Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic
Computation-Tree Logic
Equivalences and Abstraction
Regular LT properties
Idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata.
Regular LT properties

Idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata.

- regular safety properties:
 \textbf{NFA}-representation for the bad prefixes
Idea: define regular LT properties to be those languages of infinite words over the alphabet 2^{AP} that have a representation by a finite automata

- regular safety properties:
 \textbf{NFA}-representation for the bad prefixes

- other regular LT properties:
 representation by ω-automata, i.e., acceptors for infinite words
Overview

Introduction
Modelling parallel systems
Linear Time Properties

Regular Properties
 regular safety properties
 \(\omega\)-regular properties
 model checking with Büchi automata

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction
Recall: definition of safety properties

Let E be a LT property over AP, i.e., $E \subseteq (2^{AP})^\omega$.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^\omega \setminus E$$

there exists a finite prefix $A_0 A_1 \ldots A_n$ of σ such that none of the words $A_0 A_1 \ldots A_n B_{n+1} B_{n+2} B_{n+3} \ldots$ belongs to E, i.e.,

$$E \cap \{ \sigma' \in (2^{AP})^\omega : A_0 \ldots A_n \text{ is a prefix of } \sigma' \} = \emptyset$$

Such words $A_0 A_1 \ldots A_n$ are called bad prefixes for E.

$$BadPref \overset{\text{def}}{=} \text{set of bad prefixes for } E \subseteq (2^{AP})^+$$
Regular safety properties
Regular safety properties

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$BadPref = \text{set of all bad prefixes for } E$

is regular.
Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$$\text{BadPref} = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$$

is regular.
Let $E \subseteq (2^{AP})^\omega$ be a safety property.

E is called regular iff the language

$$\text{BadPref} = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$$

is regular.

$$\text{BadPref} = \mathcal{L}(A) \text{ for some NFA } A \text{ over the alphabet } 2^{AP}$$
Nondeterministic finite automata (NFA)
Nondeterministic finite automata (NFA)

NFA $A = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states
Nondeterministic finite automata (NFA)

NFA \(\mathcal{A} = (Q, \Sigma, \delta, Q_0, F) \)

- \(Q \) finite set of states
- \(\Sigma \) alphabet
- \(\delta : Q \times \Sigma \to 2^Q \) transition relation
- \(Q_0 \subseteq Q \) set of initial states
- \(F \subseteq Q \) set of final states, also called accept states

Run for a word \(A_0A_1 \ldots A_{n-1} \in \Sigma^* \):

State sequence \(\pi = q_0 q_1 \ldots q_n \) where \(q_0 \in Q_0 \) and \(q_{i+1} \in \delta(q_i, A_i) \) for \(0 \leq i < n \)
Nondeterministic finite automata (NFA)

NFA $A = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

run for a word $A_0A_1 \ldots A_{n-1} \in \Sigma^*$:

state sequence $\pi = q_0q_1 \ldots q_n$ where $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, A_i)$ for $0 \leq i < n$

run π is called accepting if $q_n \in F$
Nondeterministic finite automata (NFA)

NFA $A = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $L(A) \subseteq \Sigma^*$ is given by:

$$L(A) = \text{set of finite words over } \Sigma \text{ that have an accepting run in } A$$
Nondeterministic finite automata (NFA)

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

- Q finite set of states
- Σ alphabet
 - here: $\Sigma = 2^{AP}$
- $\delta : Q \times \Sigma \rightarrow 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

$\mathcal{L}(\mathcal{A}) = \text{set of finite words over } \Sigma \text{ that have an accepting run in } \mathcal{A}$
Notations in pictures for NFA

- **Initial state**: arrow pointing out from a circle
- **Nonfinal state**: circle
- **Final state**: square

Diagram:

- **Vertices**: q_0, q_F
- **Edges**:
 - q_0 to q_F with label B
 - q_F to q_0 with label A
 - q_0 to itself labeled B
 - q_F to itself labeled A
Notations in pictures for NFA

NFA \mathcal{A} with state space $\{q_0, q_F\}$

- q_0 initial state
- q_F final state

alphabet $\Sigma = \{A, B\}$
Notations in pictures for NFA

initial state

nonfinal state

final state

accepted language $\mathcal{L}(A)$:

set of all finite words over $\{A, B\}$
ending with letter A
Symbolic notations

for transitions in **NFA** over the alphabet $\Sigma = 2^{AP}$
Symbolic notations

NFA $A = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$

symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$
Symbolic notations

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$

symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then

$q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$

where $A \subseteq AP$ such that $A \models \Phi$

Example: if $AP = \{a, b, c\}$ then

$q \xrightarrow{a \land \neg b} p \equiv \{ q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\} \}$
Symbolic notations

NFA $A = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$

symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then

$q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$

where $A \subseteq AP$ such that $A \models \Phi$

Example: if $AP = \{a, b, c\}$ then

$q \xrightarrow{a \land \neg b} p \equiv \{ q \xrightarrow{A} p : A=\{a, c\} \text{ or } A=\{a\} \}$

$q \xrightarrow{\text{true}} p \equiv \{ q \xrightarrow{A} p : A \subseteq AP \}$
A safety property $E \subseteq (2^{\text{AP}})^\omega$ is called regular iff

$pref = \text{set of all bad prefixes for } E \subseteq (2^{\text{AP}})^+$

$pref = \mathcal{L}(A)$ for some NFA A

over the alphabet 2^{AP}

is regular.
A safety property $E \subseteq (2^\text{AP})^\omega$ is called regular iff

$$\text{BadPref} = \text{set of all bad prefixes for } E \subseteq (2^\text{AP})^+$$

$$\text{BadPref} = \mathcal{L}(A) \text{ for some NFA } A$$

over the alphabet 2^AP is regular.

![Diagram](image)

$\mathcal{L}(A)$ for some NFA A

$AP = \{a, b\}$
Regular safety properties

A safety property $E \subseteq (2^{AP})^\omega$ is called regular iff

\[\text{BadPref} = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+ \]

\[\text{BadPref} = \mathcal{L}(A) \text{ for some NFA } A \]

is regular.

\[AP = \{a, b\} \]

symbolic notation:

\[a \land \neg b \equiv \{a\} \]
A safety property \(E \subseteq (2^{AP})^\omega \) is called regular iff

\[
\text{BadPref} = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+ \text{ is regular.}
\]

\[
\text{BadPref} = \mathcal{L}(A) \text{ for some NFA } A
\]

over the alphabet \(2^{AP} \) is regular.

safety property \(E \): “\(a \land \neg b \) never holds twice in a row”
“Every red phase is preceded by a yellow phase”
“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \ldots$ s.t. for all $i \geq 0$:

\[\text{red} \in A_i \iff i \geq 1 \text{ and yellow} \in A_{i-1} \]
Example: regular safety property

“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \ldots$ s.t. for all $i \geq 0$:

\[\text{red} \in A_i \implies i \geq 1 \text{ and } \text{yellow} \in A_{i-1} \]

DFA for all (possibly non-minimal) bad prefixes
Example: regular safety property

“Every red phase is preceded by a yellow phase”

set of all infinite words $A_0 A_1 A_2 \ldots$ s.t. for all $i \geq 0$:

$\text{red} \in A_i \iff i \geq 1$ and $\text{yellow} \in A_{i-1}$

DFA for minimal bad prefixes
Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^\text{AP})^\omega$ be a safety property.

$\text{BadPref} = \text{set of all bad prefixes for } E$

$\text{MinBadPref} = \text{set of minimal bad prefixes for } E$

Claim: BadPref is regular \iff MinBadPref is regular
Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

$\text{BadPref} = \text{set of all bad prefixes for } E$

$\text{MinBadPref} = \text{set of minimal bad prefixes for } E$

Claim: BadPref is regular \iff MinBadPref is regular

“\iff”: Let \mathcal{A} be an NFA for MinBadPref.
Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

- $\text{BadPref} = \text{set of all bad prefixes for } E$
- $\text{MinBadPref} = \text{set of minimal bad prefixes for } E$

\textbf{Claim:} BadPref is regular \iff MinBadPref is regular

\iff: Let \mathcal{A} be an NFA for MinBadPref. An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p.
Let $E \subseteq (2^\mathcal{AP})^\omega$ be a safety property.

$\text{BadPref} = \text{set of all bad prefixes for } E$

$\text{MinBadPref} = \text{set of minimal bad prefixes for } E$

Claim: BadPref is regular $\iff \text{MinBadPref}$ is regular

“\iff”: Let \mathcal{A} be an NFA for MinBadPref.

An NFA \mathcal{A}' for BadPref is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p.

“\implies”: Let \mathcal{A} be a DFA for BadPref.

Bad prefixes vs minimal bad prefixes

Let $E \subseteq (2^{AP})^\omega$ be a safety property.

$\text{BadPref} = \text{set of all bad prefixes for } E$

$\text{MinBadPref} = \text{set of minimal bad prefixes for } E$

Claim: BadPref is regular \iff MinBadPref is regular

“\iff”: Let A be an NFA for MinBadPref.

An NFA A' for BadPref is obtained from A by adding self-loops $p \xrightarrow{\text{true}} p$ to all final states p.

“\implies”: Let A be a DFA for BadPref.

A DFA A' for MinBadPref is obtained from A by removing all outgoing transitions of final states.
Every **invariant** is regular.
Correct or wrong?

Every \textit{invariant} is regular.

correct.
Correct or wrong?

Every invariant is regular.

correct.

Let E be an invariant with invariant condition Φ.
Every invariant is regular.

Correct.

Let E be an invariant with invariant condition Φ

is a DFA for the language of all bad prefixes
Correct or wrong?

Every invariant is regular.

correct.

Let E be an invariant with invariant condition Φ

is a DFA for the language of all minimal bad prefixes
Example: DFA for MUTEX

“The two processes are never simultaneously in their critical sections”
Example: DFA for MUTEX

“The two processes are never simultaneously in their critical sections”

DFA for minimal bad prefixes over the alphabet 2^{AP} where $AP = \{\text{crit}_1, \text{crit}_2\}$

q_0 \rightarrow q_1

$\neg\text{crit}_1 \lor \neg\text{crit}_2$

$\text{crit}_1 \land \text{crit}_2$
Correct or wrong?

Every safety property is regular.
Correct or wrong?

Every safety property is regular.

wrong.
Correct or wrong?

Every safety property is regular.

wrong. e.g., $AP = \{\text{pay, drink}\}$

$$E = \text{set of all infinite words } A_0 A_1 A_2 \ldots \in (2^AP)^\omega$$

such that for all $j \in \mathbb{N}$:

$$\left| \{i \leq j : \text{pay} \in A_i \} \right| \geq \left| \{i \leq j : \text{drink} \in A_i \} \right|$$
Correct or wrong?

Every safety property is regular.

Wrong. e.g., $AP = \{\text{pay, drink}\}$

$E = \text{set of all infinite words } A_0 A_1 A_2 \ldots \in (2^{AP})^\omega$

such that for all $j \in \mathbb{N}$:

$|\{i \leq j : \text{pay} \in A_i\}| \geq |\{i \leq j : \text{drink} \in A_i\}|$

- E is a safety property, but
- the language of (minimal) bad prefixes is \textit{not} regular
Verifying regular safety properties
Verifying regular safety properties

given: finite TS \mathcal{T}
regular safety property E
(represented by an NFA for its bad prefixes)

question: does $\mathcal{T} \models E$ hold?
Verifying regular safety properties

given: finite TS \mathcal{T}
regular safety property E
(represented by an NFA for its bad prefixes)

question: does $\mathcal{T} \models E$ hold?

method: relies on an analogy between the tasks:

- checking language inclusion for NFA
- model checking regular safety properties
<table>
<thead>
<tr>
<th>Language inclusion for NFA</th>
<th>Verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(A_1) \subseteq L(A_2)$?</td>
<td>$Traces(T) \subseteq E$?</td>
</tr>
</tbody>
</table>

- $L(A_1) \subseteq L(A_2)$: This checks if the language generated by A_1 is included in the language generated by A_2.
- $Traces(T) \subseteq E$: This checks if the set of traces of T is included in the set E.

These checks are fundamental in verifying properties in automata theory.
<table>
<thead>
<tr>
<th>language inclusion for NFA</th>
<th>verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \ ?)</td>
<td>(\text{Traces}(T) \subseteq E \ ?)</td>
</tr>
<tr>
<td>check whether (\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))) is empty</td>
<td></td>
</tr>
</tbody>
</table>

\(\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \) ?

\(\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2)) \) is empty
<table>
<thead>
<tr>
<th>language inclusion for NFA</th>
<th>verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?</td>
<td>$\text{Traces}(T) \subseteq E$?</td>
</tr>
<tr>
<td>check whether $\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))$ is empty</td>
<td></td>
</tr>
<tr>
<td>1. complement $\overline{A_2}$, i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$</td>
<td></td>
</tr>
<tr>
<td>language inclusion for NFA</td>
<td>verification of regular safety properties</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>$L(A_1) \subseteq L(A_2)$?</td>
<td>$Traces(T) \subseteq E$?</td>
</tr>
<tr>
<td>check whether $L(A_1) \cap (\Sigma^* \setminus L(A_2))$ is empty</td>
<td></td>
</tr>
<tr>
<td>1. complement A_2, i.e., construct NFA $\overline{A_2}$ with $L(\overline{A_2}) = \Sigma^* \setminus L(A_2)$</td>
<td></td>
</tr>
<tr>
<td>2. construct NFA \mathcal{A} with $L(\mathcal{A}) = L(A_1) \cap L(\overline{A_2})$</td>
<td></td>
</tr>
<tr>
<td>language inclusion for NFA</td>
<td>verification of regular safety properties</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?</td>
<td>$\text{Traces}(T) \subseteq E$?</td>
</tr>
</tbody>
</table>

check whether
$\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))$
is empty

1. complement A_2, i.e.,
 construct NFA $\overline{A_2}$ with
 $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$

2. construct NFA A with
 $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(\overline{A_2})$

3. check if $\mathcal{L}(A) = \emptyset$
<table>
<thead>
<tr>
<th>Language inclusion for NFA</th>
<th>Verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?</td>
<td>$\text{Traces}(T) \subseteq E$?</td>
</tr>
<tr>
<td>check whether $\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))$ is empty</td>
<td>check whether $\text{Traces}_{\text{fin}}(T) \cap \text{BadPref}$ is empty</td>
</tr>
</tbody>
</table>

1. complement A_2, i.e.,
 construct NFA $\overline{A_2}$ with
 $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$
2. construct NFA A with
 $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(\overline{A_2})$
3. check if $\mathcal{L}(A) = \emptyset$
<table>
<thead>
<tr>
<th>language inclusion for NFA</th>
<th>verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?</td>
<td>$Traces(T) \subseteq E$?</td>
</tr>
<tr>
<td>check whether $\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))$ is empty</td>
<td>check whether $Traces_{\text{fin}}(T) \cap \text{BadPref}$ is empty</td>
</tr>
</tbody>
</table>

1. complement A_2, i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$

2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(A_1) \cap \mathcal{L}(\overline{A_2})$

3. check if $\mathcal{L}(\mathcal{A}) = \emptyset$

1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = \text{BadPref}$
<table>
<thead>
<tr>
<th>Language inclusion for NFA</th>
<th>Verification of regular safety properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?</td>
<td>$\text{Traces}(T) \subseteq E$?</td>
</tr>
<tr>
<td>check whether $\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))$ is empty</td>
<td>check whether $\text{Traces}_{\text{fin}}(T) \cap \text{BadPref}$ is empty</td>
</tr>
<tr>
<td>1. complement A_2, i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$</td>
<td>1. construct NFA A for the bad prefixes $\mathcal{L}(\overline{A}) = \text{BadPref}$</td>
</tr>
<tr>
<td>2. construct NFA A with $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(\overline{A_2})$</td>
<td>2. construct TS T' with $\text{Traces}_{\text{fin}}(T') = \ldots$</td>
</tr>
<tr>
<td>3. check if $\mathcal{L}(A) = \emptyset$</td>
<td></td>
</tr>
</tbody>
</table>
Language Inclusion for NFA

<table>
<thead>
<tr>
<th>Language Inclusion for NFA</th>
<th>Verification of Regular Safety Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)) ?</td>
<td>(\text{Traces}(T) \subseteq E) ?</td>
</tr>
<tr>
<td>check whether (\mathcal{L}(A_1) \cap (\Sigma^* \setminus \mathcal{L}(A_2))) is empty</td>
<td>check whether (\text{Traces}_{\text{fin}}(T) \cap \text{BadPref}) is empty</td>
</tr>
<tr>
<td>1. complement (A_2), i.e., construct NFA (\overline{A_2}) with (\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2))</td>
<td>1. construct NFA (A) for the bad prefixes with (\mathcal{L}(\overline{A}) = \text{BadPref})</td>
</tr>
<tr>
<td>2. construct NFA (A) with (\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(\overline{A_2}))</td>
<td>2. construct TS (T') with (\text{Traces}_{\text{fin}}(T') = \ldots)</td>
</tr>
<tr>
<td>3. check if (\mathcal{L}(A) = \emptyset)</td>
<td>3. invariant checking for (T')</td>
</tr>
</tbody>
</table>
Checking regular safety properties

finite transition system \mathcal{T}

regular safety property E

safety checking

does $\mathcal{T} \models E$ hold?

yes

no
Checking regular safety properties

finite transition system \mathcal{T}

regular safety property E

NFA \mathcal{A} for the bad prefixes of E

safety checking

does $\mathcal{T} \models E$ hold?

yes

no
Checking regular safety properties

finite transition system \mathcal{T}

regular safety property E

NFA \mathcal{A} for the bad prefixes of E

safety checking via invariant checking

$\mathcal{T} \otimes \mathcal{A} \models \text{“never final state”}$

yes

no
Checking regular safety properties

finite transition system \mathcal{T}

regular safety property E

NFA \mathcal{A} for the bad prefixes of E

safety checking

via invariant checking

$\mathcal{T} \otimes \mathcal{A} \models \text{“never final state”}$

yes

no \pm error indication
Product of a TS and an NFA

finite transition system
\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \]

NFA for bad prefixes
\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \]

path fragment \(\hat{\pi} \)
Product of a TS and an NFA

finite transition system

\[T = (S, \text{Act}, \rightarrow, S_0, AP, L) \]

NFA for bad prefixes

\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \]

\[
\begin{align*}
L(s_0) &= A_0 \\
L(s_1) &= A_1 \\
L(s_2) &= A_2 \\
& \vdots \\
L(s_n) &= A_n
\end{align*}
\]

path fragment \(\hat{\pi} \)

trace
Product of a TS and an NFA

finite transition system
\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \]

NFA for bad prefixes
\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \]

path fragment \(\hat{\pi} \)

trace

run for \(\text{trace}(\hat{\pi}) \)
Product of a TS and an NFA

finite transition system
\[T = (S, \text{Act}, \rightarrow, S_0, AP, L) \]

NFA for bad prefixes
\[A = (Q, 2^{AP}, \delta, Q_0, F) \]

\[L(s_0) = A_0 \]
\[L(s_1) = A_1 \]
\[L(s_2) = A_2 \]
\[\vdots \]
\[L(s_n) = A_n \]

\[\langle s_0, q_1 \rangle \]
\[\langle s_1, q_2 \rangle \]
\[\langle s_2, q_3 \rangle \]
\[\vdots \]
\[\langle s_n, q_{n+1} \rangle \]

path fragment \(\hat{\pi} \)

trace

path fragm. in product

run for \(trace(\hat{\pi}) \)
Product transition system
Product transition system

\[T = (S, Act, \rightarrow, S_0, AP, L) \] transition system

\[A = (Q, 2^{AP}, \delta, Q_0, F) \] NFA
Product transition system

\[T = (S, \text{Act}, \rightarrow, S_0, AP, L) \] transition system

\[A = (Q, 2^{AP}, \delta, Q_0, F) \] NFA

product-TS \[T \otimes A \overset{\text{def}}{=} (S \times Q, \text{Act}, \rightarrow', S'_0, AP', L') \]
Product transition system

\[T \quad = \quad (S, \text{Act}, \rightarrow, S_0, AP, L) \quad \text{transition system} \]

\[\mathcal{A} \quad = \quad (Q, 2^{AP}, \delta, Q_0, F) \quad \text{NFA} \]

product-TS \(T \otimes \mathcal{A} \overset{\text{def}}{=} (S \times Q, \text{Act}, \rightarrow', S'_0, AP', L') \)

\[
\begin{align*}
 s \xrightarrow{\alpha} s' & \quad \land \quad q' \in \delta(q, L(s')) \\
 \langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle
\end{align*}
\]
Product transition system

\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \quad \text{transition system} \]

\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \quad \text{NFA} \]

product-TS \(\mathcal{T} \otimes \mathcal{A} \overset{\text{def}}{=} (S \times Q, \text{Act}, \rightarrow', S'_0, AP', L') \)

\[
\begin{align*}
s \xrightarrow{\alpha} s' & \land q' \in \delta(q, L(s')) \\
\langle s', q' \rangle & \xrightarrow{\alpha'} \langle s', q' \rangle
\end{align*}
\]

initial states: \(S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \} \)
Product transition system

\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \] transition system

\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \] NFA

product-TS \(\mathcal{T} \otimes \mathcal{A} \overset{\text{def}}{=} (S \times Q, \text{Act}, \rightarrow', S'_0, AP', L') \)

\[
\begin{align*}
 s & \xrightarrow{\alpha} s' \land q' \in \delta(q, L(s')) \\
 \langle s, q \rangle & \xrightarrow{\alpha} ' \langle s', q' \rangle
\end{align*}
\]

initial states: \(S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \} \)

for \(P \subseteq Q \) and \(A \subseteq AP \):

\[\delta(P, A) = \bigcup_{p \in P} \delta(p, A) \]
Product transition system

\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \] transition system

\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \] NFA

product-TS \(\mathcal{T} \otimes \mathcal{A} \) \(\overset{\text{def}}{=} \ (S \times Q, \text{Act}, \rightarrow', S'_0, AP', L') \)

\[
\begin{align*}
\langle s, q \rangle \xrightarrow{\alpha}\langle s', q' \rangle & \land q' \in \delta(q, L(s')) \\
\langle s, q \rangle \xrightarrow{\alpha} & \langle s', q' \rangle
\end{align*}
\]

initial states: \(S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \} \)

set of atomic propositions: \(AP' = Q \)
Product transition system

\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L) \] transition system

\[\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \] NFA

product-TS \(\mathcal{T} \otimes \mathcal{A} \overset{\text{def}}{=} (S \times Q, \text{Act}, \rightarrow', S_0', AP', L') \)

\[s \xrightarrow{\alpha} s' \land q' \in \delta(q, L(s')) \]

\[\langle s, q \rangle \xrightarrow{\alpha} \langle s', q' \rangle \]

initial states: \(S_0' = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \} \)

set of atomic propositions: \(AP' = Q \)

labeling function: \(L'(\langle s, q \rangle) = \{ q \} \)
Example: product-TS

transition system \mathcal{T} over $AP = \{\text{red, yellow}\}$
Example: product-TS

transition system \mathcal{T} over
$AP = \{\text{red}, \text{yellow}\}$

\mathcal{T} satisfies the safety property E
“every red phase is preceded by a yellow phase”
Example: product-TS

Transition system \mathcal{T} over $AP = \{red, yellow\}$ satisfies the safety property E

"every red phase is preceded by a yellow phase"

DFA A for the bad prefixes for E
Example: product-TS

\[T \otimes A \]

(4 * 3 = 12 states)
Example: product-TS

\[L(\text{green}) = \emptyset \]
Example: product-TS

Initial state:
\[\langle \text{green}, \delta(q_0, \emptyset) \rangle = q_0 \]
Example: product-TS

lifting the transition

\[\text{green} \rightarrow \text{yellow} \]
Example: product-TS

\[
\begin{align*}
green &\rightarrow \text{red} \\
\text{yellow} &\rightarrow \text{red/yellow} \\
green &\rightarrow \text{yellow} \\
\text{red/yellow} &\rightarrow \text{yellow} \\
\end{align*}
\]

lifting the transition
\[
\langle \text{green}, q_0 \rangle \rightarrow \langle \text{yellow}, ? \rangle
\]
Example: product-TS

lifting the transition

\[\langle \text{green}, q_0 \rangle \]
\[\rightarrow \]
\[\langle \text{yellow}, \delta(q_0, \{\text{yellow}\}) \rangle \]
\[= q_1 \]
Example: product-TS

lifting the transition

\[\langle \text{yellow}, q_1 \rangle \]

\[\langle \text{red}, \delta(q_1, \{ \text{red} \}) \rangle \]

\[= q_0 \]
Example: product-TS

lifting the transition
red \rightarrow red/yellow

$\langle \text{red}, q_0 \rangle$
\downarrow
$\langle \text{red/yellow}, \delta(q_0, \emptyset) \rangle$
$= q_0$
Example: product-TS

lifting the transition

\[
\text{red/yellow} \rightarrow \text{green}
\]

\[
\langle \text{red/yellow}, q_0 \rangle
\]

\[
\langle \text{green}, \delta(q_0, \emptyset) \rangle
\]

\[
= q_0
\]
Example: product-TS

\[T \otimes A \]

\[4 \times 3 = 12 \text{ states, but just 4 reachable states} \]
Example: product-TS

\[\text{set of propositions} \]

\[AP' = \{ q_0, q_1, q_F \} \]
Example: product-TS

![Diagram showing transitions between states labeled as red, yellow, green, and set of propositions $AP' = \{q_0, q_1, q_F\}$]

set of propositions $AP' = \{q_0, q_1, q_F\}$

invariant condition $\neg q_F$ holds for all reachable states
Technical remark on the product-TS

Definition of the product of

- a transition system $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$

- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, \text{Act}, \rightarrow', \ldots)$ is a TS
definition of the product of

- a transition system \(\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L) \)
 - without terminal states

- an NFA \(\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \)

then the product \(\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots) \) is a TS
Technical remark on the product-TS

Definition of the product of

- a transition system \(\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L) \)

- an NFA \(\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \)

then the product \(\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots) \) is a TS

without terminal states
Technical remark on the product-TS

Definition of the product of

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$

without terminal states

- an NFA $A = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $T \otimes A = (S \times Q, Act, \rightarrow', \ldots)$ is a TS

without terminal states

Assumptions on the NFA A:
Technical remark on the product-TS

definition of the product of

 • a transition system $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$

 without terminal states

 • an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $\mathcal{T} \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots)$ is a TS

 without terminal states

assumptions on the NFA \mathcal{A}:

 • \mathcal{A} is non-blocking, i.e.,

 $Q_0 \neq \emptyset \land \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset$
Technical remark on the product-TS

definition of the product of

• a transition system \(T = (S, Act, \rightarrow, S_0, AP, L) \)

\[\text{without terminal states} \]

• an NFA \(\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F) \)

then the product \(T \otimes \mathcal{A} = (S \times Q, Act, \rightarrow', \ldots) \) is a TS

\[\text{without terminal states} \]

assumptions on the NFA \(\mathcal{A} \):

• \(\mathcal{A} \) is non-blocking, i.e.,

\[Q_0 \neq \emptyset \land \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset \]

• no initial state of \(\mathcal{A} \) is final, i.e., \(Q_0 \cap F = \emptyset \)
Non-blocking NFA

\[
\text{alphabet } \Sigma = 2^{\text{AP}} \text{ where } \text{AP} = \{a, b\}
\]
Non-blocking NFA

\[\Sigma = \{a, b\} \]

blocks for input
\[\{a\} \cap \{a\} \]

alphabet \(\Sigma = 2^{AP} \) where \(AP = \{a, b\} \)
Non-blocking NFA

NFA \mathcal{A} $\ideal{	ext{equivalent}} \mathcal{A}'$

blocks for input $\{a\} \varnothing \{a\}$

add a trap state stop
Non-blocking NFA

NFA \mathcal{A}

$\neg a \land b \rightarrow p \rightarrow b \rightarrow u$

$q \rightarrow a \land \neg b$

$r \leftrightarrow b$

$\neg a$

blocks for input

$\{a\} \varnothing \{a\}$

equivalent NFA \mathcal{A}'

$\neg a \land b \rightarrow p \rightarrow b \rightarrow u$

$q \rightarrow a \land \neg b$

$r \leftrightarrow b$

$\neg a$

true

stop

add a trap state \textit{stop}
Non-blocking NFA

NFA \mathcal{A}

Equivalent NFA \mathcal{A}'

blocks for input $\{a\} \not\in \{a\}$

non-blocking

true

true

stop
NFA where no initial state is final

NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$
NFA where no initial state is final

NFA A with $Q_0 \cap F \neq \emptyset \quad \rightsquigarrow \quad$ NFA A' with $Q_0 \cap F = \emptyset$
NFA where no initial state is final

NFA A with $Q_0 \cap F \neq \emptyset \implies$ NFA A' with $Q_0 \cap F = \emptyset$

$L(A') = L(A) \setminus \{\epsilon\}$
NFA where no initial state is final

\[\text{NFA } \mathcal{A} \text{ with } Q_0 \cap F \neq \emptyset \quad \mapsto \quad \text{NFA } \mathcal{A}' \text{ with } Q_0 \cap F = \emptyset \]

\[
\begin{align*}
\text{NFA } \mathcal{A} & \quad \text{NFA } \mathcal{A}' \\
q_0 & \quad q'_0 \\
a \land b & \quad a \land b \\
b & \quad a \land b \\
r & \quad b \\
\neg a & \quad \neg a \\
\end{align*}
\]

\[\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\} \]

\textit{note:} if \(\mathcal{A} \) is an NFA for the bad prefixes of a safety property then

\[\varepsilon \notin \mathcal{L}(\mathcal{A}) = \text{BadPref} \]
Model checking regular safety properties
Model checking regular safety properties

... via a reduction to invariant checking
Model checking regular safety properties

Let $T = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system

$A = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E
Model checking regular safety properties

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system (without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E
Model checking regular safety properties

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system (without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)
Model checking regular safety properties

Let \(\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L) \) be a transition system (without terminal states)

\[A = (Q, 2^{AP}, \delta, Q_0, F) \]

be an NFA for the bad prefixes of a regular safety property \(E \)
(non-blocking and \(Q_0 \cap F = \emptyset \))

The following statements are equivalent:

(1) \(\mathcal{T} \models E \)

(2) \(\text{Traces}_{\text{fin}}(\mathcal{T}) \cap L(A) = \emptyset \)
Model checking regular safety properties

Let $\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system (without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA

for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

(1) $\mathcal{T} \models E$

(2) $\text{Traces}_{\text{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

(3) $\mathcal{T} \otimes \mathcal{A} \models \text{invariant \ "always } \neg F\text{"}$
Model checking regular safety properties

Let $\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, AP, L)$ be a transition system (without terminal states)

$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

1. $\mathcal{T} \models E$
2. $\text{Traces}_{\text{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
3. $\mathcal{T} \otimes \mathcal{A} \models \text{invariant “always } \neg F”$

where “$\neg F$” denotes $\bigwedge_{q \in F} \neg q$
Product transition system

\[\mathcal{T} = (S, \text{Act}, \rightarrow, S_0, \text{AP}, L) \quad \text{transition system} \]

\[\mathcal{A} = (Q, 2^{\text{AP}}, \delta, Q_0, F) \quad \text{NFA} \]

product-TS \(\mathcal{T} \otimes \mathcal{A} \overset{\text{def}}{=} (S \times Q, \text{Act, } \rightarrow', S'_0, \text{AP}', L') \)

\[s \xrightarrow{\alpha} s' \quad \land \quad q' \in \delta(q, L(s')) \]

\[\langle s, q \rangle \xrightarrow{\alpha} ' \langle s', q' \rangle \]

initial states: \(S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \} \)

set of atomic propositions: \(\text{AP}' = Q \)

labeling function: \(L'(\langle s, q \rangle) = \{ q \} \)
Example: sequential circuit

![Sequential Circuit Diagram]

\[\lambda_y = \delta_r = x \oplus r \]
Example: sequential circuit

\[\lambda_y = \delta_r = x \oplus r \]

initially \(r = 0 \)

over \(AP = \{y\} \)
Example: sequential circuit

\[\lambda_y = \delta_r = x \oplus r \]

Initially \(r = 0 \)

Over \(AP = \{ y \} \)

Safety property \(E \)

The circuit will never output two ones after each other
Example: sequential circuit

\[\lambda_y = \delta_r = x \oplus r \]

initially \(r = 0 \)

\[\mathcal{T} \not\models E \]

safety property \(E \)

The circuit will never output two ones after each other
Example: sequential circuit

\[\lambda_y = \delta_r = x \oplus r \]

initially \(r = 0 \)

\(T \not\models E \)

error indication, e.g., \(\langle 10 \rangle \langle 01 \rangle \langle 10 \rangle \langle 01 \rangle \langle 10 \rangle \langle 01 \rangle \)

safety property \(E \)

The circuit will never output two ones after each other
Example: sequential circuit

\[
\lambda_y = \delta_r = x \oplus r
\]

initially \(r = 0 \)

transition system \(\mathcal{T} \)

error indication, e.g., \(\langle 10 \rangle \langle 01 \rangle \)

bad prefix: \(\{y\} \{y\} \)

safety property \(E \)

\(The \ circuit \ will \ never \ output \ two \ ones \ after \ each \ other \)
Example: sequential circuit

\[\lambda_y = \delta_r = x \oplus r \]

initially \(r = 0 \)

\[\mathcal{T} \not\models E \]

error indication, e.g., \(\langle 10 \rangle \langle 01 \rangle \)

bad prefix: \(\{ y \} \{ y \} \)

safety property \(E \)

The circuit will never output two ones after each other
Example: product-TS

transition system \mathcal{T}

safety property E

... never two ones in a row ...
Example: product-TS

transition system \mathcal{T}

safety property E

\ldots never two ones in a row \ldots

$\mathcal{T} \otimes A \not\vDash \text{“never } q_F \text{”}$
Example: product-TS

Transition system T

- States: 10, 01, 00, 11
- Transitions:
 - 10 → 01, $\{y\}$
 - 00 → 01, \emptyset
 - 01 → 11, \emptyset

Safety property E

- ... never two ones in a row ...

Error indication for $T \otimes A \not\models \text{“never } q_F \text{”}$

- Transition $10q_1 \rightarrow 01q_F$
- Transition $00q_F \rightarrow 10q_F$
- Transition $01q_F \rightarrow 00q_F$
Example: product-TS

transition system \mathcal{T}

safety property E

... never two ones in a row ...

error indication for $T \otimes A \not\models \text{“never } q_F \text{”}$

error indication for $T \not\models E$

true
Model checking regular safety properties
Model checking regular safety properties

input: finite TS \mathcal{T}, NFA \mathcal{A} for the bad prefixes of E

output: “yes” if $\mathcal{T} \models E$ otherwise “no”
Model checking regular safety properties

input: finite TS \mathcal{T}, NFA \mathcal{A} for the bad prefixes of E

output: “yes” if $\mathcal{T} \models E$
otherwise “no”

construct product transition system $\mathcal{T} \otimes \mathcal{A}$
check whether $\mathcal{T} \otimes \mathcal{A} \models \text{“always } \neg F\text{”}$

where $F =$ set of final states in \mathcal{A}
Model checking regular safety properties

input: finite TS \mathcal{T}, NFA \mathcal{A} for the bad prefixes of E

output: “yes” if $\mathcal{T} \models E$
otherwise “no”

- construct product transition system $\mathcal{T} \otimes \mathcal{A}$
- check whether $\mathcal{T} \otimes \mathcal{A} \models \text{“always } \neg F\text{”}$
 - if so, then return “yes”
 - if not, then return “no”

where $F = \text{set of final states in } \mathcal{A}$
Model checking regular safety properties

input: finite TS \mathcal{T}, NFA \mathcal{A} for the bad prefixes of E

output: “yes” if $\mathcal{T} \models E$
otherwise “no” + error indication

construct product transition system $\mathcal{T} \otimes \mathcal{A}$
check whether $\mathcal{T} \otimes \mathcal{A} \models \text{“always } \neg F\text{”}$
if so, then return “yes”
if not, then return “no” ← and an error indication

where $F = \text{set of final states in } \mathcal{A}$
Model checking regular safety properties

construct product transition system $T \otimes A$

IF $T \otimes A \models \text{"always } \neg F\text{"}$

THEN return "yes"

ELSE

FI
Model checking regular safety properties

construct product transition system $T \otimes A$

IF $T \otimes A \models \text{"always } \neg F\text{"}$
 THEN return “yes”
ELSE compute a counterexample for $T \otimes A$ and the invariant “always $\neg F$”,

FI
Model checking regular safety properties

construct product transition system $\mathcal{T} \otimes \mathcal{A}$

IF $\mathcal{T} \otimes \mathcal{A} \models \text{“always } \neg \mathcal{F} \text{”}$

THEN return “yes”

ELSE compute a counterexample for $\mathcal{T} \otimes \mathcal{A}$ and the invariant “always $\neg \mathcal{F}$”,

i.e., an initial path fragment in the product $\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \ldots \langle s_n, p_n \rangle$ where $p_n \in F$

FI
Model checking regular safety properties

construct product transition system \(T \otimes A \)

IF \(T \otimes A \models \text{"always } \neg F \text{"} \)

THEN return “yes”

ELSE compute a counterexample for \(T \otimes A \) and the invariant “always \(\neg F \)”,

i.e., an initial path fragment in the product

\[\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \ldots \langle s_n, p_n \rangle \text{ where } p_n \in F \]

return “no” and \(s_0 s_1 \ldots s_n \)
Model checking regular safety properties

construct product transition system $T \otimes A$

IF $T \otimes A \models \text{“always } \neg F\text{”}$

THEN return “yes”

ELSE compute a counterexample for $T \otimes A$ and the invariant “always $\neg F$”,
i.e., an initial path fragment in the product

$\langle s_0, p_0 \rangle \langle s_1, p_1 \rangle \ldots \langle s_n, p_n \rangle$ where $p_n \in F$

return “no” and $s_0 s_1 \ldots s_n$

FI

time complexity: $O(\text{size}(T) \cdot \text{size}(A))$
Correct or wrong?

If T is a finite transition system then $\text{Traces}_{\text{fin}}(T)$ is regular.
If \mathcal{T} is a finite transition system then $\text{Traces}_\text{fin}(\mathcal{T})$ is regular.

correct.
If \mathcal{T} is a finite transition system then $\text{Traces}_{\text{fin}}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.
Correct or wrong?

If \mathcal{T} is a finite transition system then $\text{Traces}_{\text{fin}}(\mathcal{T})$ is regular.

correct. \mathcal{T} can be transformed into an NFA.
If T is a finite transition system then $\text{Traces}_{\text{fin}}(T)$ is regular.

correct. T can be transformed into an NFA.
If \mathcal{T} is a finite transition system then $\text{Traces}_{\text{fin}}(\mathcal{T})$ is regular.

Correct. \mathcal{T} can be transformed into an **NFA**.
If T is a finite transition system then $\text{Traces}_{\text{fin}}(T)$ is regular.

correct. T can be transformed into an NFA.