
1/50

Functions
Statically Linked Library

Shared (dynamic) Library

System and Languages for Informatics
– 4 –

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2/50

Functions
Statically Linked Library

Shared (dynamic) Library

Topics

Linux programming environment (2h)
Introduction to C programming (12h)

1 Getting started with C Progamming
2 Variables, Data-types, Operators and Control Flow
3 Functions and Libraries
4 Arrays and Pointers
5 User defined datatype and data structure
6 Input and Output

Basic system programming in Linux (10h)

3/50

Functions
Statically Linked Library

Shared (dynamic) Library

Overview

1 Functions
Basics
Scope rules
Recursion
Modular programming

2 Statically Linked Library
Basics
My Static Library

3 Shared (dynamic) Library
Concept, Advantages/Disadvantages
My Shared Library

4/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Motivation

Divide and conquer - Break up(complex) problem into
simpler sub-problems, each performing a special task.
Readability - details are hidden from main program.
Simplicity - Tasks can be called iteratively or recursively
within loop.
Efficiency - However functions are only useful, if transfer
of state (i.e. communication) between the functions is
minimized.
For example, printf("Hello World");

5/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Function Syntax

Function is set of statements that together perform a task.
Syntax
Output TYPE <function name>(Input TYPE
Parameter, Input TYPE Parameter, ...)

Arguments of the function go between the parantheses ()
There may be no arguments. Older C compilers require the
keyword void.
There may be multiple arguments (type + parameter),
separated by comma.

6/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Function Syntax (2)

Return type of the function goes to the left side of the
expression

there may be no return type, handled by keyword void.
there may be maximum one return type.
Multiple return types? Several workarounds available.

C standard library provides several built-in functions
(gets(), printf(), sqrt(), etc.)

7/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Example

Writing pseudocode initially might help.
Let’s design a program that checks whether the number is
prime.

Get num from command line
loop from i = 2 to num-1

if modulo(a,i) gives zero, the number is prime
end
print result

8/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Prime factor decomposition

i n t check prime (i n t a) /∗ Funct ion pro to type ∗ /
{ /∗ { Funct ion body } ∗ /

i n t c ;

f o r (c =2; c<a ; c++)
{

i f (a%c == 0)
r e t u r n 0 ;

}
r e t u r n 1 ;

}

9/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Calling a function

by its name with parameters as inputs
output is set ”=” to return value
for example, is prime = check prime(41);

Call:
direct if function in the same file.
indirect by telling the compiler its location, if the function is
in another file.

10/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

the main function

i n t main () {
/∗ do some s t u f f ∗ /
r e t u r n 0 ; /+ e x i t w i th success ∗ /

}

Every C program has at least one function, namely
main().
Initial function of C program.
Several functions possible but only one main().
All functions are called from here.
return type is int

return 0 - successful termination
a non-zero return value indicates a failure or unexpected
termination
Macros EXIT SUCCESS and EXIT FAILURE from
stdlib.h can be used.

11/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Example myprogram.c (cont’d)

inc lude<s t d i o . h>
i n t check prime (i n t a) {

i n t c ;
f o r (c =2; c<a ; c++) {

i f (a%c == 0)
r e t u r n 0 ;

}
r e t u r n 1 ;

}
i n t main () {

i n t num, r e s u l t ;
p r i n t f (” Enter any number : ”) ;
scanf (”%d ” , &num) ;
r e s u l t = check prime (num) ;
i f (r e s u l t == 1) p r i n t f (”%d i s prime .\n ” , num) ;
e lse p r i n t f (”%d i s not prime .\n ” , num) ;
r e t u r n 0 ;

}

12/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Example (cont’d)

Calling our program with gcc -Wall -o myprogram
myprogram.c, we obtain

$./myprogram
$ Enter any number: 41
41 is prime.

13/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Returning multiple values

Our function check prime returns one integer.
Functions, working with primitive data types, return up to
one value.
Solution 1: Pointers in C
void myfunction(int *a, char *b) [see next
lesson]
Solution 2: Array in C
int * myfunction(int *a) [see next lesson]
Solution 3: Use structure struct() [see following lesson]
Solution 4: Use global variables.....

16/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Scope rules

The scope of a variable/function is the part of the program
within which they are visible.
Global visibility for identifies defined above all functions.
Visible by all subsequent functions in the same source file,
only.

inc lude<s t d i o . h>
i n t g l o b a l v a r i a b l e ;

i n t main (vo id) {
. . . /∗ the g loba l v a r i a b l e i s v i s i b l e here . ∗ /
r e t u r n 0 ;
}

17/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Scope rules (2)

Block Visibility : identifier is declared within a block, and
limited to the block itself

i n t a ;
scanf (”%d ” ,&a) ;
i f (a>10) {

i n t b = 10;
}
p r i n t f (”%d ” ,b) ;

What does the compiler say? Error!

18/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Scope rules (3)

Sometimes the source code for a program is contained in
more than one text file.
To make a global variable visible to the other source files,
declare it extern there.

/∗ main . c ∗ /

i n t main () {
extern i n t myvar ;
myvar = 10;
p r in t myva lue () ;
r e t u r n 0 ;

/∗ extern . c ∗ /
inc lude <s t d i o . h>
i n t myvar ;
vo id p r in t myva lue ()
{
p r i n t f (” myvar = %d\n ” , myvar) ;
}

19/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Scope rules (4)

Compile with gcc main.c extern.c.

$ myvar = 10

Another important class specifier is static. These
variables remain their values even after they are out of
their scope.

20/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Example

inc lude<s t d i o . h>
i n t fun ()
{

s t a t i c i n t count = 0 ;
count ++;
r e t u r n count ;

}

i n t main ()
{

p r i n t f (”%d ” , fun ()) ;
p r i n t f (”%d ” , fun ()) ;
r e t u r n 0 ;

}

Shell
$ 1 2

21/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Example (revisited)

inc lude<s t d i o . h>
i n t fun ()
{

i n t count = 0 ;
count ++;
r e t u r n count ;

}

i n t main ()
{

p r i n t f (”%d ” , fun ()) ;
p r i n t f (”%d ” , fun ()) ;
r e t u r n 0 ;

}

Shell
$ 1 1

22/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Masking

Suppose an identifier is declared outside a block and
redeclared inside the block. Then that inside the block masks
the external.

inc lude<s t d i o . h>
i n t g l o b a l v a r i a b l e ;

i n t main () {
double g l o b a l v a r i a b l e ;
. . .
}

23/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Recursive functions

A function that calls (in its block) itself.
For example, the Fibonacci sequence can be computed as

Fn = Fn−1 + Fn−2; n ≥ 2; F0 = 0,F1 = 1.

i n t f i b o n a c c i (i n t i)
{

i n t res ;
i f (i == 0)

res = 0;
e lse i f (i == 1)

res = 1 ;
e lse

res = f i b o n a c c i (i −1) + f i b o n a c c i (i −2) ;
r e t u r n res ;

}

24/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Recursive functions

25/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Our example revisited

Let us return to our example from above:

inc lude<s t d i o . h>
i n t fun () /∗ f u n c t i o n s p e c i f i c a t i o n ∗ /
{

s t a t i c i n t count = 0 ;
count ++;
r e t u r n count ;

}

i n t main ()
{

p r i n t f (”%d ” , fun ()) ; /∗ f u n c t i o n c a l l ∗ /
p r i n t f (”%d ” , fun ()) ;
r e t u r n 0 ;

}

C programs do not need to be monolithic!

26/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Function prototypes

Each function has to be declared before being used. The
following conventions are typically used:

1 Declare all functions (but the main);
2 Define main;
3 Define all other functions.

In this way, each function is declared before being used:

27/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Function prototypes

Alternative implementation with function prototype, making
the compile aware, but without actual implementation.

inc lude<s t d i o . h>
i n t fun () ; /∗ f u n c t i o n pro to type ∗ /

i n t main () {
p r i n t f (”%d ” , fun ()) ;
p r i n t f (”%d ” , fun ()) ;
r e t u r n 0 ;

}

i n t fun ()
{

i n t count = 0 ;
count ++;
r e t u r n count ;

}

28/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Too many lines of code

Linux Code is written in ca. 12 Mio. lines of code.
We need some mechanism to divide our code.
Modular programming is essential.

Interface in header file (saved with extension .h)
Implementation in auxiliary source .c/object files .o

29/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Implementation our function as fun.c

Implement fun() in myfun.c:

i n t fun ()
{

i n t count = 0 ;
count ++;
r e t u r n count ;

}

Other functions can be embedded subsequently or in other
auxiliary files.

30/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

The Interface fun.h

communicates all global variables and functions to other source
files in form of header files.

Function prototypes
Struct, enum and custom type definitions
Global variable declaration using the extern keyword
Header guards

ensure that the contents of the header file will not be copied
more than once in several files in your project (causing
compilation errors).

Note
Header files should never contain any executable code.

31/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

Header files

Convention for header guards: use two leading
underscores with all letters in the name of the header file
converted to uppercase and periods to underscores.

i f n d e f FUN H
def ine FUN H

/∗ dec l a ra t i o ns come here ∗ /
i n t fun () ;

end i f /∗ FUN H ∗ /

32/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

The modular program

/∗ main . c ∗ /
inc lude<s t d i o . h>
inc lude ” fun . h ”

i n t main () {
p r i n t f (”%d ” , fun ()) ;
p r i n t f (”%d ” , fun ()) ;
r e t u r n 0 ;

}

Compile source with gcc -Wall -o myprogram
main.c fun.c.

$./myprogram
1 1

33/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
Scope rules
Recursion
Modular programming

By the way, ...

Each standard library has a header file, containing:
definition of constants;
definition of types;
declaration of all library functions.

Libs can also be created by the programmer, such as ”mylib.h”.

34/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Statically Linked Library (1)

Set of routines, external functions and variables that are
resolved at compile-time and copied into a target
application by a compiler/linker. Resulting static library is a
stand-alone executable.
All the functions within the library are organized and
indexed with a symbol and address, kind of TOC.
Archive extension *.a (Linux) and *.lib (Windows).
The Linker makes copy of all used library functions to the
main executable file.
Typical library functions are
printf(),scanf(),sqrt(),etc.
We may create a static library on our own.

35/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Statically Linked Library (2)

36/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Statically Linked Library (3)

Advantages

Pre-compiled libraries increase build speed and reduce
dev times in large projects.
App can be sure that all libraries are present and
up-to-date, avoiding dependency problems.
Only part of the library, containing requested functions, are
loaded (For dynamic libraries, the entire must be loaded.)
App in a single executable file, simplifying distribution and
installation.

37/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Statically Linked Library (4)

Disadvantages

Generally, trust that 3rd party library optimizes runtime
and memory without security vulnerabilities.
Deep third-party dependencies can slip under the radar.
Specifically, size of executable becomes large, as all the
library code is stored within the same executable rather
than in separate files.

38/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

MyStaticLibrary (1)

Suppose, we want to re-use a function, computing the sum
of two integer numbers, throughout the same project.

/∗ mult . c ∗ /
i n t mul t (i n t a , i n t b)
{

r e t u r n (a ∗ b) ;
}

/∗ sum. c ∗ /
i n t sum(i n t a , i n t b)
{

r e t u r n (a + b) ;
}

/∗ mymath . h ∗ /
i f n d e f MYMATH H
def ine MYMATH H

i n t mult (i n t , i n t) ;
i n t sum(i n t , i n t) ;

end i f

39/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

MyStaticLibrary (2)

Create object file by stopping GNU compiler at compiler
stage with -c option (no executable):

$ gcc -Wall -c mult.c sum.c

Make static library by archiving object file with the -c
(replace pre-existing object files in the library with the
same name and create archive without warning).
Convention for linux is to use a filename starting with lib-.

$ ar -rc libmymath.a mult.o sum.o

40/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

MyStaticLibrary (3)

To verify the symbol table of our library,

$ nm libmymath.a
mult.o:
0000000000000000 T mult
sum.o:
0000000000000000 T sum

”virtual address: 0”, ”text symbol, global”, name is ”sum”.
Common symbol names used in the object file

b/B uninitialized data, local/global
d/D initialized data, local/global
L Global thread-local symbol
t Static thread-local symbol
U Undefined symbol

41/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Use MyStaticLibrary (1)

We have created object files, zipped them in an library and
indexed it. We want to use it in the main file.

inc lude<s t d i o . h>
inc lude ”mymath . h ”

i n t main (vo id)
{

i n t r e s u l t ;
r e s u l t = sum(5 , 8) ;
p r i n t f (” r e s u l t = %d \n ” , r e s u l t) ;
r e t u r n (0) ;

}

42/50

Functions
Statically Linked Library

Shared (dynamic) Library

Basics
My Static Library

Use MyStaticLibrary (2)

$ gcc -Wall main.c -L. -l mymath -o myprogram

Specifically,
-L directory of library
. current directory
-l library file to be linked
mymath library file without prefix
-o name of executable

Shell
$./myprogram
result = 13

43/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Shared (dynamic) Library (1)

Also dynamic linking collects and combines multiple object
files, to create a single executable, but ...
Linking is performed in real-time as programs are executed
(Remember that static libraries are put into an executable
file already at compile time)
Dynamic libraries are loaded into (separate) memory by
the starting programs.
Once loaded, library code can be used by any number of
programs.

44/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Shared (dynamic) Library (2)

45/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Advantages

Low memory footprint, as only one copy of the shared
library is kept in memory.
Libraries can be updated independent of the executable
files.
All running applications can use the same library without
the need for each to have it’s own copy.

46/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Disadvantages

Shared library attacks easily possible if not handled with
care. For example, a malicious library can be linked
according to

CAUTION
$LD LIBRARY PATH=/some-fake-dir/:$LD LIBRARY PATH

Compatible is an issue. The new library version assumes
compatibility with programs built for the previous one.
Execution speed lower at run time, as the library is only
linked to the executable file.

47/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

MySharedLibrary (1)

Let us return to our example.

/∗ mult . c ∗ /
i n t mul t (i n t a , i n t b)
{

r e t u r n (a ∗ b) ;
}

/∗ sum. c ∗ /
i n t sum(i n t a , i n t b)
{

r e t u r n (a + b) ;
}

/∗ mymath . h ∗ /
i f n d e f MYMATH H
def ine MYMATH H

i n t mult (i n t , i n t) ;
i n t sum(i n t , i n t) ;

end i f

48/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

MySharedLibrary (2)

1 Compiling into Position Independent Code (is not
dependent on being located at a specific address in order
to work.)

$ gcc -c -Wall -fpic mult.c sum.c

2 Create a shared library from object file

$ gcc -shared -o libmymath.so mult.o sum.o

3 Link program with our shared library

$ gcc -Wall main.c -L. -lmymath -o myprogram

49/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Use MyShared Library (3)

Now let us run our program.

$./myprogram

Error
./myprogram: error while loading shared
libraries: libmymath.so: cannot open shared
object file: No such file or directory

4 Expose library at runtime
Prepend our working directory to the path.
Export the changes,

$ export LD LIBRARY PATH=.:$LD LIBRARY PATH
$./myprogram
result = 13

50/50

Functions
Statically Linked Library

Shared (dynamic) Library

Concept, Advantages/Disadvantages
My Shared Library

Quiz

extern i n t prod (i n t x , i n t y , i n t z)
{

r e t u r n (x ∗ y ∗ z) ;
}

What does the extern keyword do in above code?
1 It makes the function visible to the whole program.
2 It does nothing. All functions have external linkage by

default.
3 The function is declared somewhere else (”externally”).
4 The scope of the function prod limited to its object file i.e,

it is visible only in its object file.

	Functions
	Basics
	Scope rules
	Recursion
	Modular programming

	Statically Linked Library
	Basics
	My Static Library

	Shared (dynamic) Library
	Concept, Advantages/Disadvantages
	My Shared Library

