
1/52

Variables, Datatypes and Operators
Control Flow

Languages for Informatics
3 – Variables, Types, Operators and Control Flow

Department of Computer Science
University of Pisa

Largo B. Pontecorvo 3
56127 Pisa

2/52

Variables, Datatypes and Operators
Control Flow

Topics

Linux programming environment (2h)
Introduction to C programming (12h)

1 Getting started with C Progamming
2 Variables, Types, Operators and Control Flow
3 Functions and Libraries
4 Arrays and Pointers
5 Structures
6 Input and Output

Basic system programming in Linux (10h)

3/52

Variables, Datatypes and Operators
Control Flow

Overview

1 Variables, Datatypes and Operators
Variables
Primitive data types
Operators
Data type conversion
Booleans

2 Control Flow
Loops
Hybrid

4/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Motivation

Most, if not all C programs contain variables that can be
declared locally or globally.
Their values are stored in a digital computer with certain
accuracy, determined by their type
C has rich variety of math operators including
+,−,×, /,%,++, and logical operators such as
==, !, >,<, ||,&&, to manipulate variables.
Control flow determines the order in which statements
and function calls are executed.

5/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Variables

A variable is a name given to a storage area in the
system’s memory that can be manipulated.

For example, int x=0, y=0; y=x+1
Variables x , y ;
Operator +.

Rules for naming variables
can contain letters, digits and underscore
first element must be either letter or underscore
case sensitive
cannot contain keywords.

6/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Declaration

The syntax to declare a variable is as follows:

type name variable [=init value];

type of the variable;
name of the variable: name can have characters and
digits; always start with a letter. Always keep in mind the
general rules for naming variables and functions
you can define an init value for the variable. It is strongly
suggested to always init variables

7/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while

int my$number

int 2do

int you2

int my number

7/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while

int my$number

int 2do

int you2

int my number

7/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while

int my$number

int 2do

int you2

int my number

7/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while

int my$number

int 2do

int you2

int my number

7/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while

int my$number

int 2do

int you2

int my number

8/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

int while (incorrect due to keyword)
int my$number (ok)
int 2do (incorrect due to initial digit)
int you2 (ok)
int my number (ok)

9/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive Data Types

There a four primitive data types

Integer int ∈ Z and its derivative types.
Floating-point types double, float ∈ R.
Single characters char.

10/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: int

int: an integer (placeholder %d)
size of values represented by int depends on the
machine where your code is running.

the predefined function sizeof() gives the length in
bytes of any type of variable in C. For instance:

inc lude <s t d i o . h>
i n t main ()
{

p r i n t f (”%d\n ” , s i z e o f (i n t)) ;
}

Result
4

the modifiers short, long and long long handle
integers of different length.

10/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: int

int: an integer (placeholder %d)
size of values represented by int depends on the
machine where your code is running.
the predefined function sizeof() gives the length in
bytes of any type of variable in C. For instance:

inc lude <s t d i o . h>
i n t main ()
{

p r i n t f (”%d\n ” , s i z e o f (i n t)) ;
}

Result
4

the modifiers short, long and long long handle
integers of different length.

10/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: int

int: an integer (placeholder %d)
size of values represented by int depends on the
machine where your code is running.
the predefined function sizeof() gives the length in
bytes of any type of variable in C. For instance:

inc lude <s t d i o . h>
i n t main ()
{

p r i n t f (”%d\n ” , s i z e o f (i n t)) ;
}

Result
4

the modifiers short, long and long long handle
integers of different length.

10/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: int

int: an integer (placeholder %d)
size of values represented by int depends on the
machine where your code is running.
the predefined function sizeof() gives the length in
bytes of any type of variable in C. For instance:

inc lude <s t d i o . h>
i n t main ()
{

p r i n t f (”%d\n ” , s i z e o f (i n t)) ;
}

Result
4

the modifiers short, long and long long handle
integers of different length.

11/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

signed int vs. unsigned int

signed and unsigned are used for numbers with and with no
sign, respectively. According to ISO C docs:

The int data type is signed and has a minimum range of
at least −32767 through 32767 (on a 16-bit machine). The
actual values are given in limits.h as INT MIN and
INT MAX respectively.
An unsigned int has a minimal range of 0 through
65535 with the actual maximum value being UINT MAX
from that same header file.

12/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Binary representation

ISO C uses two’s bit complement.
A 3-bit illustration:

Bits Unsigned integer Signed integer
000 0 +0
001 1 +1
010 2 +2
011 3 +3
100 4 -3
101 5 -2
110 6 -1
111 7 -0

Note
Be aware of underflow and overflow !

12/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Binary representation

ISO C uses two’s bit complement.
A 3-bit illustration:

Bits Unsigned integer Signed integer
000 0 +0
001 1 +1
010 2 +2
011 3 +3
100 4 -3
101 5 -2
110 6 -1
111 7 -0

Note
Be aware of underflow and overflow !

13/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: reals

float, double: used to represent real numbers (single and
double precision)

f l o a t x =123.34;
double y=100.1e5 ; / / s c i e n t i f i c no ta t i on

placeholders %f and %lf;
sizeof(float) gives 4 bytes.
sizeof(double) gives 8 bytes.

Figure: 32-bit representation according to IEEE 754 (Source:wikipedia)

13/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: reals

float, double: used to represent real numbers (single and
double precision)

f l o a t x =123.34;
double y=100.1e5 ; / / s c i e n t i f i c no ta t i on

placeholders %f and %lf;
sizeof(float) gives 4 bytes.
sizeof(double) gives 8 bytes.

Figure: 32-bit representation according to IEEE 754 (Source:wikipedia)

14/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types char

char: a single byte representing a character (ASCII code).
Placeholder %c.

char a= ’ a ’ ; / / chars are s i n g l e quoted

chars are integers in C.

i n t a= ’ a ’ ;
p r i n t f (”%c\n ” ,a) ;
p r i n t f (”%d\n ” ,a) ;

Result
a
97

Indeed, 97 corresponds to the ASCII code of a

14/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types char

char: a single byte representing a character (ASCII code).
Placeholder %c.

char a= ’ a ’ ; / / chars are s i n g l e quoted

chars are integers in C.

i n t a= ’ a ’ ;
p r i n t f (”%c\n ” ,a) ;
p r i n t f (”%d\n ” ,a) ;

Result
a
97

Indeed, 97 corresponds to the ASCII code of a

15/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: char (2)

Some char constants and their integer values:

Char constant ’a’ ’b’ ... ’z’
Integer value 97 98 ... 122
Char constant ’A’ ’B’ ... ’Z’
Integer value 65 66 ... 90
Char constant ’0’ ’1’ ... ’9’
Integer value 48 49 ... 57

Note
There is no relationship between a char constant and its digit
counterpart: ’2’ is not 2.

15/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Primitive data types: char (2)

Some char constants and their integer values:

Char constant ’a’ ’b’ ... ’z’
Integer value 97 98 ... 122
Char constant ’A’ ’B’ ... ’Z’
Integer value 65 66 ... 90
Char constant ’0’ ’1’ ... ’9’
Integer value 48 49 ... 57

Note
There is no relationship between a char constant and its digit
counterpart: ’2’ is not 2.

16/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Data type size

On a typical 32-bit machine:
int is 32 bits
long is 32 bits
long long is 64 bits

On a typical 64-bit architecture:
int is 32 bits
long is 32 or 64 bits
long long is 64 bits

On both:
float is 32 bits
double is 64 bits (always!)
char is 8 bits
signed char is 8 bits

17/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Big endian vs. little endian

In other words,
sizeof(char)<sizeof(short)≤sizeof(int)≤sizeof(long)

sizeof(char)<sizeof(short)≤sizeof(float)≤
≤sizeof(double)

Numerical data types span multiple bytes. Their order is
relevant.

18/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Big endian vs. little endian (2)

Little Endian: The least significant byte is stored in the
lowest memory address, and increases address for each
more significant byte. Typical representation in all x86
(intel) compatible processors.
Big endian: The most significant byte occupies the lowest
memory address. Typical representation in ARM
architectures.

(Source:wikipedia)

19/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Constants

the attribute const can be applied to the declaration of any
variable, with the effect of stating that its value will not change.

const double p i =3.141592;
const i n t f i v e =5;

Note
An attempt to modify constants typically ends up in a compiling
error!

Difference between #define and const????

#define is a directive of the pre-processor and replaced
in the source code before compilation;
a variable defined as const is manipulated from the
compiler: it has a type and an address.

19/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Constants

the attribute const can be applied to the declaration of any
variable, with the effect of stating that its value will not change.

const double p i =3.141592;
const i n t f i v e =5;

Note
An attempt to modify constants typically ends up in a compiling
error!

Difference between #define and const????
#define is a directive of the pre-processor and replaced
in the source code before compilation;
a variable defined as const is manipulated from the
compiler: it has a type and an address.

20/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators

In C there are the following operators:

+ − ∗ / %

representing the usual arithmetic operations. They are used to
modify variables’ values.

The value of a modulo b is the remainder of the division
between a and b: for instance, 5%3 = 2.
Modulo operator cannot be applied to float and double
variables.

21/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (2)

Operators obey to precedence and associativity rules, to
establish how to evaluate an expression.

As usual, + and − have the same precedence, lower than
∗, / and %.
Moreover, addition and multiplication are both left and right
associative, e.g. (a× b)× c = a× (b× c) while subtraction
and division, as used in conventional math notation, are
inherently left-associative.

21/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (2)

Operators obey to precedence and associativity rules, to
establish how to evaluate an expression.
As usual, + and − have the same precedence, lower than
∗, / and %.

Moreover, addition and multiplication are both left and right
associative, e.g. (a× b)× c = a× (b× c) while subtraction
and division, as used in conventional math notation, are
inherently left-associative.

21/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (2)

Operators obey to precedence and associativity rules, to
establish how to evaluate an expression.
As usual, + and − have the same precedence, lower than
∗, / and %.
Moreover, addition and multiplication are both left and right
associative, e.g. (a× b)× c = a× (b× c) while subtraction
and division, as used in conventional math notation, are
inherently left-associative.

22/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (3)

Other operators:
compact operators: allow to execute an operation on a
variable, and assign the result to the same variable.
This means that an

expression var op = expr
is equivalent to var = var op expr

for instance: j*=i+2 ⇔ j=j*(i+2)

unitary increment/decrement operators: comprising the
operators ++ and --, respectively. They can be used
either as prefix (before the variable: ++n) or as suffix (after
the variable: n++). The effect is the same, however:

++n execute the increment before using the value of n;
n++ increments after using the value.

22/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (3)

Other operators:
compact operators: allow to execute an operation on a
variable, and assign the result to the same variable.
This means that an

expression var op = expr
is equivalent to var = var op expr
for instance: j*=i+2 ⇔ j=j*(i+2)

unitary increment/decrement operators: comprising the
operators ++ and --, respectively. They can be used
either as prefix (before the variable: ++n) or as suffix (after
the variable: n++). The effect is the same, however:

++n execute the increment before using the value of n;
n++ increments after using the value.

22/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Arithmetic operators (3)

Other operators:
compact operators: allow to execute an operation on a
variable, and assign the result to the same variable.
This means that an

expression var op = expr
is equivalent to var = var op expr
for instance: j*=i+2 ⇔ j=j*(i+2)

unitary increment/decrement operators: comprising the
operators ++ and --, respectively. They can be used
either as prefix (before the variable: ++n) or as suffix (after
the variable: n++). The effect is the same, however:

++n execute the increment before using the value of n;
n++ increments after using the value.

23/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Data type conversion

Type conversion occurs when the expression has data of
mixed types.
Common problem:

double a = 1 . 2 ;
i n t b = 2;
double c = b / a ; /∗ what i s the p r e c i s i o n o f c? ∗ /

When an operator is applied to values having different
types, they are converted to the same type using some
automatic rules.
Data type is promoted from lower to higher accuracy.

23/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Data type conversion

Type conversion occurs when the expression has data of
mixed types.
Common problem:

double a = 1 . 2 ;
i n t b = 2;
double c = b / a ; /∗ what i s the p r e c i s i o n o f c? ∗ /

When an operator is applied to values having different
types, they are converted to the same type using some
automatic rules.
Data type is promoted from lower to higher accuracy.

24/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Type conversion rules

Type conversion rules
f(int,float)→ f(float)
f(double,other)→f(double)
if either operand is unsigned, the other shall be converted
to unsigned i.e., f(unsigned int,long)→ f(unsigned
long)
Promotion: f(unsigned char,unsigned short)→
f(unsigned int)

25/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Example

shor t i = 1 ;
char ch = ’ a ’ ;
p r i n t f (”%zu,%zu,%zu\n ” , s i z e o f (i) , s i z e o f (ch) , s i z e o f (ch+ i)

) ;

2,1,4

Note
The type of sizeof() is size t having format %zu.

25/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Example

shor t i = 1 ;
char ch = ’ a ’ ;
p r i n t f (”%zu,%zu,%zu\n ” , s i z e o f (i) , s i z e o f (ch) , s i z e o f (ch+ i)

) ;

2,1,4

Note
The type of sizeof() is size t having format %zu.

26/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Forced Type Conversion

occurs when the value of the larger data type is converted
to the value of the smaller data type
The result may have lower precision.
Type casting is the preferred method of forced
conversation.

27/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

Example 1:
i n t e = 2 . 4 ;
p r i n t f (” e = %d\n ” ,e) ;

e = 2

Example 2:
f l o a t x =12.4 , y =8.3 , z =4 .7 ;
i n t r e s u l t = x∗y∗z /100 ;
p r i n t f (” r e s u l t = %d\n ” , r e s u l t) ;

result = 4

During evaluation the integers would be first promoted to float
and so would be the result, but then occurs a truncation to
int.

27/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

Example 1:
i n t e = 2 . 4 ;
p r i n t f (” e = %d\n ” ,e) ;

e = 2

Example 2:
f l o a t x =12.4 , y =8.3 , z =4 .7 ;
i n t r e s u l t = x∗y∗z /100 ;
p r i n t f (” r e s u l t = %d\n ” , r e s u l t) ;

result = 4

During evaluation the integers would be first promoted to float
and so would be the result, but then occurs a truncation to
int.

27/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Examples

Example 1:
i n t e = 2 . 4 ;
p r i n t f (” e = %d\n ” ,e) ;

e = 2

Example 2:
f l o a t x =12.4 , y =8.3 , z =4 .7 ;
i n t r e s u l t = x∗y∗z /100 ;
p r i n t f (” r e s u l t = %d\n ” , r e s u l t) ;

result = 4

During evaluation the integers would be first promoted to float
and so would be the result, but then occurs a truncation to
int.

28/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Type Casting

Beside automatic conversions, it is possible to enforce
conversions, by using casting, as follows:

(type) expression;

Example:

i n t sum, n ;
f l o a t avg ;
. . .
avg = sum/ n ; /∗ i n t e g e r d i v i s i o n ∗ /
avg = (f l o a t)sum/ n ; /∗ r e a l numbers d i v i s i o n ∗ /

The cast operator in parentheses has higher precedence, and it
associates from right to left. Thus (float)sum/n is equivalent
to ((float)sum)/n

29/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Booleans and relational operators

In C there does not exist Boolean type. It is represented
through an int:

0 represents FALSE;
A value different from 0 (typically 1) represents
TRUE.

Logical operators:
!: NOT (unary operator). Example: !a;
&&: AND (binary operator). Example: a && b;
||: OR (binary operator). Example: a || b;

Returns an integer value: either 0 or 1, depending on the value
(false/true) of the expression.
Other operators on single bits: shift operators (<<, >>), AND
(&), OR (|), XOR (ˆ) ...

29/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Booleans and relational operators

In C there does not exist Boolean type. It is represented
through an int:

0 represents FALSE;
A value different from 0 (typically 1) represents
TRUE.

Logical operators:
!: NOT (unary operator). Example: !a;
&&: AND (binary operator). Example: a && b;
||: OR (binary operator). Example: a || b;

Returns an integer value: either 0 or 1, depending on the value
(false/true) of the expression.

Other operators on single bits: shift operators (<<, >>), AND
(&), OR (|), XOR (ˆ) ...

29/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Booleans and relational operators

In C there does not exist Boolean type. It is represented
through an int:

0 represents FALSE;
A value different from 0 (typically 1) represents
TRUE.

Logical operators:
!: NOT (unary operator). Example: !a;
&&: AND (binary operator). Example: a && b;
||: OR (binary operator). Example: a || b;

Returns an integer value: either 0 or 1, depending on the value
(false/true) of the expression.
Other operators on single bits: shift operators (<<, >>), AND
(&), OR (|), XOR (ˆ) ...

30/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Example

Differences between bitwise and logical AND operators in C

i n t main () {
i n t x = 3 ; / / . . . 0 0 1 1
i n t y = 7 ; / / . . . 0 1 1 1

i f (y > 1 && y > x)
p r i n t f (” y i s g rea te r than 1 AND x\n ”) ;

i n t z = x & y ; / / 0011
p r i n t f (” z = %d ” , z) ;
r e t u r n 0 ;

}

Output
y is greater than 1 AND x
z = 3

31/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Relational Operators (2)

Checking for equality is essential in C

The equality operator == compares primitive types such as
char, int, float, etc.

e.g. 1==1 results in 1
e.g. ’A’==’a’ results in 0

The inequality operator != returns true if its operands are
not equal, false otherwise.

e.g. 1!=1 results in 0
e.g. ’A’!=’a’ results in 1
e.g. 0.999!=1 results in 1

Note
C cannot compare floating-point values due to rounding errors

32/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Relational operators (3)

Other relational operators are:

< > <= >=

they are all binary: they take two expressions, and return a
result of type int that can be either 0 or 1.

For instance, the expression a<b:
if a is less than b, the value 1 (true);
otherwise, the value is 0 (false).

32/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Relational operators (3)

Other relational operators are:

< > <= >=

they are all binary: they take two expressions, and return a
result of type int that can be either 0 or 1.

For instance, the expression a<b:
if a is less than b, the value 1 (true);
otherwise, the value is 0 (false).

33/52

Variables, Datatypes and Operators
Control Flow

Variables
Primitive data types
Operators
Data type conversion
Booleans

Quiz

What is the output of the following code ?

inc lude<s t d i o . h>
i n t main () {

i n t const a=5;

a++;
p r i n t f (” a = %d ” ,a) ;

}

1 a = 5
2 a = 6
3 Runtime error
4 Compile error

34/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Control Flow

Control flow describes the order in which individual
statements, instructions or function calls of our C program are
executed.

For example, min
u

10∑
i=1

xi(u) 6=
10∑

i=1

min
u

xi(u).

C provides two styles of flow control

35/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Branching and Looping

Branching: if, else and else if, switch, break and
continue

Looping: while, for, do-while
Hybrid: goto (branching or looping).

36/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The If Statement

i f (t es t cond i t i on i s TRUE) {
/∗ Do some s t u f f ∗ /
}

test the condition
if TRUE, evaluate body
Otherwise, do nothing,

Example:

i n t x = 3 ;
i f (x%2) /∗ i f c o n d i t i o n i s t r ue ∗ /

p r i n t f (” The number i s odd . ”) ;

The number is odd.

36/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The If Statement

i f (t es t cond i t i on i s TRUE) {
/∗ Do some s t u f f ∗ /
}

test the condition
if TRUE, evaluate body
Otherwise, do nothing,

Example:

i n t x = 3 ;
i f (x%2) /∗ i f c o n d i t i o n i s t r ue ∗ /

p r i n t f (” The number i s odd . ”) ;

The number is odd.

37/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The Else Keyword

i f (t es t cond i t i on i s TRUE) {
/∗ Do some s t u f f ∗ /
}
else { /∗ t e s t c o n d i t i o n i s FALSE ∗ /
}

Optional
test expression is FALSE

statement inside if body is skipped
statement inside else body is executed

Example:

i n t x = 2 ;
i f (x%2) p r i n t f (” The number i s odd . ”) ;
e lse p r i n t f (” The number i s even . ”) ;

The number is even.

37/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The Else Keyword

i f (t es t cond i t i on i s TRUE) {
/∗ Do some s t u f f ∗ /
}
else { /∗ t e s t c o n d i t i o n i s FALSE ∗ /
}

Optional
test expression is FALSE

statement inside if body is skipped
statement inside else body is executed

Example:

i n t x = 2 ;
i f (x%2) p r i n t f (” The number i s odd . ”) ;
e lse p r i n t f (” The number i s even . ”) ;

The number is even.

38/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The Else if Keyword

Additional alternative control path

i f (t es t cond i t i on 1 i s TRUE) /∗ Do some s t u f f ∗ /
e lse i f (t es t cond i t i on 2 i s TRUE) /∗ Do sthg else ∗ /
e lse /∗ Do something e lse i f a l l above f a l s e ∗ /
}

Example:

i n t i =0;
i f (i ==0) p r i n t f (” The number i s zero .\n ”) ;
e lse i f (i %2) p r i n t f (” The number i s odd .\n ”) ;
e lse p r i n t f (” The number i s non−zero and even .\n ”) ;

The number is zero.

38/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The Else if Keyword

Additional alternative control path

i f (t es t cond i t i on 1 i s TRUE) /∗ Do some s t u f f ∗ /
e lse i f (t es t cond i t i on 2 i s TRUE) /∗ Do sthg else ∗ /
e lse /∗ Do something e lse i f a l l above f a l s e ∗ /
}

Example:

i n t i =0;
i f (i ==0) p r i n t f (” The number i s zero .\n ”) ;
e lse i f (i %2) p r i n t f (” The number i s odd .\n ”) ;
e lse p r i n t f (” The number i s non−zero and even .\n ”) ;

The number is zero.

39/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The switch statement

The switch statement is alternative conditional.

Syntax:

swi tch (argument) {
case l a b e l 1 : i n s t r u c t i o n s 1

break ;
. . .
case l a b e l n : i n s t r u c t i o n s n

break ;
d e f a u l t : i n s t r u c t i o n s d e f a u l t

}

39/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The switch statement

The switch statement is alternative conditional.
Syntax:

swi tch (argument) {
case l a b e l 1 : i n s t r u c t i o n s 1

break ;
. . .
case l a b e l n : i n s t r u c t i o n s n

break ;
d e f a u l t : i n s t r u c t i o n s d e f a u l t

}

40/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The switch statement (cont’d)

Semantic:
Input must be int or char
The argument is evaluated and compared against the
different (constant) case labels;
when argument corresponds to some case label, the
respective instructions are executed, followed by a break
to the next line following the switch statement;
otherwise, (optional) default is executed.

41/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The switch statement (cont’d)

Example:

i n t day ;
. . .
sw i tch (day) {

case 1: p r i n t f (” Monday\n ”) ;
break ; /∗ e x i t statement ∗ /

case 2: p r i n t f (” Tuesday\n ”) ;
break ;

case 3: p r i n t f (” Wednesday\n ”) ;
break ;

case 4: p r i n t f (” Thursday\n ”) ;
break ;

case 5: p r i n t f (” Fr iday \n ”) ;
break ;

d e f a u l t : p r i n t f (”Weekend\n ”) ;
}

42/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The switch statement (cont’d)

Multiple cases:

i n t day = 5;
. . .
sw i tch (day) {

case 1: /∗ break removed otherwise ! ∗ /
case 3:
case 5:
case 7: p r i n t f (”Odd day\n ”) ;

break ;
case 2:
case 4:
case 6: p r i n t f (” Even day\n ”) ;

break :
d e f a u l t : p r i n t f (” I n v a l i d day\n ”) ;

}

Odd day

43/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The break and continue keywords

The break keyword provides an early exit from for,
while and do, just as from switch

inc lude <s t d i o . h>
i n t main () {

char c ;
wh i le (1) { /∗ i n f i n i t e loop ∗ /

p r i n t f (” Sha l l we make a break? (y / n) ”) ;
c = getchar () ;
i f (c == ’ y ’) break ;

}
r e t u r n 0 ;

}

Note
Break works fine but Shall we make a break? (y/n)
will be printed 2x. Why?

44/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The break and continue keywords

The continue keyword skips rest of for, while and do -
loop.

inc lude <s t d i o . h>
i n t main () {

char c = ’ n ’ ;
wh i le (1) { /∗ i n f i n i t e loop ∗ /

puts (” Sha l l we make a break? (y / n) ”) ;
scanf (” %c ” ,&c) ;
i f (c == ’ n ’) cont inue ;
i f (c == ’ y ’) break ;
p r i n t f (” Your answer i s unc lear . ”) ;

}
r e t u r n 0 ;

}

45/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Loops: The while loop

A loop that executes a block of statements over and over
again until a given condition returns FALSE.

whi le (tes t cond i t i on i s TRUE)
{
/∗ sequence of statements ∗ /
}

46/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Example (1)

inc lude <s t d i o . h>
i n t main () {

char c = ’ y ’ ; /∗ I n i t i a l i z e to a value as t rue i n
wh i le ∗ /

wh i le (c== ’ y ’) {
p r i n t f (” Keep going ? (y / n) ”) ;
scanf (” %c ” ,&c) ;

}
r e t u r n 0 ;

}

Output
Keep going ? (y/n) y
Keep going ? (y/n) n
$

47/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Example (2)

inc lude <s t d i o . h>
i n t main () {

char c ;
wh i le (1) { /∗ c o nd i t i on always t rue ∗ /

p r i n t f (”Gimme a char : ”) ;
scanf (” %c ” ,&c) ;

} /∗ do fo reve r ∗ /
r e t u r n 0 ;

}

Output
Gimme a char: g
Gimme a char: f
...
Gimme a char: z
∧C

48/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The for loop

A counting loop that executes a block of statements over
and over again until a given condition returns FALSE.
Internal counter in contrast to while-loop.

f o r (i n i t i a l i z a t i o n ; t e s t c o n d i t i o n ;
increment or decrement counter)

{
/∗ sequence of statements ∗ /
}

Internal counter is only updated after the block of
statements

true for both pre/post counter (++counter/counter++).

49/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The for loop

Some arguments of for function can be empty.

f o r (i n t i = 0 ; ; i ++) { /∗ i n f i n i t e loop ∗ /
}

f o r (i n t i = 3 ; ;) { /∗ keeps at i =3 ∗ /
}

Multiple declarations are separated by comma.
Expressions are evaluated left-to-right

50/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Example

f o r (i =1 , j =1; i <10; j ∗= i , i ++)
{
/∗ f i r s t j = j ∗ i then i = i +1 ∗ /
}

f o r (i =1 , j =1; i <10; i ++ , j ∗= i)
{
/∗ f i r s t i = i +1 then j = j ∗ i ∗ /
}

Counter variables Counter variables
j= 1, i= 1
j= 1, i= 2
j= 2, i= 3
j= 6, i= 4
j= 24, i= 5
j= 120, i= 6
j= 720, i= 7
j= 5040, i= 8
j= 40320, i= 9

i= 1, j= 1
i= 2, j= 2
i= 3, j= 6
i= 4, j= 24
i= 5, j= 120
i= 6, j= 720
i= 7, j= 5040
i= 8, j= 40320
i= 9, j= 362880

51/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The do-while loop

A do-while loop executes the body of the loop and only
then tests some condition.

will be executed at least once, even if the condition is
FALSE.

do { /∗ execute statements ∗ /
} whi le (tes t cond i t i on i s TRUE) ;

52/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Example

inc lude <s t d i o . h>
i n t main () {

i n t i =4;
do { /∗ i n any case ∗ /

p r i n t f (”My i n t e g e r : %d \n ” , i) ;
i ++;

} whi le (i <5) ;
r e t u r n 0 ;

}

Output
My integer: 4
$

53/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Hybrid: The goto statement

goto jumps unconditionally to a named location in the
code, i.e.
a label followed by a colon ”:”, that
can be placed anywhere (within the same function).

inc lude <s t d i o . h>
i n t main () {

i n t a = 1 ;
LOOP: do {

i f (a == 3) {
a = a + 1; /∗ sk ip i t e r a t i n g ∗ /
goto LOOP;

}
p r i n t f (” value o f a : %d\n ” , a) ;
a++;

}whi le (a < 5) ;
r e t u r n 0 ;
}

54/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

The goto statement

Compiling and executing the program, we obtain

$ gcc -Wall -o myprogram *.c
$./myprogram
value of a: 1
value of a: 2
value of a: 4

55/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Quiz

What is the output of the code?

inc lude<s t d i o . h>
i n t main () {

i n t a=0 , i =0;
f o r (i =0; i <3; i ++) {
a++
cont inue ;
}

p r i n t f (” a = %d\n ” ,a) ;
}

56/52

Variables, Datatypes and Operators
Control Flow

Loops
Hybrid

Quiz (2)

The keyword getting out of recursion is:
1 break

2 return

3 exit

4 Both 1) and 2)

	Variables, Datatypes and Operators
	Variables
	Primitive data types
	Operators
	Data type conversion
	Booleans

	Control Flow
	Loops
	Hybrid

