP FOREVER} \\
\text{noncritical actions} \\
\hspace{1cm} x_1 & := x_2 + 1 \\
\text{AWAIT } (x_1 < x_2) \lor (x_2 = 0); \\
\text{critical section;} \\
\hspace{1cm} x_1 & := 0 \\
\text{END LOOP}
\end{align*}
\]

symmetric protocol for P_2
Bakery algorithm

protocol for P_1:

```plaintext
LOOP FOREVER
  noncritical actions
  $x_1 := x_2 + 1$
  AWAIT ($x_1 < x_2$) ∨ ($x_2 = 0$);
  critical section;
  $x_1 := 0$
END LOOP
```

initially:

$x_1 = x_2 = 0$

symmetric protocol for P_2
Program graphs for the Bakery algorithm

\(x_1 := x_2 + 1 \)
\((x_1 < x_2) \lor (x_2 = 0) \)

\(x_1 := 0 \)

\(x_2 := x_1 + 1 \)
\((x_2 < x_1) \lor (x_1 = 0) \)

\(x_2 := 0 \)
Transition system for the Bakery algorithm

\[x_1 := x_2 + 1 \quad \text{noncrit}_1 \]

\[x_1 := 0 \quad \text{crit}_1 \]

\[(x_1 < x_2) \lor (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_2 \]

\[x_2 := 0 \quad \text{crit}_2 \]

\[(x_2 < x_1) \lor (x_1 = 0) \]
Transition system for the Bakery algorithm

\[x_1 := x_2 + 1 \quad \text{noncrit}_1 \]

\[x_1 := 0 \quad \text{crit}_1 \]

\[x_1 < x_2 \lor (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_2 \]

\[x_2 := 0 \quad \text{crit}_2 \]

\[(x_2 < x_1) \lor (x_1 = 0) \]
Transition system for the Bakery algorithm

\[x_1 := x_2 + 1 \quad \text{noncrit}_1 \]

\[x_1 := 0 \quad \text{crit}_1 \]

\[(x_1 < x_2) \vee (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_2 \]

\[x_2 := 0 \quad \text{crit}_2 \]

\[(x_2 < x_1) \vee (x_1 = 0) \]
Transition system for the Bakery algorithm

\[x_1 := x_2 + 1 \quad \text{noncrit}_1 \]

\[x_1 := 0 \quad \text{wait}_1 \]

\[x_1 < x_2 \lor (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_2 \]

\[x_2 := 0 \quad \text{wait}_2 \]

\[x_2 < x_1 \lor (x_1 = 0) \]
Transition system for the Bakery algorithm

\[x_1 := x_2 + 1 \quad \text{noncrit}_1 \]

\[x_1 := 0 \quad \text{crit}_1 \]

\[(x_1 < x_2) \lor (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_2 \]

\[x_2 := 0 \quad \text{crit}_2 \]

\[(x_2 < x_1) \lor (x_1 = 0) \]
Transition system for the Bakery algorithm

noncrit₁

\[x₁ := x₂ + 1 \]

wait₁

\[(x₁ < x₂) \lor (x₂ = 0) \]

crit₁

\[x₁ := 0 \]

noncrit₂

\[x₂ := x₁ + 1 \]

wait₂

\[(x₂ < x₁) \lor (x₁ = 0) \]

crit₂

\[x₂ := 0 \]
Bakery algorithm: bisimulation quotient

\[x_1 := x_2 + 1 \quad \text{wait}_1 \]

\[x_1 := 0 \quad \text{crit}_1 \]

\[(x_1 < x_2) \lor (x_2 = 0) \]

\[x_2 := x_1 + 1 \quad \text{noncrit}_1 \]

\[x_2 := 0 \quad \text{crit}_2 \]

\[(x_2 < x_1) \lor (x_1 = 0) \]

infinite transition system with a finite bisimulation quotient
Bakery algorithm: bisimulation quotient

\[
\begin{align*}
\text{noncrit}_1: & \quad x_1 := x_2 + 1 \\
\text{wait}_1: & \quad (x_1 < x_2) \lor (x_2 = 0) \\
\text{crit}_1: & \quad x_1 := 0
\end{align*}
\]

\[
\begin{align*}
\text{noncrit}_2: & \quad x_2 := x_1 + 1 \\
\text{wait}_2: & \quad (x_2 < x_1) \lor (x_1 = 0) \\
\text{crit}_2: & \quad x_2 := 0
\end{align*}
\]
Bakery algorithm: bisimulation quotient

\[x_1 := x_2 + 1 \]

\[\text{crit}_1 \]

\[(x_1 < x_2) \lor (x_2 = 0) \]

\[x_1 := 0 \]

\[\text{wait}_1 \]

\[x_2 := x_1 + 1 \]

\[\text{crit}_2 \]

\[(x_2 < x_1) \lor (x_1 = 0) \]

\[x_2 := 0 \]

\[\text{wait}_2 \]
Bakery algorithm: bisimulation quotient

\[x_1 := x_2 + 1 \]

\[\text{wait}_1 \quad \forall (x_1 < x_2) \lor (x_2 = 0) \]

\[x_1 := 0 \]

\[\text{crit}_1 \]

\[x_1 := x_2 + 1 \]

\[\text{wait}_2 \quad \forall (x_2 < x_1) \lor (x_1 = 0) \]

\[x_2 := 0 \]

\[\text{crit}_2 \]
Bakery algorithm: bisimulation quotient

\[
\begin{align*}
\text{noncrit}_1 & \quad x_1 := x_2 + 1 \\
\text{wait}_1 & \quad (x_1 < x_2) \lor (x_2 = 0) \\
\text{crit}_1 & \quad x_1 := 0 \\
\text{noncrit}_2 & \quad x_2 := x_1 + 1 \\
\text{wait}_2 & \quad (x_2 < x_1) \lor (x_1 = 0) \\
\text{crit}_2 & \quad x_2 := 0
\end{align*}
\]
Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic

Equivalences and Abstraction
bisimulation
CTL, CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps
simulation relations
Recall: CTL*

CTL* state formulas

\[
\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi
\]

CTL* path formulas

\[
\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \varphi_1 U \varphi_2
\]

derived operators:

- \(\Diamond, \Box, \ldots\) as in LTL
- universal quantification: \(\forall \varphi \equiv \neg \exists \neg \varphi\)
Recall: CTL* and CTL

###CTL* State Formulas

\[\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \exists \varphi \]

###CTL* Path Formulas

\[\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \Box \varphi \mid \varphi_1 \mathbf{U} \varphi_2 \]

CTL: sublogic of CTL*

- with path quantifiers \(\exists \) and \(\forall \)
- restricted syntax of path formulas:
 - * no boolean combinations of path formulas
 - * arguments of temporal operators \(\Box \) and \(\mathbf{U} \) are state formulas
CTL equivalence
Let s_1, s_2 be states of a TS T without terminal states. s_1, s_2 are CTL equivalent if for all CTL formulas Φ:

$$s_1 \models \Phi \text{ iff } s_2 \models \Phi$$
Let s_1, s_2 be states of a TS \mathcal{T} without terminal states s_1, s_2 are CTL equivalent if for all CTL formulas Φ: $s_1 \models \Phi$ iff $s_2 \models \Phi$
Let s_1, s_2 be states of a TS T without terminal states.

s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ:

$$s_1 \models \Phi \iff s_2 \models \Phi$$

s_1, s_2 are **not** **CTL** equivalent

$$s_1 \models \exists \diamond (\exists \diamond a \land \exists \diamond b)$$

$$s_2 \not\models \exists \diamond (\exists \diamond a \land \exists \diamond b)$$
Let s_1, s_2 be states of a TS T without terminal states.

s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ:

$$s_1 \models \Phi \iff s_2 \models \Phi$$

analogous definition for **CTL* and **LTL**
Let s_1, s_2 be states of a TS T without terminal states.

s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ:

$$s_1 \models \Phi \text{ iff } s_2 \models \Phi$$

s_1, s_2 are **CTL** equivalent if for all **CTL** formulas Φ:

$$s_1 \models \Phi \text{ iff } s_2 \models \Phi$$

s_1, s_2 are **LTL** equivalent if for all **LTL** formulas φ:

$$s_1 \models \varphi \text{ iff } s_2 \models \varphi$$
CTL/CTL* and bisimulation
CTL/CTL* and bisimulation

\[
\text{bisimulation equivalence} \quad = \quad \text{CTL equivalence} \quad = \quad \text{CTL}^* \text{ equivalence}
\]
CTL/CTL* and bisimulation

bisimulation equivalence

= **CTL** equivalence

= **CTL**\(^*\) equivalence

←←←← for finite TS
CTL/CTL* and bisimulation

Let \mathcal{T} be a finite TS without terminal states, and s_1, s_2 states in \mathcal{T}. Then:

$$s_1 \sim_\mathcal{T} s_2$$

iff s_1 and s_2 are CTL equivalent

iff s_1 and s_2 are CTL* equivalent
CTL/CTL* and bisimulation

- CTL equivalence
- CTL* equivalence
- Bisimulation equivalence

CTL/CTL* and bisimulation

CTL equivalence

CTL* equivalence

Bisimulation equivalence
CTL/CTL* and bisimulation

CTL is a sublogic of CTL*

CTL equivalence

CTL* equivalence

bisimulation equivalence ~(approximately equal to)
CTL/CTL* and bisimulation

for TS that are finitely branching

CTL equivalence

CTL is a sublogic of CTL*

CTL* equivalence

bisimulation equivalence ~
CTL/CTL* and bisimulation

CTL equivalence \sim \CTL* equivalence for arbitrary TS

CTL equivalence for TS that are finitely branching

CTL is a sublogic of CTL*
Bisimulation equivalence \Rightarrow CTL* equivalence

For arbitrary (possibly infinite) transition systems without terminal states:

If s_1, s_2 are states with $s_1 \sim_T s_2$ then for all CTL* formulas Φ:

$$s_1 \models \Phi \iff s_2 \models \Phi$$
Bisimulation equivalence ⇒ CTL* equivalence

show by structural induction on CTL* formulas:

(a) if \(s_1, s_2 \) are states with \(s_1 \sim_T s_2 \) then
 for all CTL* state formulas \(\Phi \):
 \[
 s_1 \models \Phi \iff s_2 \models \Phi
 \]

(b) if \(\pi_1, \pi_2 \) are paths with \(\pi_1 \sim_T \pi_2 \) then
 for all CTL* path formulas \(\varphi \):
 \[
 \pi_1 \models \varphi \iff \pi_2 \models \varphi
 \]
show by structural induction on CTL^* formulas:

(a) if s_1, s_2 are states with $s_1 \sim_T s_2$ then for all CTL^* state formulas Φ:

$$ s_1 \models \Phi \iff s_2 \models \Phi $$

(b) if π_1, π_2 are paths with $\pi_1 \sim_T \pi_2$ then for all CTL^* path formulas φ:

$$ \pi_1 \models \varphi \iff \pi_2 \models \varphi $$

$$ \pi_1 \sim_T \pi_2 \iff \text{def} \quad \pi_1 \text{ and } \pi_2 \text{ are statewise bisimulation equivalent} $$
Bisimulation equivalence \Rightarrow CTL* equivalence

statewise bisimulation equivalent paths:

s_1 \sim_T s_2

\downarrow \downarrow

s_{11} \sim_T s_{12}

\downarrow \downarrow

s_{21} \sim_T s_{22}

\downarrow \downarrow

s_{31} \sim_T s_{32}

\downarrow \downarrow

\ldots \ldots

path π_1 path π_2
Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ:

(a) if $s_1 \sim_T s_2$ then: $s_1 \models \Phi$ iff $s_2 \models \Phi$

(b) if $\pi_1 \sim_T \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$
Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ:

(a) if $s_1 \sim_T s_2$ then: $s_1 \models \Phi$ iff $s_2 \models \Phi$

(b) if $\pi_1 \sim_T \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof by structural induction
Bisimulation equivalence \(\Rightarrow\) CTL* equivalence

For all CTL* state formulas \(\Phi\) and path formulas \(\varphi\):

(a) if \(s_1 \sim_T s_2\) then: \(s_1 \models \Phi\) iff \(s_2 \models \Phi\)

(b) if \(\pi_1 \sim_T \pi_2\) then: \(\pi_1 \models \varphi\) iff \(\pi_2 \models \varphi\)

Proof by structural induction

base of induction:

(a) \(\Phi = \text{true}\) or \(\Phi = a \in AP\)

(b) \(\varphi = \Phi\) for some state formula \(\Phi\) s.t. statement (a) holds for \(\Phi\)
Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ:

(a) if $s_1 \simT s_2$ then: $s_1 \models \Phi$ iff $s_2 \models \Phi$

(b) if $\pi_1 \simT \pi_2$ then: $\pi_1 \models \varphi$ iff $\pi_2 \models \varphi$

Proof by structural induction

step of induction:

(a) consider $\Phi = \Phi_1 \land \Phi_2, \neg \Psi$ or $\exists \varphi$ s.t.

 (a) holds for Φ_1, Φ_2, Ψ

 (b) holds for φ

(b) consider $\varphi = \varphi_1 \land \varphi_2, \neg \varphi', \bigcirc \varphi', \varphi_1 \cup \varphi_2$ s.t.

 (a) holds for $\varphi_1, \varphi_2, \varphi'$
Path lifting for \sim_T

can be completed to
Path lifting for \sim_T

If $s_1 \sim_T s_2$ then for all $\pi_1 \in \text{Paths}(s_1)$ there exists $\pi_2 \in \text{Paths}(s_2)$ with $\pi_1 \sim_T \pi_2$
Path lifting for \sim_T

If $s_1 \sim_T s_2$ then for all $\pi_1 \in Paths(s_1)$ there exists $\pi_2 \in Paths(s_2)$ with $\pi_1 \sim_T \pi_2$
Path lifting for \sim_T

If $s_1 \sim_T s_2$ then for all $\pi_1 \in Paths(s_1)$ there exists $\pi_2 \in Paths(s_2)$ with $\pi_1 \sim_T \pi_2$
Correct or wrong?

If s_1, s_2 are not CTL equivalent then there exists a CTL formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$
Correct or wrong?

If \(s_1, s_2 \) are not \textbf{CTL} equivalent then there exists a \textbf{CTL} formula \(\Phi \) with \(s_1 \models \Phi \) and \(s_2 \not\models \Phi \)

correct.
Correct or wrong?

If s_1, s_2 are not **CTL** equivalent then there exists a **CTL** formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$

correct.

If s_1, s_2 are not **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$
Correct or wrong?

If s_1, s_2 are not **CTL** equivalent then there exists a **CTL** formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$

correct.

If s_1, s_2 are not **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.
Correct or wrong?

If s_1, s_2 are not **CTL** equivalent then there exists a **CTL** formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$

correct.

If s_1, s_2 are not **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.
Correct or wrong?

If s_1, s_2 are not **CTL** equivalent then there exists a **CTL** formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$

correct.

If s_1, s_2 are not **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

$Traces(s_2) \subset Traces(s_1)$
Correct or wrong?

If s_1, s_2 are not **CTL** equivalent then there exists a **CTL** formula Φ with $s_1 \models \Phi$ and $s_2 \not\models \Phi$

correct.

If s_1, s_2 are not **LTL** equivalent then there exists a **LTL** formula φ with $s_1 \models \varphi$ and $s_2 \not\models \varphi$

wrong.

$\text{Traces}(s_2) \subset \text{Traces}(s_1)$

hence: $s_1 \models \varphi$ implies $s_2 \models \varphi$
If \mathcal{T} is a finite TS then, for all states s_1, s_2 in \mathcal{T}:

if s_1, s_2 are **CTL** equivalent then $s_1 \sim_\mathcal{T} s_2$
If \mathcal{T} is a finite TS then, for all states s_1, s_2 in \mathcal{T}:

if s_1, s_2 are CTL equivalent then $s_1 \sim_{\mathcal{T}} s_2$

Proof: show that

$\mathcal{R} \overset{\text{def}}{=} \{ (s_1, s_2) : s_1, s_2 \text{ satisfy the same CTL formulas} \}$

is a bisimulation, i.e., for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s_1 \rightarrow t_1$ then there exists a transition $s_2 \rightarrow t_2$ s.t. $(t_1, t_2) \in \mathcal{R}$
Example: CTL master formulas

\[^\wedge = \{ a \} \]
\[\equiv \{ b \} \]
\[\equiv \emptyset \]
Example: CTL master formulas

\[\hat{=} = \{a\} \]
\[\hat{=} = \{b\} \]
\[\hat{=} = \emptyset \]

bisimulation equivalence \(\sim_T \)
\[= \{(v_1, v_2), (w_1, w_2), \ldots\} \]
Example: CTL master formulas

\[\hat{=} = \{a\} \]
\[\hat{=} = \{b\} \]
\[\hat{=} = \emptyset \]

bisimulation equivalence \(\sim_T \)
\[= \{(v_1, v_2), (w_1, w_2), \ldots\} \]

but \(u_1 \not\sim_T u_2 \)
Example: CTL master formulas

\[
\begin{align*}
\hat{=} &= \{a\} \\
\hat{=} &= \{b\} \\
\hat{=} &= \emptyset
\end{align*}
\]

bisimulation equivalence \(\sim_T\)

\[
= \{(v_1, v_2), (w_1, w_2), \ldots\}
\]

but \(u_1 \not\sim_T u_2\)

as \(u_1 \rightarrow \{w_1, w_2\}\)

\(u_2 \not\rightarrow \{w_1, w_2\}\)
Example: CTL master formulas

CTL master formulas:

$w_1, w_2 \models ?$

$v_1, v_2 \models ?$

$u_1 \models ?$

$u_2 \models ?$

bisimulation equivalence \sim_T

$= \{(v_1, v_2), (w_1, w_2), \ldots\}$
Example: CTL master formulas

bisimulation equivalence $\sim_T = \{(v_1, v_2), (w_1, w_2), \ldots\}$

CTL master formulas:

$w_1, w_2 \models b$

$v_1, v_2 \models ?$

$u_1 \models ?$

$u_2 \models ?$
Example: CTL master formulas

 CTL master formulas:

\[
\begin{align*}
w_1, w_2 & \models b \\
v_1, v_2 & \models \neg a \land \neg b \\
u_1 & \models ? \\
u_2 & \models ?
\end{align*}
\]

bisimulation equivalence \(\sim_T \)

\[
\{ (v_1, v_2), (w_1, w_2), \ldots \}
\]
Example: CTL master formulas

\[\hat{=} = \{ a \} \]
\[\hat{=} = \{ b \} \]
\[\hat{=} = \emptyset \]

\[v_1, v_2 \models \neg a \land \neg b \]
\[u_1 \models (\exists \bigcirc b) \land a \]
\[u_2 \models ? \]

Bisimulation equivalence \(\sim_T \)

\[= \{(v_1, v_2), (w_1, w_2), \ldots\} \]
Example: CTL master formulas

\[u_1 \bowtie u_1 \bowtie u_1 \bowtie u_2 \bowtie u_2 \bowtie u_2 \bowtie \]

\[v_1 \bowtie v_1 \bowtie v_2 \bowtie v_2 \bowtie v_2 \bowtie \]

\[w_1 \bowtie w_1 \bowtie w_2 \bowtie w_2 \bowtie w_2 \bowtie \]

\[^\mathcal{E}=\{a\} \]

\[^\mathcal{E}=\{b\} \]

\[^\mathcal{E}=\emptyset \]

bisimulation equivalence \(\sim_T \)
\[= \{ (v_1, v_2), (w_1, w_2), \ldots \} \]

CTL master formulas:

\[w_1, w_2 \models b \]

\[v_1, v_2 \models \neg a \land \neg b \]

\[u_1 \models (\exists \mathcal{E} b) \land a \]

\[u_2 \models (\neg \exists \mathcal{E} b) \land a \]
...master formulas for \sim_T-classes?

$AP = \{\text{blue, red}\}$
...master formulas for \sim_T-classes?

$$s_1 \sim_T s_2 \not\sim_T u$$

$$AP = \{ \text{blue, red} \}$$
...master formulas for \sim_T-classes?

$AP = \{ \text{blue, red} \}$

$s_1 \sim_T s_2 \not\sim_T u$

$\Phi_w = ?$

$\Phi_C = ?$

where $C = \{s_1, s_2\}$

$\Phi_u = ?$
...master formulas for \sim_T-classes?

$AP = \{\text{blue, red}\}$

$s_1 \sim_T s_2 \not\sim_T u$

$\Phi_w = \text{red}$

$\Phi_C = \text{?}$

$\Phi_u = \text{?}$

where $C = \{s_1, s_2\}$
...master formulas for \sim_T-classes?

$\Phi_w = \text{red}$

$\Phi_C = \text{blue} \land \forall \bigcirc \text{blue}$ where $C = \{s_1, s_2\}$

$\Phi_u = ?$

$AP = \{\text{blue}, \text{red}\}$

$s_1 \sim_T s_2 \not
\sim_T u$
...master formulas for \sim_T-classes?

$AP = \{ \text{blue, red} \}$

$s_1 \sim_T s_2 \not\sim_T u$

\[
\Phi_w = \text{red} \\
\Phi_C = \text{blue} \land \forall \bigcirc \text{blue} \quad \text{where} \ C = \{s_1, s_2\} \\
\Phi_u = \exists \bigcirc \text{red}
\]
If T is a finite TS then, for all states s_1, s_2 in T: if s_1, s_2 are CTL equivalent then $s_1 \sim_T s_2$
If \mathcal{T} is a finite TS then, for all states s_1, s_2 in \mathcal{T}:

if s_1, s_2 are **CTL** equivalent then $s_1 \sim_T s_2$

- wrong for infinite TS
If \mathcal{T} is a finite TS then, for all states s_1, s_2 in \mathcal{T}:
if s_1, s_2 are CTL equivalent then $s_1 \sim_\mathcal{T} s_2$

- wrong for infinite TS
- but also holds for finitely branching TS
If \mathcal{T} is a finite TS then, for all states s_1, s_2 in \mathcal{T}:

- if s_1, s_2 are CTL equivalent then $s_1 \sim_T s_2$

- wrong for infinite TS

- but also holds for finitely branching TS

possibly infinite-state TS such that

- the number of initial states is finite
- for each state the number of successors is finite
CTL equivalence \iff bisimulation equivalence

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be finitely branching.
CTL equivalence \iff bisimulation equivalence

Let $T = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite
* $Post(s)$ is finite for all $s \in S$
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite
* $\text{Post}(s)$ is finite for all $s \in S$

Then, for all states s_1, s_2 in \mathcal{T}:

if s_1, s_2 are CTL equivalent then $s_1 \sim_\mathcal{T} s_2$
CTL equivalence \iff bisimulation equivalence

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite
* $\text{Post}(s)$ is finite for all $s \in S$

Then, for all states s_1, s_2 in \mathcal{T}:

if s_1, s_2 are CTL equivalent then $s_1 \sim_\mathcal{T} s_2$

Proof: as for finite TS.
Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be finitely branching.

* S_0 is finite
* $\text{Post}(s)$ is finite for all $s \in S$

Then, for all states s_1, s_2 in \mathcal{T}:

If s_1, s_2 are CTL equivalent then $s_1 \sim_\mathcal{T} s_2$

Proof: as for finite TS. Amounts showing that

$\mathcal{R} \overset{\text{def}}{=} \{ (s_1, s_2) : s_1, s_2 \text{ satisfy the same CTL formulas} \}$

is a bisimulation.
CTL equivalence \implies bisimulation equivalence
c
If \mathcal{T} is a finitely branching TS then for all states s_1, s_2:

if s_1, s_2 are CTL equivalent then $s_1 \sim_\mathcal{T} s_2$

Proof: show that

$\mathcal{R} \overset{\text{def}}{=} \{(s_1, s_2) : s_1$, s_2 satisfy the same CTL formulas $\}$

is a bisimulation, i.e., for $(s_1, s_2) \in \mathcal{R}$:

(1) $L(s_1) = L(s_2)$

(2) if $s_1 \rightarrow t_1$ then there exists a transition $s_2 \rightarrow t_2$

s.t. $(t_1, t_2) \in \mathcal{R}$
Summary: CTL/CTL* and bisimulation
Summary: CTL/CTL* and bisimulation

Let \mathcal{T} be a finitely branching TS without terminal states, and s_1, s_2 states in \mathcal{T}. Then:

\[
\begin{align*}
 s_1 & \sim_{\mathcal{T}} s_2 \\
 \text{iff} & \quad s_1 \text{ and } s_2 \text{ are CTL equivalent} \\
 \text{iff} & \quad s_1 \text{ and } s_2 \text{ are CTL* equivalent}
\end{align*}
\]
Summary: CTL/CTL* and bisimulation

CTL equivalence \[\sim\] for arbitrary TS

for finite TS: proof relies on master formulas

CTL is a sublogic of CTL*

CTL equivalence

CTL* equivalence
Summary: CTL/CTL* and bisimulation

- CTL/CTL* and bisimulation equivalence
- Proof for finitely branching transition systems: "local" master formulas
- CTL equivalence
- CTL* equivalence
- CTL is a sublogic of CTL*
- For arbitrary TS
so far: we considered

- **CTL/CTL**\(^*\) equivalence
- bisimulation equivalence \(\sim_T\)

for the *states* of a single transition system \(T\)
If \mathcal{T}_1, \mathcal{T}_2 are finitely branching TS over AP without terminal states then:

\[
\mathcal{T}_1 \sim \mathcal{T}_2
\]

iff \mathcal{T}_1 and \mathcal{T}_2 satisfy the same CTL formulas

iff \mathcal{T}_1 and \mathcal{T}_2 satisfy the same CTL^* formulas
Summary: equivalences

LTL equivalence

CTL equivalence

CTL* equivalence

for finitely branching TS
Summary: equivalences

- Trace equivalence
- Bisimulation equivalence
- LTL equivalence
- CTL equivalence
- CTL* equivalence

for finitely branching TS
Summary: equivalences

finite trace equivalence

trace equivalence

bisimulation equivalence

LTL equivalence

CTL equivalence

CTL* equivalence

for finitely branching TS
Summary: equivalences

finite trace equivalence

trace equivalence

bisimulation equivalence

-equivalence w.r.t. LTL safety properties

LTL equivalence

CTL equivalence

CTL* equivalence

for finitely branching TS
Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same $\text{CTL} \cup \text{CTL}$ formulas then $s_1 \sim_{\mathcal{T}} s_2$.

101 / 167
Let T be a finite TS without terminal states and s_1, s_2 states of T.

If s_1, s_2 satisfy the same CTL_U formulas then $s_1 \sim_T s_2$.

where $\text{CTL}_U \equiv \text{CTL}$ without until operator U
Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same $CTL\setminus U$ formulas then $s_1 \sim_T s_2$.

where $CTL\setminus U \equiv CTL$ without until operator U

correct.
Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same $\text{CTL}_{\mathcal{U}}$ formulas then $s_1 \sim_\mathcal{T} s_2$.

where $\text{CTL}_{\mathcal{U}} \equiv \text{CTL}$ without until operator \mathcal{U}

correct. see the proof

"CTL equivalence \implies bisimulation equivalence"
\textbf{CTL}_\text{U}-\text{equivalence} \Rightarrow \text{bisimulation equivalence} \hspace{1cm} \text{ctleq5.2-11}

Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same \text{CTL}_\text{U} formulas then $s_1 \sim_T s_2$.

\textit{Proof.} Show that \text{CTL}_\text{U} equivalence is a \text{bisimulation}
\[\text{CTL}_U\text{-equivalence} \Rightarrow \text{bisimulation equivalence} \]

Let \(T \) be a finite TS without terminal states and \(s_1, s_2 \) states of \(T \).

If \(s_1, s_2 \) satisfy the same \(\text{CTL}_U \) formulas then \(s_1 \sim_T s_2 \).

Proof. Show that \(\text{CTL}_U \) equivalence is a bisimulation

- labeling condition only uses atomic propositions
\textbf{CTL}_U-equivalence \Rightarrow bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same \textbf{CTL}_U formulas then $s_1 \sim_T s_2$.

\textbf{Proof}. Show that \textbf{CTL}_U equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by \textbf{CTL}_U master formulas of the form:
Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same CTL_U formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_U equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by CTL_U master formulas of the form:

$$\exists \bigcirc \Phi_C$$

where $\Phi_C = \bigwedge_D \Phi_{C,D}$
CTL_U-equivalence ⇒ bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and s_1, s_2 states of \mathcal{T}.

If s_1, s_2 satisfy the same CTL_U formulas then $s_1 \sim_T s_2$.

Proof. Show that CTL_U equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by CTL_U master formulas of the form:

$$\exists \bigcirc \Phi_C \quad \text{where} \quad \Phi_C = \bigwedge_D \Phi_{C,D}$$

and $\text{Sat}(\Phi_{C,D}) \subseteq C \setminus D$
Let T be a finite TS without terminal states.

T and its bisimulation quotient T/\sim satisfy the same CTL^* formulas.
Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states.

\mathcal{T} and its bisimulation quotient \mathcal{T}/\sim satisfy the same CTL^* formulas.

correct.
Let T be a finite TS without terminal states.

T and its bisimulation quotient T/\sim satisfy the same CTL^* formulas.

correct. Recall that $T \sim T/\sim$
Correct or wrong?

Let T be a finite TS without terminal states.

T and its bisimulation quotient T/\sim satisfy the same CTL^* formulas.

correct. Recall that $T \sim T/\sim$ as

$$R = \{(s, [s]) : s \in S\}$$

is a bisimulation for $(T, T/\sim)$

here: $[s] = \sim_T$-equivalence class of state s
Let \mathcal{T} be a finite TS without terminal states and let \textit{fair} be a CTL fairness assumption.

If $s_1 \sim_{\mathcal{T}} s_2$ then for all CTL formulas Φ:

$s_1 \models_{\textit{fair}} \Phi$ iff $s_2 \models_{\textit{fair}} \Phi$
Let \(\mathcal{T} \) be a finite TS without terminal states and let \(\text{fair} \) be a \textbf{CTL} fairness assumption.

If \(s_1 \sim_\mathcal{T} s_2 \) then for all \textbf{CTL} formulas \(\Phi \):

\[
\models_{\text{fair}} \Phi \quad \text{iff} \quad \models_{\text{fair}} \Phi
\]

\text{correct}
Let \mathcal{T} be a finite TS without terminal states and let \textit{fair} be a CTL fairness assumption.

If $s_1 \sim_{\mathcal{T}} s_2$ then for all CTL formulas Φ:

$$s_1 \models_{\textit{fair}} \Phi \iff s_2 \models_{\textit{fair}} \Phi$$

correct, as $\models_{\textit{fair}}$ is “CTL*-definable”
Let \mathcal{T} be a finite TS without terminal states and let \textit{fair} be a CTL fairness assumption.

If $s_1 \sim_{\mathcal{T}} s_2$ then for all CTL formulas Φ:

$$s_1 \models_{\text{fair}} \Phi \text{ iff } s_2 \models_{\text{fair}} \Phi$$

correct, as \models_{fair} is "CTL^*-definable"

For each CTL^* state formula Φ there exists a CTL^* formula ψ s.t. $s \models \psi$ iff $s \models_{\text{fair}} \Phi$
Let \(\mathcal{T} \) be a finite TS without terminal states and let \(\textit{fair} \) be a CTL fairness assumption.

If \(s_1 \sim_{\mathcal{T}} s_2 \) then for all CTL formulas \(\Phi \):

\[
s_1 \models_{\textit{fair}} \Phi \text{ iff } s_2 \models_{\textit{fair}} \Phi
\]

Correct, as \(\models_{\textit{fair}} \) is “CTL*-definable”

For each CTL* state formula \(\Phi \) there exists a CTL* formula \(\Psi \) s.t. \(s \models \Psi \) iff \(s \models_{\textit{fair}} \Phi \)

Example: for \(\Phi = \exists \boxdot (a \land \forall \diamond b) \)
Correct or wrong?

Let T be a finite TS without terminal states and let \textit{fair} be a CTL fairness assumption.

If $s_1 \sim_T s_2$ then for all CTL formulas ϕ:

$$s_1 \models_{\textit{fair}} \phi \iff s_2 \models_{\textit{fair}} \phi$$

Correct, as $\models_{\textit{fair}}$ is “CTL*-definable”

For each CTL* state formula ϕ there exists a CTL* formula ψ s.t.

$$s \models \psi \iff s \models_{\textit{fair}} \phi$$

Example: for $\phi = \exists \Box(a \land \forall \Diamond b)$

$$\psi = \exists (\textit{fair} \land \Box(a \land \forall (\textit{fair} \rightarrow \Diamond b)))$$
Let T be a finite TS over AP without terminal states.

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$s_1 \models E$ iff $s_2 \models E$
Let T be a finite TS over AP without terminal states.

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models E \text{ iff } s_2 \models E$$

correct.
Correct or wrong?

Let \mathcal{T} be a finite TS over AP without terminal states.

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^\text{AP})^\omega$: $s_1 \models E$ iff $s_2 \models E$

is correct.

Note that:

(1) $s_1 \sim_T s_2 \implies \text{Traces}(s_1) = \text{Traces}(s_2)$
Correct or wrong?

Let T be a finite TS over AP without terminal states.

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models E \iff s_2 \models E$$

correct.

Note that:

1. $s_1 \sim_T s_2 \implies \text{Traces}(s_1) = \text{Traces}(s_2)$
2. $s \models E \iff \text{Traces}(s) \subseteq E$
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models_\mathcal{F} E \text{ iff } s_2 \models_\mathcal{F} E$$
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption

e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all \mathbf{LT} properties $E \subseteq (2^{AP})^\omega$:

\[
s_1 \models \mathcal{F} E \text{ iff } s_2 \models \mathcal{F} E
\]

wrong.
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models_{\mathcal{F}} E \text{ iff } s_2 \models_{\mathcal{F}} E$$

wrong.

$\mathcal{F} \equiv$ strong fairness assumption for action α
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models_{\mathcal{F}} E \text{ iff } s_2 \models_{\mathcal{F}} E$$

wrong.

$$E \equiv \diamond \text{red}$$

$\mathcal{F} \equiv$ strong fairness assumption for action α
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption e.g., strong fairness for a single action α

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$: $s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

Wrong.

$E \equiv \Diamond \text{red}$

$s_1 \models_{\mathcal{F}} E$

$s_2 \not\models_{\mathcal{F}} E$

$\mathcal{F} \equiv \text{strong fairness assumption for action } \alpha$
Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$: $s_1 \models_\mathcal{F} E$ iff $s_2 \models_\mathcal{F} E$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^\omega$: $s_1 \models_\mathcal{F} E$ iff $s_2 \models_\mathcal{F} E$
Correct or wrong?

Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models_{\mathcal{F}} E \iff s_2 \models_{\mathcal{F}} E$$

Wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models_{\mathcal{F}} E \iff s_2 \models_{\mathcal{F}} E$$

Correct.
Let \mathcal{F} be an action-based strong fairness assumption

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models \mathcal{F} E \iff s_2 \models \mathcal{F} E$$

wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^\omega$:

$$s_1 \models \mathcal{F} E \iff s_2 \models \mathcal{F} E$$

correct.

- realizable fairness irrelevant for safety properties
Let \mathcal{F} be an action-based strong fairness assumption.

If $s_1 \sim_T s_2$ then for all LT properties $E \subseteq (2^{AP})^\omega$:
$s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

Wrong.

If $s_1 \sim_T s_2$ then for all safety properties $E \subseteq (2^{AP})^\omega$:
$s_1 \models_{\mathcal{F}} E$ iff $s_2 \models_{\mathcal{F}} E$

Correct.

- realizable fairness irrelevant for safety properties
- strong action-based fairness assumptions are realizable